1
|
Arsalan M, Khan MA, D R, Rahman WU, Alajmi MF, Hussain A, Halder G. Fabrication, characterization and electrochemical analysis of a polyvinylidene fluoride plus zeolite embedded manganese phosphate composite ion exchange membrane. Phys Chem Chem Phys 2025. [PMID: 40009110 DOI: 10.1039/d5cp00088b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/27/2025]
Abstract
Nanocomposite ion exchange membranes have significant potential in water purification, especially in desalination. In this study, a novel polyvinylidene fluoride and zeolite nanocomposite membrane, embedded with manganese phosphate (PVDF+Ze@MP), was prepared via the sol-gel method. This membrane demonstrated excellent ion exchange properties, and thermal, mechanical, and chemical stability. It showed resilience in both acidic and basic environments, with no visible degradation, and maintained a thickness of 0.085 cm and a water uptake of 0.070%. The structural configuration of PVDF+Ze@MP was ascertained by SEM, XRD, and FTIR, whereas the thermal properties were examined using TGA analysis. Electrochemical analysis, based on the Teorell-Meyer-Sievers (TMS) model, revealed that charge density significantly influenced ion transport and separation efficiency. The membrane exhibited high cation selectivity, with the membrane potential increasing as the electrolyte concentration decreased, indicating its ability to selectively transport specific ions. Additionally, performance metrics for mobility ratio, transport number, and membrane potential followed the trend KHCO3 < NaHCO3 < KCl < NaCl except for fixed charge density, which followed the reverse order highlighting the membrane's adaptability for efficient ion separation. The novelty of this work lies in the synergistic integration of PVDF, zeolites, and manganese phosphate to create a composite membrane with enhanced stability and selective ion exchange performance, making it a strong candidate for challenging water treatment applications. With superior electrochemical properties, low fouling behavior, and robust thermal and mechanical stability, this membrane holds strong potential for practical implementation in desalination and ion exchange processes.
Collapse
Affiliation(s)
- Mohd Arsalan
- Department of Applied Chemistry, Aligarh Muslim University, Aligarh-202002, India
| | - Mohd Adeel Khan
- Department of Applied Chemistry, Aligarh Muslim University, Aligarh-202002, India
| | - Rhithuparna D
- Department of Chemical Engineering, National Institute of Technology Durgapur, Durgapur, West Bengal, 713209, India.
| | - Wasi Ur Rahman
- Department of Chemical Engineering, Aligarh Muslim University, Aligarh-202002, India
| | - Mohamed Fahad Alajmi
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh, Kingdom of Saudi Arabia
| | - Afzal Hussain
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh, Kingdom of Saudi Arabia
| | - Gopinath Halder
- Department of Chemical Engineering, National Institute of Technology Durgapur, Durgapur, West Bengal, 713209, India.
| |
Collapse
|
2
|
Singh G, Yadav G, Yadav N, Kapoor S, Sharma B, Sharma RK, Kumar R, Chaudhary GR. Recent advancements in the synthesis of anion exchange membranes and their potential applications in wastewater treatment. Adv Colloid Interface Sci 2025; 336:103376. [PMID: 39662338 DOI: 10.1016/j.cis.2024.103376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 12/01/2024] [Accepted: 12/02/2024] [Indexed: 12/13/2024]
Abstract
Water treatment procedures are increasingly utilized for resource recovery and wastewater disinfection, addressing the current challenges of clean water depletion and wastewater management. Various pollutants, including dyes, acids, pharmaceuticals, and toxic heavy metals have been released into the environment through industrial, domestic, and agricultural activities, posing serious environmental and public health risks. Addressing these issues requires the development of more effective waste treatment processes. Membrane-based treatment technologies offer significant advantages, including high efficiency, versatility, and cost-effectiveness, making them a promising solution for mitigating the impact of these pollutants. In view of this, the potential of ion exchange membranes (IEMs) is continuously increasing due to their advanced characteristics compared to conventional techniques. Anion exchange membranes (AEMs), a special class of IEMs, selectively allow anions to pass through their pores due to the positive charge on their surface. This selective passage aids in resource recovery and removing specific types of pollutants. This review covers preparation methods, modification techniques, and classification of AEMs. It offers a practical classification based on the method of synthesis and structural properties of AEMs. The water-based applications of AEMs including, electrodialysis, diffusion dialysis, and electro-electrodialysis for various wastewater treatments such as heavy metal recovery, dye removal, pharmaceutical removal, and acid separation, have been discussed in detail. Additionally, the effect of various operational parameters on the performance and SWOT (strengths, weaknesses, opportunities, and threats) analysis of AEMs in effluent treatment are presented. The review provides detailed insights into the current status, challenges, and future directions of AEM-based technologies, offering suggestions for future advancements.
Collapse
Affiliation(s)
- Gurkaran Singh
- Department of Chemistry, Centre of Advanced Studies in Chemistry, Panjab University, Chandigarh 160014, India
| | - Gaurav Yadav
- Department of Chemistry, Centre of Advanced Studies in Chemistry, Panjab University, Chandigarh 160014, India; Sophisticated Analytical Instrumentation Facility (SAIF)/ Central Instrumentation Laboratory (CIL), Panjab University, Chandigarh 160014, India
| | - Nidhi Yadav
- Department of Chemistry, National Institute of Technology, Silchar, 788010, India
| | - Sahil Kapoor
- Department of Chemical Engineering, Panjab University, Chandigarh 160014, India
| | - Bunty Sharma
- Sophisticated Analytical Instrumentation Facility (SAIF)/ Central Instrumentation Laboratory (CIL), Panjab University, Chandigarh 160014, India
| | - Ramesh Kumar Sharma
- Sophisticated Analytical Instrumentation Facility (SAIF)/ Central Instrumentation Laboratory (CIL), Panjab University, Chandigarh 160014, India
| | - Rajeev Kumar
- Department of Environment Studies, Panjab University, Chandigarh 160014, India
| | - Ganga Ram Chaudhary
- Department of Chemistry, Centre of Advanced Studies in Chemistry, Panjab University, Chandigarh 160014, India; Sophisticated Analytical Instrumentation Facility (SAIF)/ Central Instrumentation Laboratory (CIL), Panjab University, Chandigarh 160014, India.
| |
Collapse
|
3
|
Sharma PP, Mohammed S, Aburabie J, Hashaikeh R. Valorization of Seawater Reverse Osmosis Brine by Monovalent Ion-Selective Membranes through Electrodialysis. MEMBRANES 2023; 13:562. [PMID: 37367766 DOI: 10.3390/membranes13060562] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 05/25/2023] [Accepted: 05/28/2023] [Indexed: 06/28/2023]
Abstract
This paper proposes the use of monovalent selective electrodialysis technology to concentrate the valuable sodium chloride (NaCl) component present in seawater reverse osmosis (SWRO) brine for direct utilization in the chlor-alkali industry. To enhance monovalent selectivity, a polyamide selective layer was fabricated on commercial ion exchange membranes (IEMs) through interfacial polymerization (IP) of piperazine (PIP) and 1,3,5-Benzenetricarbonyl chloride (TMC). The IP-modified IEMs were characterized using various techniques to investigate changes in chemical structure, morphology, and surface charge. Ion chromatography (IC) analysis showed that the divalent rejection rate was more than 90% for IP-modified IEMs, compared to less than 65% for commercial IEMs. Electrodialysis results demonstrated that the SWRO brine was successfully concentrated to 14.9 g/L NaCl at a power consumption rate of 3.041 kWh/kg, indicating the advantageous performance of the IP-modified IEMs. Overall, the proposed monovalent selective electrodialysis technology using IP-modified IEMs has the potential to provide a sustainable solution for the direct utilization of NaCl in the chlor-alkali industry.
Collapse
Affiliation(s)
- Prem P Sharma
- NYUAD Water Research Center, Engineering Division, New York University Abu Dhabi, Abu Dhabi P.O. Box 129188, United Arab Emirates
| | - Shabin Mohammed
- NYUAD Water Research Center, Engineering Division, New York University Abu Dhabi, Abu Dhabi P.O. Box 129188, United Arab Emirates
| | - Jamaliah Aburabie
- NYUAD Water Research Center, Engineering Division, New York University Abu Dhabi, Abu Dhabi P.O. Box 129188, United Arab Emirates
| | - Raed Hashaikeh
- NYUAD Water Research Center, Engineering Division, New York University Abu Dhabi, Abu Dhabi P.O. Box 129188, United Arab Emirates
| |
Collapse
|
4
|
Gong Y, Chen W, Shen HY, Cheng C. Semi-interpenetrating Polymer-Network Anion Exchange Membrane Based on Quaternized Polyepichlorohydrin and Polyvinyl Alcohol for Acid Recovery by Diffusion Dialysis. Ind Eng Chem Res 2023. [DOI: 10.1021/acs.iecr.3c00026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/08/2023]
Affiliation(s)
- Yifei Gong
- School of Materials and Chemical Engineering, Anhui Jianzhu University, Hefei 230022, P.R. China
| | - Wei Chen
- School of Materials and Chemical Engineering, Anhui Jianzhu University, Hefei 230022, P.R. China
| | - Hai Yang Shen
- School of Materials and Chemical Engineering, Anhui Jianzhu University, Hefei 230022, P.R. China
| | - Congliang Cheng
- School of Materials and Chemical Engineering, Anhui Jianzhu University, Hefei 230022, P.R. China
| |
Collapse
|
5
|
Advancements in Polyelectrolyte Membrane Designs for Vanadium Redox Flow Battery (VRFB). RESULTS IN CHEMISTRY 2023. [DOI: 10.1016/j.rechem.2023.100892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2023] Open
|
6
|
Rathod NH, Upadhyay P, Pal S, Kulshrestha V. Highly Cross-Linked butene grafted poly (Vinyl Alcohol)–co-Vinyl pyridine based anion exchange membrane for improved acid recovery and desalination efficiency. Sep Purif Technol 2023. [DOI: 10.1016/j.seppur.2022.122895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
7
|
Patnaik P, Sarkar S, Pal S, Chatterjee U. Cu(I) catalyzed ATRP for the preparation of high-performance poly (vinylidene fluoride)-g-poly 2-(dimethylamino)ethyl methacrylate crosslinked anion exchange membranes for enhanced acid recovery. J Memb Sci 2023. [DOI: 10.1016/j.memsci.2023.121387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
8
|
Recovery and enrichment of acid from metallurgical wastewater model by electrodialysis integrated diffusion dialysis system using poly(ethylene) based IEMs. Sep Purif Technol 2023. [DOI: 10.1016/j.seppur.2022.122353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
9
|
Investigation on flexible and thermally crosslinked bis-piperidinium-PPO anion exchange membrane (AEM) for electro-kinetic desalination and acid recovery. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.121082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
10
|
Zheng Y, Jin Y, Zhang N, Wang D, Yang Y, Zhang M, Wang G, Qu W, Wu Y. Preparation and characterization of Ti3C2TX MXene/PVDF cation exchange membrane for electrodialysis. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.129556] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
11
|
Yu S, Qian H, Liao J, Dong J, Yu L, Liu C, Shen J. Proton blockage PVDF-co-HFP-based anion exchange membrane for sulfuric acid recovery in electrodialysis. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.120510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
12
|
Nagarale R, Bavdane PP, Sreenath S, Pawar CM, Dave V, Satpati AK. Polyaniline derivatized anion exchange membrane for acid recovery. JOURNAL OF POLYMER RESEARCH 2022. [DOI: 10.1007/s10965-022-03151-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
13
|
Rajput A, Sharma J, Raj SK, Kulshrestha V. Dehydrofluorinated poly(vinylidene fluoride-co-hexafluoropropylene) based crosslinked cation exchange membrane for brackish water desalination via electrodialysis. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.127576] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
14
|
Influence of hydrophobic components tuning of poly (aryl ether sulfone)s ionomers based anion exchange membranes on diffusion dialysis for acid recovery. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2021.119562] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
15
|
Pan J, Wei B, Xie H, Feng J, Liao S, Li X, Yu Y. Hexyl-modified series-connected bipyridine and DABCO di-cations functionalized anion exchange membranes for electrodialysis desalination. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2021.118526] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
16
|
Long side-chain type partially cross-linked poly(vinylidene fluoride-co-hexafluoropropylene) anion exchange membranes for desalination via electrodialysis. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2020.119034] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
17
|
A two-step strategy for the preparation of anion-exchange membranes based on poly(vinylidenefluoride-co-hexafluoropropylene) for electrodialysis desalination. POLYMER 2021. [DOI: 10.1016/j.polymer.2021.123508] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
18
|
Zhang P, Wu Y, Liu W, Cui P, Huang Q, Ran J. Construction of two dimensional anion exchange membranes to boost acid recovery performances. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2020.118692] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
19
|
Yadav V, Raj SK, Rathod NH, Kulshrestha V. Polysulfone/graphene quantum dots composite anion exchange membrane for acid recovery by diffusion dialysis. J Memb Sci 2020. [DOI: 10.1016/j.memsci.2020.118331] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
20
|
Ji W, Ge X, Afsar NU, Zhao Z, Wu B, Song W, He Y, Ge L, Xu T. In-situ crosslinked AEMs with self-assembled nanostructure for acid recovery. Sep Purif Technol 2020. [DOI: 10.1016/j.seppur.2020.116927] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
21
|
Sulfonated Poly(ether sulfone) based sulfonated molybdenum sulfide composite membranes and their applications in salt removal and alkali recovery. J Memb Sci 2020. [DOI: 10.1016/j.memsci.2020.118043] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
22
|
Golubenko DV, Van der Bruggen B, Yaroslavtsev AB. Novel anion exchange membrane with low ionic resistance based on chloromethylated/quaternized‐grafted polystyrene for energy efficient electromembrane processes. J Appl Polym Sci 2019. [DOI: 10.1002/app.48656] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Daniel V. Golubenko
- Russian Academy of SciencesN.S. Kurnakov Institute of General and Inorganic Chemistry 31 Leninsky prospect, Moscow 119991 Russian Federation
- Russian Academy of SciencesInstitute of Problems of Chemical Physics Academician Semenov Avenue 1, Chernogolovka 142432 Moscow Region Russian Federation
| | - Bart Van der Bruggen
- Department of Chemical EngineeringKU Leuven Celestijnenlaan 200F, B‐3001 Leuven Belgium
- Faculty of Engineering and the Built EnvironmentTshwane University of Technology Private Bag X680 Pretoria 0001 South Africa
| | - Andrey B. Yaroslavtsev
- Russian Academy of SciencesN.S. Kurnakov Institute of General and Inorganic Chemistry 31 Leninsky prospect, Moscow 119991 Russian Federation
- Russian Academy of SciencesInstitute of Problems of Chemical Physics Academician Semenov Avenue 1, Chernogolovka 142432 Moscow Region Russian Federation
| |
Collapse
|
23
|
Gahlot S, Yadav V, Sharma PP, Kulshrestha V. Zn-MOF@SPES composite membranes: synthesis, characterization and its electrochemical performance. SEP SCI TECHNOL 2018. [DOI: 10.1080/01496395.2018.1505916] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Affiliation(s)
- Swati Gahlot
- CSIR-Central Salt and Marine Chemicals Research Institute (CSIR-CSMCRI), Council of Scientific & Industrial Research (CSIR), Bhavnagar, INDIA
| | - Vikrant Yadav
- CSIR-Central Salt and Marine Chemicals Research Institute (CSIR-CSMCRI), Council of Scientific & Industrial Research (CSIR), Bhavnagar, INDIA
- Academy of Scientific and Innovative Research, CSIR-Central Salt and Marine Chemicals Research Institute (CSIR-CSMCRI), Bhavnagar, INDIA
| | - Prem P. Sharma
- CSIR-Central Salt and Marine Chemicals Research Institute (CSIR-CSMCRI), Council of Scientific & Industrial Research (CSIR), Bhavnagar, INDIA
- Academy of Scientific and Innovative Research, CSIR-Central Salt and Marine Chemicals Research Institute (CSIR-CSMCRI), Bhavnagar, INDIA
| | - Vaibhav Kulshrestha
- CSIR-Central Salt and Marine Chemicals Research Institute (CSIR-CSMCRI), Council of Scientific & Industrial Research (CSIR), Bhavnagar, INDIA
- Academy of Scientific and Innovative Research, CSIR-Central Salt and Marine Chemicals Research Institute (CSIR-CSMCRI), Bhavnagar, INDIA
| |
Collapse
|