1
|
Li C, Song K, Hao C, Liang W, Li X, Zhang W, Wang Y, Song Y. Fabrication of S-PBI cation exchange membrane with excellent anti-fouling property for enhanced performance in electrodialysis. Colloids Surf A Physicochem Eng Asp 2023. [DOI: 10.1016/j.colsurfa.2022.130910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
2
|
Prasetya N, Himma NF, Sutrisna PD, Wenten IG. Recent advances in dual-filler mixed matrix membranes. REV CHEM ENG 2021. [DOI: 10.1515/revce-2021-0014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
Mixed matrix membranes (MMMs) have been widely developed as an attractive solution to overcome the drawbacks found in most polymer membranes, such as permeability-selectivity trade-off and low physicochemical stability. Numerous fillers based on inorganic, organic, and hybrid materials with various structures including porous or nonporous, and two-dimensional or three-dimensional, have been used. Demanded to further improve the characteristics and performances of the MMMs, the use of dual-filler instead of a single filler has then been proposed, from which multiple effects could be obtained. This article aims to review the recent development of MMMs with dual filler and discuss their performances in diverse potential applications. Challenges in this emerging field and outlook for future research are finally provided.
Collapse
Affiliation(s)
- Nicholaus Prasetya
- Research Centre for Nanoscience and Nanotechnology, Institut Teknologi Bandung , Jalan Ganesha 10 , Bandung 40132 , Indonesia
- Department of Chemical Engineering , Barrer Centre, Imperial College London , Exhibition Road , London SW7 2AZ , UK
| | - Nurul Faiqotul Himma
- Department of Chemical Engineering , Universitas Brawijaya , Jalan Mayjen Haryono 167 , Malang 65145 , Indonesia
| | - Putu Doddy Sutrisna
- Department of Chemical Engineering , Universitas Surabaya , Jalan Raya Kalirungkut (Tenggilis) , Surabaya 60293 , Indonesia
| | - I Gede Wenten
- Research Centre for Nanoscience and Nanotechnology, Institut Teknologi Bandung , Jalan Ganesha 10 , Bandung 40132 , Indonesia
- Department of Chemical Engineering , Institut Teknologi Bandung , Jalan Ganesha 10 , Bandung 40132 , Indonesia
| |
Collapse
|
3
|
Jiang S, Sun H, Wang H, Ladewig BP, Yao Z. A comprehensive review on the synthesis and applications of ion exchange membranes. CHEMOSPHERE 2021; 282:130817. [PMID: 34091294 DOI: 10.1016/j.chemosphere.2021.130817] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 05/01/2021] [Accepted: 05/05/2021] [Indexed: 06/12/2023]
Abstract
Ion exchange membranes (IEMs) are undergoing prosperous development in recent years. More than 30,000 papers which are indexed by Science Citation Index Expanded (SCIE) have been published on IEMs during the past twenty years (2001-2020). Especially, more than 3000 papers are published in the year of 2020, revealing researchers' great interest in this area. This paper firstly reviews the different types (e.g., cation exchange membrane, anion exchange membrane, proton exchange membrane, bipolar membrane) and electrochemical properties (e.g., permselectivity, electrical resistance/ionic conductivity) of IEMs and the corresponding working principles, followed by membrane synthesis methods, including the common solution casting method. Especially, as a promising future direction, green synthesis is critically discussed. IEMs are extensively applied in various applications, which can be generalized into two big categories, where the water-based category mainly includes electrodialysis, diffusion dialysis and membrane capacitive deionization, while the energy-based category mainly includes reverse electrodialysis, fuel cells, redox flow battery and electrolysis for hydrogen production. These applications are comprehensively discussed in this paper. This review may open new possibilities for the future development of IEMs.
Collapse
Affiliation(s)
- Shanxue Jiang
- State Environmental Protection Key Laboratory of Food Chain Pollution Control, Beijing Technology and Business University, Beijing, 100048, China; Key Laboratory of Cleaner Production and Integrated Resource Utilization of China National Light Industry, Beijing Technology and Business University, Beijing, 100048, China; Barrer Centre, Department of Chemical Engineering, Imperial College London, Exhibition Road, London, SW7 2AZ, United Kingdom
| | - Haishu Sun
- Department of Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Huijiao Wang
- School of Chemical and Environmental Engineering, China University of Mining and Technology (Beijing), Beijing, 100083, China
| | - Bradley P Ladewig
- Barrer Centre, Department of Chemical Engineering, Imperial College London, Exhibition Road, London, SW7 2AZ, United Kingdom; Institute for Micro Process Engineering (IMVT), Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
| | - Zhiliang Yao
- State Environmental Protection Key Laboratory of Food Chain Pollution Control, Beijing Technology and Business University, Beijing, 100048, China; Key Laboratory of Cleaner Production and Integrated Resource Utilization of China National Light Industry, Beijing Technology and Business University, Beijing, 100048, China.
| |
Collapse
|
4
|
Ingabire PB, Haragirimana A, Liu Y, Li N, Hu Z, Chen S. Titanium oxide/graphitic carbon nitride nanocomposites as fillers for enhancing the performance of SPAES membranes for fuel cells. J IND ENG CHEM 2020. [DOI: 10.1016/j.jiec.2020.08.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
5
|
A Review on Ion-exchange Membranes Fouling and Antifouling During Electrodialysis Used in Food Industry: Cleanings and Strategies of Prevention. CHEMISTRY AFRICA 2020. [DOI: 10.1007/s42250-020-00178-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
6
|
Chaudhury S, Thakur AK, Gojman RS, Arnusch CJ, Nir O. Ion Transport in Laser-Induced Graphene Cation-Exchange Membrane Hybrids. J Phys Chem Lett 2020; 11:1397-1403. [PMID: 31997642 DOI: 10.1021/acs.jpclett.0c00036] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Ion-exchange membranes hybridized with laser-induced graphene (LIG) might lead to membranes with functional surface effects such as antifouling, antibacterial, or joule heating effects; however, understanding the change in the electrical properties of the membrane is essential. Here we studied LIG-modified ion-exchange polymeric membranes using electrochemical impedance spectroscopy (EIS). The conductivity of the anionic sulfonated poly(ether sulfone) membranes and the effective capacitance of the membrane-electrolyte interface were obtained by fitting the EIS spectra to an electrochemical equivalent circuit and compared with LIG-modified nonionic poly(ether sulfone) films. The transport selectivity (as the relative permeability) of counterions (K+, Na+, Mg2+, Ca2+) across the membrane was quantified using the membrane's conductivities obtained from the EIS measurements. The total ohmic resistance of the membrane was directly correlated to the polymer thickness (with negligible contribution from the conductive LIG layer), thereby establishing EIS as a rapid, low-cost, and noninvasive method to accurately probe substrate usage in LIG modification.
Collapse
Affiliation(s)
- Sanhita Chaudhury
- Department of Desalination and Water Treatment, Zuckerberg Institute for Water Research, The Jacob Blaustein Institutes for Desert Research , Ben-Gurion University of the Negev , Sede-Boqer Campus, Midreshet Ben Gurion 84990 , Israel
| | - Amit K Thakur
- Department of Desalination and Water Treatment, Zuckerberg Institute for Water Research, The Jacob Blaustein Institutes for Desert Research , Ben-Gurion University of the Negev , Sede-Boqer Campus, Midreshet Ben Gurion 84990 , Israel
- Department of Chemical Engineering , Texas Tech University , 807 Canton Avenue , Lubbock , Texas 79409 , United States
| | - Revital S Gojman
- Department of Desalination and Water Treatment, Zuckerberg Institute for Water Research, The Jacob Blaustein Institutes for Desert Research , Ben-Gurion University of the Negev , Sede-Boqer Campus, Midreshet Ben Gurion 84990 , Israel
| | - Christopher J Arnusch
- Department of Desalination and Water Treatment, Zuckerberg Institute for Water Research, The Jacob Blaustein Institutes for Desert Research , Ben-Gurion University of the Negev , Sede-Boqer Campus, Midreshet Ben Gurion 84990 , Israel
| | - Oded Nir
- Department of Desalination and Water Treatment, Zuckerberg Institute for Water Research, The Jacob Blaustein Institutes for Desert Research , Ben-Gurion University of the Negev , Sede-Boqer Campus, Midreshet Ben Gurion 84990 , Israel
| |
Collapse
|
7
|
Facile co-sintering process to fabricate sustainable antifouling silver nanoparticles (AgNPs)-enhanced tight ceramic ultrafiltration membranes for protein separation. J Memb Sci 2020. [DOI: 10.1016/j.memsci.2019.117402] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
8
|
Zhu J, Luo B, Qian Y, Sotto A, Gao C, Shen J. Three-Dimensional Stable Cation-Exchange Membrane with Enhanced Mechanical, Electrochemical, and Antibacterial Performance by in Situ Synthesis of Silver Nanoparticles. ACS OMEGA 2019; 4:16619-16628. [PMID: 31616844 PMCID: PMC6788049 DOI: 10.1021/acsomega.9b02537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Accepted: 09/17/2019] [Indexed: 05/06/2023]
Abstract
In this study, a simple and facile approach was proposed to synthesize silver nanoparticles (AgNPs) loaded cation-exchange membranes (CEMs). A wide analytical study involving scanning electronic microscopy, X-ray diffraction, and X-ray photoelectron spectroscopy was accomplished to corroborate that the in situ generated AgNPs were uniformly dispersed in the polymer matrix. In addition, as a result of the proposed synthesis strategy, the cross-linking structure inside the membrane was formed. The proper particle size and dispersibility of the AgNPs improved the mechanical properties of the membranes. Besides, the optimal AgNP-loaded CEM exhibited excellent bacterial killing activities against Gram-negative bacteria and showed a controlled improvement in the electrochemical performance of the prepared membranes. These effects were caused by the obtained distribution of AgNPs near ion-exchange groups that increased the aggregation of water molecules around them, improving the efficiency of ion transport due the formation of array broad ion-transport channels. The optimized CEM [sulfonated polysulfone (60SPSF)-C3#-Ag-2] exhibited an enhanced NaCl removal ratio of 67.5% with a high current efficiency (96.9%) and a low energy consumption (5.84 kWh kg-1). The distance of the inhibition zone from the boundary of the membrane of SPSF-C3#-Ag-2 reached 4.8 mm. These results led us to suggest that the proposed synthesis strategy may have potential applications in the field of antibacterial and desalting ion-exchange membranes.
Collapse
Affiliation(s)
- Jiajie Zhu
- Center for Membrane
Separation and Water Science & Technology, College of Chemical
Engineering, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Bin Luo
- Center for Membrane
Separation and Water Science & Technology, College of Chemical
Engineering, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Yukun Qian
- Center for Membrane
Separation and Water Science & Technology, College of Chemical
Engineering, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Arcadio Sotto
- Rey Juan Carlos University, Fuenlabrada, Camino del Molino,
s/n, Madrid 28942, Spain
| | - Congjie Gao
- Center for Membrane
Separation and Water Science & Technology, College of Chemical
Engineering, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Jiangnan Shen
- Center for Membrane
Separation and Water Science & Technology, College of Chemical
Engineering, Zhejiang University of Technology, Hangzhou 310014, P. R. China
- E-mail:
| |
Collapse
|
9
|
Paz-Mireles CL, Razo-Flores E, Trejo G, Cercado B. Inhibitory effect of ethanol on the experimental electrical charge and hydrogen production in microbial electrolysis cells (MECs). J Electroanal Chem (Lausanne) 2019. [DOI: 10.1016/j.jelechem.2019.01.028] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|