1
|
Ban T, Guo M, Wang Y, Zhang Y, Zhu X. High-performance aromatic proton exchange membranes bearing multiple flexible pendant sulfonate groups: Exploring side chain length and main chain polarity. J Memb Sci 2023. [DOI: 10.1016/j.memsci.2022.121255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
|
2
|
Xu J, Chen X, Ju M, Ren J, Zhao P, Meng L, Lei J, Shi Q, Wang Z. Sulfonated poly (ether ketone sulfone) composite membranes containing ZIF-67 coordinate graphene oxide showing high proton conductivity and improved physicochemical properties. J IND ENG CHEM 2022. [DOI: 10.1016/j.jiec.2022.11.066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
3
|
Ramos‐Rivera G, Suleiman D. High‐performance blended membranes based on poly(arylene ether sulfone) and sulfonated poly(styrene‐isobutylene‐styrene) for direct methanol fuel cell applications. J Appl Polym Sci 2022. [DOI: 10.1002/app.52027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Gilberto Ramos‐Rivera
- Chemical Engineering Department University of Puerto Rico‐Mayaguez Campus Mayagüez Puerto Rico
| | - David Suleiman
- Chemical Engineering Department University of Puerto Rico‐Mayaguez Campus Mayagüez Puerto Rico
| |
Collapse
|
4
|
Ghorai A, Kamble R, Banerjee S. Trifluoromethyl functionalized sulfonated polytriazoles from diphenylphosphine oxide-based dialkyne via click polymerization: Effect of high content of phosphorus on the proton exchange membrane properties. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2021.110869] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
5
|
Liu Q, Li X, Zhang S, Wang Z, Chen Y, Zhou S, Wang C, Wu K, Liu J, Mao Q, Jian X. Novel sulfonated N-heterocyclic poly(aryl ether ketone ketone)s with pendant phenyl groups for proton exchange membrane performing enhanced oxidative stability and excellent fuel cell properties. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2021.119926] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
6
|
Chen W, Dong T, Xiang Y, Qian Y, Zhao X, Xin W, Kong XY, Jiang L, Wen L. Ionic Crosslinking-Induced Nanochannels: Nanophase Separation for Ion Transport Promotion. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2108410. [PMID: 34750892 DOI: 10.1002/adma.202108410] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Indexed: 06/13/2023]
Abstract
Charge-governed ion transport is crucial to numerous industries, and the advanced membrane is the essential component. In nature, the efficient and selective ion transport is mainly governed by the charged ion channels located in cell membrane, indicating the architecture with functional differentiation. Inspired by this architecture, a membrane by ionic crosslinking sulfonated poly(arylene ether ketone) and imidazolium-functionalized poly(arylene ether sulfone) is designed and fabricated to make full use of the charges. This ionic crosslinking is designed to realize nanophase separation to aggregate the ion pathways in the membrane, which results in excellent ion selectivity and high ion conductivity. With the excellent ion transport behavior, ionic crosslinking membrane shows great potential in osmotic energy conversion, which maximum power density can be up to 16.72 W m-2 . This design of ionic crosslinking-induced nanophase separation offers a roadmap for ion transport promotion.
Collapse
Affiliation(s)
- Weipeng Chen
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Tiandu Dong
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Yun Xiang
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Yongchao Qian
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- Shanxi Key Laboratory of Macromolecular Science and Technology, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, 710072, P. R. China
| | - Xiaolu Zhao
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Weiwen Xin
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Xiang-Yu Kong
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Lei Jiang
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Liping Wen
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| |
Collapse
|
7
|
Ghorai A, Roy S, Das S, Komber H, Ghangrekar MM, Voit B, Banerjee S. Preparation of Sulfonated Polytriazoles with a Phosphaphenanthrene Unit via Click Polymerization: Fabrication of Membranes and Properties Thereof. ACS APPLIED POLYMER MATERIALS 2021; 3:4127-4138. [DOI: 10.1021/acsapm.1c00600] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
| | | | | | - Hartmut Komber
- Leibniz-Institut für Polymerforschung Dresden e.V., Hohe Strasse. 6, 01069 Dresden, Germany
| | | | - Brigitte Voit
- Leibniz-Institut für Polymerforschung Dresden e.V., Hohe Strasse. 6, 01069 Dresden, Germany
| | | |
Collapse
|
8
|
Mesoscale Morphologies of Nafion-Based Blend Membranes by Dissipative Particle Dynamics. Processes (Basel) 2021. [DOI: 10.3390/pr9060984] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Polymer electrolyte membrane (PEM) composed of polymer or polymer blend is a vital element in PEM fuel cell that allows proton transport and serves as a barrier between fuel and oxygen. Understanding the microscopic phase behavior in polymer blends is very crucial to design alternative cost-effective proton-conducting materials. In this study, the mesoscale morphologies of Nafion/poly(1-vinyl-1,2,4-triazole) (Nafion-PVTri) and Nafion/poly(vinyl phosphonic acid) (Nafion-PVPA) blend membranes were studied by dissipative particle dynamics (DPD) simulation technique. Simulation results indicate that both blend membranes can form a phase-separated microstructure due to the different hydrophobic and hydrophilic character of different polymer chains and different segments in the same polymer chain. There is a strong, attractive interaction between the phosphonic acid and sulfonic acid groups and a very strong repulsive interaction between the fluorinated and phosphonic acid groups in the Nafion-PVPA blend membrane. By increasing the PVPA content in the blend membrane, the PVPA clusters’ size gradually increases and forms a continuous phase. On the other hand, repulsive interaction between fluorinated and triazole units in the Nafion-PVTri blend is not very strong compared to the Nafion-PVPA blend, which results in different phase behavior in Nafion-PVTri blend membrane. This relatively lower repulsive interaction causes Nafion-PVTri blend membrane to have non-continuous phases regardless of the composition.
Collapse
|
9
|
Zhu B, Sui Y, Wei P, Wen J, Cao H, Cong C, Meng X, Zhou Q. NH2-UiO-66 coated fibers to balance the excellent proton conduction efficiency and significant dimensional stability of proton exchange membrane. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2021.119214] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
10
|
Crosslinked Proton Exchange Membranes with a Wider Working Temperature Based on Phosphonic Acid Functionalized Siloxane and PPO. Macromol Res 2021. [DOI: 10.1007/s13233-021-9024-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
11
|
Jang J, Ahn MK, Lee SB, Min CM, Kang BG, Lee JS. Conductive and Stable Crosslinked Anion Exchange Membranes Based on Poly(arylene ether sulfone). Macromol Res 2021. [DOI: 10.1007/s13233-021-9023-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
12
|
Sood R, Giancola S, Donnadio A, Zatoń M, Donzel N, Rozière J, Jones DJ, Cavaliere S. Active electrospun nanofibers as an effective reinforcement for highly conducting and durable proton exchange membranes. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2020.119037] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
13
|
Jang J, Kim DH, Kang B, Lee JH, Pak C, Lee JS. Impact of N-Substituent and p Ka of Azole Rings on Fuel Cell Performance and Phosphoric Acid Loss. ACS APPLIED MATERIALS & INTERFACES 2021; 13:531-540. [PMID: 33390000 DOI: 10.1021/acsami.0c17907] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The influence of N-substituent and pKa of azole rings has been investigated for the performance of high-temperature polymer electrolyte membrane fuel cells (HT-PEMFCs). Imidazole, benzimidazole, and triazole groups were functionalized on the side chains of poly(phenylene oxide), respectively. Each azole group is categorized by their N-substituent into two types: unsubstituted and methyl-substituted azoles. The membranes with methyl-substituted azoles showed higher phosphoric acid (PA) doping levels with an average increase of 20% compared to those with unsubstituted azoles in the full-doped states. However, unsubstituted azoles more effectively improved the proton conductivity and the membrane with unsubstituted imidazole (IMPPO-H) showed a high anhydrous proton conductivity of 153 mS/cm at 150 °C. In contrast, the membranes with methyl-substituted azoles showed a higher PA retention with an average increase of 81% compared to those with unsubstituted azoles. The higher PA retention of methyl-substituted azoles also led to the higher fuel cell performance with the maximum increase of 95% in the power density. It was also revealed that higher pKa of azoles enhanced the PA retention and the fuel cell performance. Based on the experimental results of PA retention and density functional theory calculations, the PA loss mechanism was also proposed.
Collapse
Affiliation(s)
- Joseph Jang
- School of Materials Science and Engineering, Gwangju Institute of Science and Technology, Gwangju 61005, Republic of Korea
| | - Do-Hyung Kim
- Graduate School of Energy Convergence, Institute of Integrated Technology, Gwangju Institute of Science and Technology, Gwangju 61005, Republic of Korea
| | - Byeol Kang
- School of Materials Science and Engineering, Gwangju Institute of Science and Technology, Gwangju 61005, Republic of Korea
| | - Joo-Hyoung Lee
- School of Materials Science and Engineering, Gwangju Institute of Science and Technology, Gwangju 61005, Republic of Korea
| | - Chanho Pak
- Graduate School of Energy Convergence, Institute of Integrated Technology, Gwangju Institute of Science and Technology, Gwangju 61005, Republic of Korea
| | - Jae-Suk Lee
- School of Materials Science and Engineering, Gwangju Institute of Science and Technology, Gwangju 61005, Republic of Korea
| |
Collapse
|
14
|
Haragirimana A, Li N, Ingabire PB, Hu Z, Chen S. Multi-component organic/inorganic blend proton exchange membranes based on sulfonated poly(arylene ether sulfone)s for fuel cells. POLYMER 2020. [DOI: 10.1016/j.polymer.2020.123015] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
15
|
Haider R, Wen Y, Ma ZF, Wilkinson DP, Zhang L, Yuan X, Song S, Zhang J. High temperature proton exchange membrane fuel cells: progress in advanced materials and key technologies. Chem Soc Rev 2020; 50:1138-1187. [PMID: 33245736 DOI: 10.1039/d0cs00296h] [Citation(s) in RCA: 143] [Impact Index Per Article: 28.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
High temperature proton exchange membrane fuel cells (HT-PEMFCs) are one type of promising energy device with the advantages of fast reaction kinetics (high energy efficiency), high tolerance to fuel/air impurities, simple plate design, and better heat and water management. They have been expected to be the next generation of PEMFCs specifically for application in hydrogen-fueled automobile vehicles and combined heat and power (CHP) systems. However, their high-cost and low durability interposed by the insufficient performance of key materials such as electrocatalysts and membranes at high temperature operation are still the challenges hindering the technology's practical applications. To develop high performance HT-PEMFCs, worldwide researchers have been focusing on exploring new materials and the related technologies by developing novel synthesis methods and innovative assembly techniques, understanding degradation mechanisms, and creating mitigation strategies with special emphasis on catalysts for oxygen reduction reaction, proton exchange membranes and bipolar plates. In this paper, the state-of-the-art development of HT-PEMFC key materials, components and device assembly along with degradation mechanisms, mitigation strategies, and HT-PEMFC based CHP systems is comprehensively reviewed. In order to facilitate further research and development of HT-PEMFCs toward practical applications, the existing challenges are also discussed and several future research directions are proposed in this paper.
Collapse
Affiliation(s)
- Rizwan Haider
- Department of Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China.
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Pal S, Mondal R, Guha S, Chatterjee U, Jewrajka SK. Crosslinked terpolymer anion exchange membranes for selective ion separation and acid recovery. J Memb Sci 2020. [DOI: 10.1016/j.memsci.2020.118459] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
17
|
Wang T, Li T, Aboki J, Guo R. Disulfonated Poly(arylene ether sulfone) Random Copolymers Containing Hierarchical Iptycene Units for Proton Exchange Membranes. Front Chem 2020; 8:674. [PMID: 32850676 PMCID: PMC7417612 DOI: 10.3389/fchem.2020.00674] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Accepted: 06/29/2020] [Indexed: 11/13/2022] Open
Abstract
Two series of disulfonated iptycene-based poly(arylene ether sulfone) random copolymers, i.e., TRP-BP (triptycene-based) and PENT-BP (pentiptycene-based), were synthesized via condensation polymerization from disulfonated monomer and comonomers to prepare proton exchange membranes (PEMs) for potential applications in electrochemical devices such as fuel cell. To investigate the effect of iptycene units on membrane performance, these copolymers were systematically varied in composition (i.e., iptycene content) and the degree of sulfonation (i.e., 30–50%), which were characterized comprehensively in terms of water uptake, swelling ratio, oxidative stability, thermal and mechanical properties, and proton conductivity at various temperatures. Comparing to copolymers without iptycene units, TRP-BP and PENT-BP ionomers showed greatly enhanced thermal and oxidative stabilities due to strong intra- and inter-molecular supramolecular interactions induced by hierarchical iptycene units. In addition, the introduction of iptycene units in general provides PEMs with exceptional dimensional stability of low volume swelling ratio at high water uptakes, which is ascribed to the supramolecularly interlocked structure as well as high fractional free volume of iptycene-based polymers. It is demonstrated that the combination of high proton conductivity and good membrane dimension stability is the result of the synergistic effects of multiple factors including free volume (iptycene content), sulfonation degree, hydrophobicity, and swelling behavior (supramolecular interactions).
Collapse
Affiliation(s)
- Tao Wang
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, IN, United States
| | - Tianyun Li
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, IN, United States
| | - Joseph Aboki
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, IN, United States
| | - Ruilan Guo
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, IN, United States
| |
Collapse
|
18
|
Ghorai A, Roy S, Das S, Komber H, Ghangrekar MM, Voit B, Banerjee S. Chemically Stable Sulfonated Polytriazoles Containing Trifluoromethyl and Phosphine Oxide Moieties for Proton Exchange Membranes. ACS APPLIED POLYMER MATERIALS 2020; 2:2967-2979. [DOI: 10.1021/acsapm.0c00443] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
| | | | | | - Hartmut Komber
- Leibniz-Institut für Polymerforschung Dresden e.V., Hohe Strasse 6, 01069 Dresden, Germany
| | | | - Brigitte Voit
- Leibniz-Institut für Polymerforschung Dresden e.V., Hohe Strasse 6, 01069 Dresden, Germany
| | | |
Collapse
|
19
|
Azole structures influence fuel cell performance of phosphoric acid-doped poly(phenylene oxide) with azoles on side chains. J Memb Sci 2020. [DOI: 10.1016/j.memsci.2020.118096] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
20
|
Zhang S, Manasa P, Wang Q, Li D, Dang X, XiaoqinNiu, Ran F. Grafting copolymer of thermo-responsive and polysaccharide chains for surface modification of high performance membrane. Sep Purif Technol 2020. [DOI: 10.1016/j.seppur.2020.116585] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
21
|
|
22
|
Higa M, Mehdizadeh S, Feng S, Endo N, Kakihana Y. Cell performance of direct methanol alkaline fuel cell (DMAFC) using anion exchange membranes prepared from PVA-Based block copolymer. J Memb Sci 2020. [DOI: 10.1016/j.memsci.2019.117618] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
23
|
Zheng P, Liu Q, Wang D, Li Z, Meng Y, Zheng Y. Preparation of Covalent-Ionically Cross-Linked UiO-66-NH 2/Sulfonated Aromatic Composite Proton Exchange Membranes With Excellent Performance. Front Chem 2020; 8:56. [PMID: 32133339 PMCID: PMC7039937 DOI: 10.3389/fchem.2020.00056] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Accepted: 01/17/2020] [Indexed: 01/14/2023] Open
Abstract
Metal-organic frameworks (MOFs), as newly emerging filler materials for polyelectrolytes, show many compelling intrinsic features, such as variable structural designability and modifiability of proton conductivity. In this manuscript, UiO-66-NH2, a stable MOF with -NH2 functional groups in its ligands, was selected to achieve a high-performance sulfonated poly(arylene ether nitrile)s (SPENs)/UiO-66-NH2-x covalent-ionically cross-linked composite membrane. Simultaneously, the obtained composite membranes displayed excellent thermal stability and dimensional stability. The as-prepared SPEN/UiO-66-NH2-x cross-linked membranes exhibited higher proton conductivity than recast SPENs, which can be attributed to the construction of ionic clusters and well-connected ionic nanochannels along the interface between UiO-66-NH2-x and SPEN matrix via molecular interactions. Meanwhile, the methanol permeability of the SPEN/UiO-66-NH2-x composite membrane had been effectively reduced due to the barrier effect of cross-linking and the addition of UiO-66-NH2-x. The SPEN/UiO-66-NH2-5 composite membrane had the highest selectivity of 6.42 × 105 S·s·cm−3: 14.3-times higher than that of Nafion 117. The preparation of cross-linked UiO-66-NH2/SPEN composite was facile, which provides a new strategy for preparing high performance proton exchange membrane.
Collapse
Affiliation(s)
- Penglun Zheng
- College of Civil Aviation Safety Engineering, Civil Aviation Flight University of China, Guanghan, China
| | - Quanyi Liu
- College of Civil Aviation Safety Engineering, Civil Aviation Flight University of China, Guanghan, China
| | - Donghui Wang
- College of Civil Aviation Safety Engineering, Civil Aviation Flight University of China, Guanghan, China
| | - Zekun Li
- College of Civil Aviation Safety Engineering, Civil Aviation Flight University of China, Guanghan, China
| | - Yawei Meng
- College of Civil Aviation Safety Engineering, Civil Aviation Flight University of China, Guanghan, China
| | - Yun Zheng
- Key Laboratory of Optoelectronic Chemical Materials and Devices, Ministry of Education, Jianghan University, Wuhan, China
| |
Collapse
|
24
|
Jang J, Kim DH, Ahn MK, Min CM, Lee SB, Byun J, Pak C, Lee JS. Phosphoric acid doped triazole-containing cross-linked polymer electrolytes with enhanced stability for high-temperature proton exchange membrane fuel cells. J Memb Sci 2020. [DOI: 10.1016/j.memsci.2019.117508] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
25
|
Polydopamine-modified sulfonated polyhedral oligomeric silsesquioxane: An appealing nanofiller to address the trade-off between conductivity and stabilities for proton exchange membrane. J Memb Sci 2020. [DOI: 10.1016/j.memsci.2019.117734] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
26
|
Zheng P, Liu Q, Li Z, Wang D, Liu X. Effect of Crosslinking Degree on Sulfonated Poly(aryl ether nitrile)s As Candidates for Proton Exchange Membranes. Polymers (Basel) 2019; 11:E964. [PMID: 31163576 PMCID: PMC6631686 DOI: 10.3390/polym11060964] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2019] [Revised: 05/14/2019] [Accepted: 05/17/2019] [Indexed: 11/16/2022] Open
Abstract
In order to investigate the effect of crosslinking degree on the water uptake, swelling ratio, and methanol permeability of sulfonated poly(aryl ether nitrile)s (SPENs), the molar content of sulfonated group in bisphenol monomer is fixed at 60% in this work. The properties of sulfonated poly (aryl ether nitrile) with different crosslinking degrees are studied by changing the content of propenyl group in sulfonated poly (aryl ether nitrile)s. The cross-linking reaction of the propenyl groups in the SPENs is cured at 230 °C. All the results show that this method is an effective way to improve the water uptake, swelling ratio, and methanol permeability to meet the application requirements of the SPENs membranes as proton exchange membranes in fuel cells.
Collapse
Affiliation(s)
- Penglun Zheng
- College of Civil Aviation Safety Engineering, Civil Aviation Flight University of China, Guanghan 618307, China.
| | - Quanyi Liu
- College of Civil Aviation Safety Engineering, Civil Aviation Flight University of China, Guanghan 618307, China.
| | - Zekun Li
- College of Civil Aviation Safety Engineering, Civil Aviation Flight University of China, Guanghan 618307, China.
| | - Donghui Wang
- College of Civil Aviation Safety Engineering, Civil Aviation Flight University of China, Guanghan 618307, China.
| | - Xiaobo Liu
- Research Branch of Advanced Functional Materials, School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu 610054, China.
| |
Collapse
|
27
|
Elumalai V, Kavya Sravanthi CK, Sangeetha D. Synthesis characterization and performance evaluation of tungstic acid functionalized SBA-15/SPEEK composite membrane for proton exchange membrane fuel cell. APPLIED NANOSCIENCE 2019. [DOI: 10.1007/s13204-019-01005-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
28
|
Kim AR, Gabunada JC, Yoo DJ. Sulfonated fluorinated block copolymer containing naphthalene unit/sulfonated polyvinylidene-co-hexafluoropropylene/functionalized silicon dioxide ternary composite membrane for low-humidity fuel cell applications. Colloid Polym Sci 2018. [DOI: 10.1007/s00396-018-4403-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
29
|
Hou J, Sun X, Gu X, Liu S, Xiao Z, Liu G, Ding H. Construction of continuous proton‐conduction channels through polyvinylimidazole nanotubes to enhance proton conductivity of polymer electrolyte membrane. J Appl Polym Sci 2018. [DOI: 10.1002/app.47106] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Jinghe Hou
- Institute of Polymer Science and Engineering, School of Chemical Engineering and TechnologyHebei University of Technology Tianjin 300130 People's Republic of China
| | - Xiang Sun
- Institute of Polymer Science and Engineering, School of Chemical Engineering and TechnologyHebei University of Technology Tianjin 300130 People's Republic of China
| | - Xinxin Gu
- Institute of Polymer Science and Engineering, School of Chemical Engineering and TechnologyHebei University of Technology Tianjin 300130 People's Republic of China
| | - Shanshan Liu
- Institute of Polymer Science and Engineering, School of Chemical Engineering and TechnologyHebei University of Technology Tianjin 300130 People's Republic of China
| | - Zhenyu Xiao
- Institute of Polymer Science and Engineering, School of Chemical Engineering and TechnologyHebei University of Technology Tianjin 300130 People's Republic of China
| | - Gang Liu
- Institute of Polymer Science and Engineering, School of Chemical Engineering and TechnologyHebei University of Technology Tianjin 300130 People's Republic of China
| | - Huili Ding
- Institute of Polymer Science and Engineering, School of Chemical Engineering and TechnologyHebei University of Technology Tianjin 300130 People's Republic of China
| |
Collapse
|