1
|
Castro-Muñoz R. Composite 2D Material-Based Pervaporation Membranes for Liquid Separation: A Review. Molecules 2024; 29:2829. [PMID: 38930894 PMCID: PMC11206894 DOI: 10.3390/molecules29122829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 06/12/2024] [Accepted: 06/12/2024] [Indexed: 06/28/2024] Open
Abstract
Today, chemistry and nanotechnology cover molecular separations in liquid and gas states by aiding in the design of new nano-sized materials. In this regard, the synthesis and application of two-dimensional (2D) nanomaterials are current fields of research in which structurally defined 2D materials are being used in membrane separation either in self-standing membranes or composites with polymer phases. For instance, pervaporation (PV), as a highly selective technology for liquid separation, benefits from using 2D materials to selectively transport water or other solvent molecules. Therefore, this review paper offers an interesting update in revising the ongoing progress of PV membranes using 2D materials in several applications, including solvent purification (the removal of water from organic systems), organics removal (the removal of organic molecules diluted in water systems), and desalination (selective water transport from seawater). In general, recent reports from the past 3 years have been discussed and analyzed. Attention has been devoted to the proposed strategies and fabrication of membranes for the inclusion of 2D materials into polymer phases. Finally, the future trends and current research gaps are declared for the scientists in the field.
Collapse
Affiliation(s)
- Roberto Castro-Muñoz
- Department of Sanitary Engineering, Faculty of Civil and Environmental Engineering, Gdansk University of Technology, 11/12 Narutowicza St., 80-233 Gdansk, Poland
| |
Collapse
|
2
|
Mohsenpour S, Guo Z, Almansour F, Holmes SM, Budd PM, Gorgojo P. Porous silica nanosheets in PIM-1 membranes for CO2 separation. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.120889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
3
|
Gill FS, Uniyal D, Prasad B, Saluja S, Mishra A, Bachheti RK, Juyal S. Investigation of increased electrical conductivity by rGO in rGO/PVDF/PMMA/PTFE nanocomposites. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.133541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
4
|
Qiu B, Alberto M, Mohsenpour S, Foster AB, Ding S, Guo Z, Xu S, Holmes SM, Budd PM, Fan X, Gorgojo P. Thin film nanocomposite membranes of PIM-1 and graphene oxide/ZIF-8 nanohybrids for organophilic pervaporation. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
5
|
Lakshmy KS, Lal D, Nair A, Babu A, Das H, Govind N, Dmitrenko M, Kuzminova A, Korniak A, Penkova A, Tharayil A, Thomas S. Pervaporation as a Successful Tool in the Treatment of Industrial Liquid Mixtures. Polymers (Basel) 2022; 14:polym14081604. [PMID: 35458354 PMCID: PMC9029804 DOI: 10.3390/polym14081604] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 04/02/2022] [Accepted: 04/08/2022] [Indexed: 02/01/2023] Open
Abstract
Pervaporation is one of the most active topics in membrane research, and it has time and again proven to be an essential component for chemical separation. It has been employed in the removal of impurities from raw materials, separation of products and by-products after reaction, and separation of pollutants from water. Given the global problem of water pollution, this approach is efficient in removing hazardous substances from water bodies. Conventional processes are based on thermodynamic equilibria involving a phase transition such as distillation and liquid-liquid extraction. These techniques have a relatively low efficacy and nowadays they are not recommended because it is not sustainable in terms of energy consumption and/or waste generation. Pervaporation emerged in the 1980s and is now becoming a popular membrane separation technology because of its intrinsic features such as low energy requirements, cheap separation costs, and good quality product output. The focus of this review is on current developments in pervaporation, mass transport in membranes, material selection, fabrication and characterization techniques, and applications of various membranes in the separation of chemicals from water.
Collapse
Affiliation(s)
- Kadavil Subhash Lakshmy
- School of Energy Materials, Mahatma Gandhi University, Kottayam 686560, Kerala, India; (K.S.L.); (D.L.); (A.N.); (A.B.); (H.D.); (N.G.); (S.T.)
| | - Devika Lal
- School of Energy Materials, Mahatma Gandhi University, Kottayam 686560, Kerala, India; (K.S.L.); (D.L.); (A.N.); (A.B.); (H.D.); (N.G.); (S.T.)
| | - Anandu Nair
- School of Energy Materials, Mahatma Gandhi University, Kottayam 686560, Kerala, India; (K.S.L.); (D.L.); (A.N.); (A.B.); (H.D.); (N.G.); (S.T.)
| | - Allan Babu
- School of Energy Materials, Mahatma Gandhi University, Kottayam 686560, Kerala, India; (K.S.L.); (D.L.); (A.N.); (A.B.); (H.D.); (N.G.); (S.T.)
| | - Haritha Das
- School of Energy Materials, Mahatma Gandhi University, Kottayam 686560, Kerala, India; (K.S.L.); (D.L.); (A.N.); (A.B.); (H.D.); (N.G.); (S.T.)
| | - Neethu Govind
- School of Energy Materials, Mahatma Gandhi University, Kottayam 686560, Kerala, India; (K.S.L.); (D.L.); (A.N.); (A.B.); (H.D.); (N.G.); (S.T.)
| | - Mariia Dmitrenko
- St. Petersburg State University, 7/9 Universitetskaya nab., 199034 St. Petersburg, Russia; (M.D.); (A.K.); (A.K.)
| | - Anna Kuzminova
- St. Petersburg State University, 7/9 Universitetskaya nab., 199034 St. Petersburg, Russia; (M.D.); (A.K.); (A.K.)
| | - Aleksandra Korniak
- St. Petersburg State University, 7/9 Universitetskaya nab., 199034 St. Petersburg, Russia; (M.D.); (A.K.); (A.K.)
| | - Anastasia Penkova
- St. Petersburg State University, 7/9 Universitetskaya nab., 199034 St. Petersburg, Russia; (M.D.); (A.K.); (A.K.)
- Correspondence: (A.P.); (A.T.)
| | - Abhimanyu Tharayil
- School of Energy Materials, Mahatma Gandhi University, Kottayam 686560, Kerala, India; (K.S.L.); (D.L.); (A.N.); (A.B.); (H.D.); (N.G.); (S.T.)
- Correspondence: (A.P.); (A.T.)
| | - Sabu Thomas
- School of Energy Materials, Mahatma Gandhi University, Kottayam 686560, Kerala, India; (K.S.L.); (D.L.); (A.N.); (A.B.); (H.D.); (N.G.); (S.T.)
| |
Collapse
|
6
|
KrF Laser and Plasma Exposure of PDMS-Carbon Composite and Its Antibacterial Properties. MATERIALS 2022; 15:ma15030839. [PMID: 35160785 PMCID: PMC8836707 DOI: 10.3390/ma15030839] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 01/18/2022] [Accepted: 01/19/2022] [Indexed: 02/01/2023]
Abstract
A polydimethylsiloxane (PDMS) composite with multi-walled carbon nanotubes was successfully prepared. Composite foils were treated with both plasma and excimer laser, and changes in their physicochemical properties were determined in detail. Mainly changes in surface chemistry, wettability, and morphology were determined. The plasma treatment of PDMS complemented with subsequent heating led to the formation of a unique wrinkle-like pattern. The impact of different laser treatment conditions on the composite surface was determined. The morphology was determined by AFM and LCM techniques, while chemical changes and chemical surface mapping were studied with the EDS/EDX method. Selected activated polymer composites were used for the evaluation of antibacterial activity using Gram-positive (Staphylococcus epidermidis) and Gram-negative (Escherichia coli) bacteria. The antibacterial effect was achieved against S. epidermidis on pristine PDMS treated with 500 mJ of laser energy and PDMS-C nanocomposite treated with a lower laser fluence of 250 mJ. Silver deposition of PDMS foil increases significantly its antibacterial properties against E. coli, which is further enhanced by the carbon predeposition or high-energy laser treatment.
Collapse
|
7
|
Luque-Alled JM, Tamaddondar M, Foster AB, Budd PM, Gorgojo P. PIM-1/Holey Graphene Oxide Mixed Matrix Membranes for Gas Separation: Unveiling the Role of Holes. ACS APPLIED MATERIALS & INTERFACES 2021; 13:55517-55533. [PMID: 34756006 DOI: 10.1021/acsami.1c15640] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
PIM-1/holey graphene oxide (GO) mixed matrix membranes (MMMs) have been prepared and their gas separation performance for CO2/CH4 mixtures assessed. Nanopores have been created in the basal plane of gas-impermeable GO by chemical etching reactions, and the resulting holey flakes have been further chemically functionalized, either with octadecylamine (ODA) or with PIM-1 moieties, to aid their dispersion in PIM-1. It is found that nanopores barely promote gas transport through the graphene-like nanofiller for fresh membranes (tested right after preparation); however, the prepared hybrid PIM-1/holey GO membranes exhibit higher CO2 permeability and CO2/CH4 selectivity than the pure polymer membrane 150 days after preparation and 13 and 15% higher CO2 permeability for filler contents of 0.1% of octadecylamine-functionalized holey GO and 1% of (PIM-1)-functionalized holey GO, respectively. The most significant improvement is observed for the mitigation of physical aging, as MMMs using 10% of (PIM-1)-functionalized holey GO nanofillers are capable of maintaining up to 70% of their initial CO2 permeability after 150 days, whereas only 53% is kept for pure PIM-1 after the same period. The gas permeability of the nanofiller has been rationalized with the aid of the Maxwell-Wagner-Sillars equation.
Collapse
Affiliation(s)
- Jose Miguel Luque-Alled
- Department of Chemical Engineering and Analytical Science, School of Engineering, The University of Manchester, Oxford Road, Manchester M13 9PL, United Kingdom
| | - Marzieh Tamaddondar
- Department of Chemistry, School of Natural Sciences, The University of Manchester, Oxford Road, Manchester M13 9PL, United Kingdom
| | - Andrew B Foster
- Department of Chemistry, School of Natural Sciences, The University of Manchester, Oxford Road, Manchester M13 9PL, United Kingdom
| | - Peter M Budd
- Department of Chemistry, School of Natural Sciences, The University of Manchester, Oxford Road, Manchester M13 9PL, United Kingdom
| | - Patricia Gorgojo
- Department of Chemical Engineering and Analytical Science, School of Engineering, The University of Manchester, Oxford Road, Manchester M13 9PL, United Kingdom
- Nanoscience and Materials Institute of Aragón (INMA) CSIC-Universidad de Zaragoza, C/Mariano Esquillor s/n, 50018 Zaragoza, Spain
- Chemical and Environmental Engineering Department, Universidad de Zaragoza, C/Pedro Cerbuna 12, 50009 Zaragoza, Spain
| |
Collapse
|
8
|
|
9
|
Contreras-Martínez J, Mohsenpour S, Ameen AW, Budd PM, García-Payo C, Khayet M, Gorgojo P. High-Flux Thin Film Composite PIM-1 Membranes for Butanol Recovery: Experimental Study and Process Simulations. ACS APPLIED MATERIALS & INTERFACES 2021; 13:42635-42649. [PMID: 34469119 DOI: 10.1021/acsami.1c09112] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Thin film composite (TFC) membranes of the prototypical polymer of intrinsic microporosity (PIM-1) have been prepared by dip-coating on a highly porous electrospun polyvinylidene fluoride (PVDF) nanofibrous support. Prior to coating, the support was impregnated in a non-solvent to avoid the penetration of PIM-1 inside the PVDF network. Different non-solvents were considered and the results were compared with those of the dry support. When applied for the separation of n-butanol/water mixtures by pervaporation (PV), the developed membranes exhibited very high permeate fluxes, in the range of 16.1-35.4 kg m-2 h-1, with an acceptable n-butanol/water separation factor of about 8. The PV separation index (PSI) of the prepared membranes is around 115, which is among the highest PSI values that have been reported so far. Hybrid PV-distillation systems have been designed and modeled in Aspen HYSYS using Aspen Custom Modeler for setting up the PIM-1 TFC and commercial PDMS membranes as a benchmark. The butanol recovery cost for the hybrid systems is compared with a conventional stand-alone distillation process used for n-butanol/water separation, and a 10% reduction in recovery cost was obtained.
Collapse
Affiliation(s)
- Jorge Contreras-Martínez
- Department of Structure of Matter, Thermal Physics and Electronics, Faculty of Physics, University Complutense of Madrid, Avda. Complutense s/n, 28040 Madrid, Spain
- Department of Chemical Engineering and Analytical Science, School of Engineering, The University of Manchester, Oxford Road, M13 9PL Manchester, U.K
| | - Sajjad Mohsenpour
- Department of Chemical Engineering and Analytical Science, School of Engineering, The University of Manchester, Oxford Road, M13 9PL Manchester, U.K
| | - Ahmed W Ameen
- Department of Chemical Engineering and Analytical Science, School of Engineering, The University of Manchester, Oxford Road, M13 9PL Manchester, U.K
| | - Peter M Budd
- Department of Chemistry, School of Natural Sciences, The University of Manchester, Oxford Road, M13 9PL Manchester, U.K
| | - Carmen García-Payo
- Department of Structure of Matter, Thermal Physics and Electronics, Faculty of Physics, University Complutense of Madrid, Avda. Complutense s/n, 28040 Madrid, Spain
| | - Mohamed Khayet
- Department of Structure of Matter, Thermal Physics and Electronics, Faculty of Physics, University Complutense of Madrid, Avda. Complutense s/n, 28040 Madrid, Spain
- Madrid Institute for Advanced Studies of Water (IMDEA Water Institute), Avda. Punto Com No 2, Alcalá de Henares, 28805 Madrid, Spain
| | - Patricia Gorgojo
- Department of Chemical Engineering and Analytical Science, School of Engineering, The University of Manchester, Oxford Road, M13 9PL Manchester, U.K
- Nanoscience and Materials Institute of Aragón (INMA) CSIC-Universidad de Zaragoza, C/Mariano Esquillor s/n, 50018 Zaragoza, Spain
- Chemical and Environmental Engineering Department, Universidad de Zaragoza, C/Pedro Cerbuna 12, 50009 Zaragoza, Spain
| |
Collapse
|
10
|
Luque-Alled JM, Ameen AW, Alberto M, Tamaddondar M, Foster AB, Budd PM, Vijayaraghavan A, Gorgojo P. Gas separation performance of MMMs containing (PIM-1)-functionalized GO derivatives. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2020.118902] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
11
|
Hao L, Chi Z, Chen Q, Zhang H, Wang J. Constructing large loadings of dual pathways with Ti3C2Tx-CDs in thin film nanocomposite membrane for enhanced organic permeation. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2020.118872] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
12
|
Paseta L, Luque-Alled JM, Malankowska M, Navarro M, Gorgojo P, Coronas J, Téllez C. Functionalized graphene-based polyamide thin film nanocomposite membranes for organic solvent nanofiltration. Sep Purif Technol 2020. [DOI: 10.1016/j.seppur.2020.116995] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
13
|
Yeo CSH, Xie Q, Wang X, Zhang S. Understanding and optimization of thin film nanocomposite membranes for reverse osmosis with machine learning. J Memb Sci 2020. [DOI: 10.1016/j.memsci.2020.118135] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
14
|
|
15
|
The in-situ synthesis of a high-flux ZIF-8/polydimethylsiloxane mixed matrix membrane for n-butanol pervaporation. Sep Purif Technol 2020. [DOI: 10.1016/j.seppur.2019.116263] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
16
|
Zhang X, Hou R, Zhang J, Meng Q, Shen C, Zhang G. PIM-1/PAN Thin-Film Composite Hollow Fiber Membrane as Structured Packings for Isopropanol (IPA)/Water Distillation. Ind Eng Chem Res 2020. [DOI: 10.1021/acs.iecr.0c00167] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Xu Zhang
- Center for Membrane and Water Science, College of Chemical Engineering and Material Science, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Rui Hou
- Center for Membrane and Water Science, College of Chemical Engineering and Material Science, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Jun Zhang
- Center for Membrane and Water Science, College of Chemical Engineering and Material Science, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Qin Meng
- Department of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, P. R. China
| | - Chong Shen
- Department of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, P. R. China
| | - Guoliang Zhang
- Center for Membrane and Water Science, College of Chemical Engineering and Material Science, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| |
Collapse
|
17
|
Cha-Umpong W, Hosseini E, Razmjou A, Zakertabrizi M, Korayem AH, Chen V. New molecular understanding of hydrated ion trapping mechanism during thermally-driven desalination by pervaporation using GO membrane. J Memb Sci 2020. [DOI: 10.1016/j.memsci.2019.117687] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
18
|
Putintseva MN, Yushkin AA, Bondarenko GN, Kirk RA, Budd PM, Volkov AV. Crosslinking of Polybenzodioxane PIM-1 for Improving Its Stability in Aromatic Hydrocarbons. POLYMER SCIENCE SERIES B 2020. [DOI: 10.1134/s1560090419060113] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
19
|
Foster AB, Tamaddondar M, Luque-Alled JM, Harrison WJ, Li Z, Gorgojo P, Budd PM. Understanding the Topology of the Polymer of Intrinsic Microporosity PIM-1: Cyclics, Tadpoles, and Network Structures and Their Impact on Membrane Performance. Macromolecules 2020. [DOI: 10.1021/acs.macromol.9b02185] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Andrew B. Foster
- Department of Chemistry, The University of Manchester, Oxford Road, Manchester M13 9PL, U.K
| | - Marzieh Tamaddondar
- Department of Chemistry, The University of Manchester, Oxford Road, Manchester M13 9PL, U.K
| | - Jose M. Luque-Alled
- Department of Chemical Engineering and Analytical Science, The University of Manchester, Manchester M13 9PL, U.K
| | - Wayne J. Harrison
- Department of Chemistry, The University of Manchester, Oxford Road, Manchester M13 9PL, U.K
| | - Ze Li
- Department of Chemistry, The University of Manchester, Oxford Road, Manchester M13 9PL, U.K
| | - Patricia Gorgojo
- Department of Chemical Engineering and Analytical Science, The University of Manchester, Manchester M13 9PL, U.K
| | - Peter M. Budd
- Department of Chemistry, The University of Manchester, Oxford Road, Manchester M13 9PL, U.K
| |
Collapse
|
20
|
Wang F, Zheng T, Xiong R, Wang P, Ma J. CDs@ZIF-8 Modified Thin Film Polyamide Nanocomposite Membrane for Simultaneous Enhancement of Chlorine-Resistance and Disinfection Byproducts Removal in Drinking Water. ACS APPLIED MATERIALS & INTERFACES 2019; 11:33033-33042. [PMID: 31436947 DOI: 10.1021/acsami.9b11006] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Reverse osmosis (RO) is an emerging membrane technology for disinfection byproducts (DBPs) removal. However, the chlorine-resistance and DBPs removal performance of thin film composite (TFC) polyamide membranes should be simultaneously improved when used in chlorinated drinking water. This study was dedicated to synthesize a novel nanoparticle of ZIF-8 with carbon dots (CDs@ZIF-8) and then modify thin film nanocomposite (TFN) membranes to enhance their performance in removing four trihalomethanes (THMs), four haloacetonitriles (HANs), and two haloketones (HKs) in chlorinated drinking water. The fabricated CDs@ZIF-8 nanoparticles and TFN membranes were characterized by FESEM, AFM, XPS, water contact angle, membrane surface potential, and a three-dimensional excitation-emission matrix (EEM) to investigate the influences of CDs@ZIF-8 on TFN membranes. After chlorination, percentage reduction in salt rejection of the CDs@ZIF-8 TFN membranes was lower than that of the TFC membranes due to hydrogen bonding between CDs and polyamide, replacing amidic hydrogen with chlorine, rendering the membrane less susceptible to chlorine attack and enhancing chlorine-resistance. Results also showed that the rejection of DBPs in chlorinated drinking water by CDs@ZIF-8 TFN membranes was more than 95%. The large surface area and abundant oxygen-containing groups of CDs@ZIF-8 made the nanoparticle act as a nanocarbon filler with high adsorption capacity of DBPs. The enhanced performances of chlorine-resistance and DBPs removal by CDs@ZIF-8 TFN membranes determined in this study provided valuable insights on the DBPs control in chlorinated drinking water by RO membranes.
Collapse
Affiliation(s)
- Feihong Wang
- State Key Laboratory of Urban Water Resource and Environment , Harbin Institute of Technology , 73 Huanghe Road , Nangang District, Harbin 150090 , China
| | - Tong Zheng
- State Key Laboratory of Urban Water Resource and Environment , Harbin Institute of Technology , 73 Huanghe Road , Nangang District, Harbin 150090 , China
| | - Ruohan Xiong
- State Key Laboratory of Urban Water Resource and Environment , Harbin Institute of Technology , 73 Huanghe Road , Nangang District, Harbin 150090 , China
| | - Panpan Wang
- State Key Laboratory of Urban Water Resource and Environment , Harbin Institute of Technology , 73 Huanghe Road , Nangang District, Harbin 150090 , China
| | - Jun Ma
- State Key Laboratory of Urban Water Resource and Environment , Harbin Institute of Technology , 73 Huanghe Road , Nangang District, Harbin 150090 , China
| |
Collapse
|
21
|
Kirk RA, Putintseva M, Volkov A, Budd PM. The potential of polymers of intrinsic microporosity (PIMs) and PIM/graphene composites for pervaporation membranes. ACTA ACUST UNITED AC 2019. [DOI: 10.1186/s42480-019-0018-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
22
|
Číhal P, Vopička O, Durďáková TM, Budd PM, Harrison W, Friess K. Pervaporation and vapour permeation of methanol – dimethyl carbonate mixtures through PIM-1 membranes. Sep Purif Technol 2019. [DOI: 10.1016/j.seppur.2019.02.023] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
23
|
Abstract
Membranes currently have a wide application in sewage treatment and water purification processes, in seawater desalination, and in various technological processes where high product purity is required. Deposition of an ultrathin skin layer of TFC (thin-film composite) and TFN (thin-film nanocomposite) onto the surface of membranes is discussed in this article. Their presence improves membrane properties such as retention of impurities and permeability. The aim of this paper is to present the current state of knowledge about the methods of preparing composite and nanocomposite membranes. The properties of the prepared TFC membranes can be modified by changing the type and concentration of the reacting monomers, and the physical conditions in which the membrane preparation process itself is carried out are also significant. Additionally, the properties of TFN membranes can be further modified with nanocomposites. The membranes are characterized by different properties not only because they have nanoparticles in their structure but also because their concentration and the way they are blended into the membrane structure were changed. This paper provides information on modifications of TFN membranes with nanoparticles, as well as modification by changes in polymerization reaction conditions and monomer concentration. Examples of the use of TFN and TFC membranes are also presented.
Collapse
|
24
|
Idarraga-Mora JA, Childress AS, Friedel PS, Ladner DA, Rao AM, Husson SM. Role of Nanocomposite Support Stiffness on TFC Membrane Water Permeance. MEMBRANES 2018; 8:E111. [PMID: 30453698 PMCID: PMC6315447 DOI: 10.3390/membranes8040111] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Revised: 11/13/2018] [Accepted: 11/14/2018] [Indexed: 11/21/2022]
Abstract
This paper discusses the role played by the mechanical stiffness of porous nanocomposite supports on thin-film composite (TFC) membrane water permeance. Helically coiled and multiwall carbon nanotubes (CNTs) were studied as additives in the nanocomposite supports. Mechanical stiffness was evaluated using tensile tests and penetration tests. While a low loading of CNTs caused macrovoids that decreased the structural integrity, adding higher loads of CNTs compensated for this effect, and this resulted in a net increase in structural stiffness. It was found that the Young's modulus of the nanocomposite supports increased by 30% upon addition of CNTs at 2 wt %. Results were similar for both types of CNTs. An empirical model for porous composite materials described the Young's modulus results. The nanocomposite supports were subsequently used to create TFC membranes. TFC membranes with stiffer supports were more effective at preventing declines in water permeance during compression. These findings support the idea that increasing the mechanical stiffness of TFC membrane nanocomposite supports is an effective strategy for enhancing water production in desalination operations.
Collapse
Affiliation(s)
- Jaime A Idarraga-Mora
- Department of Chemical and Biomolecular Engineering, Clemson University, 127 Earle Hall, Clemson, SC 29634, USA.
| | - Anthony S Childress
- Department of Physics and Astronomy, and Clemson Nanomaterials Institute, Clemson University, Clemson, SC 29634, USA.
| | - Parker S Friedel
- Department of Chemical and Biomolecular Engineering, Clemson University, 127 Earle Hall, Clemson, SC 29634, USA.
| | - David A Ladner
- Department of Environmental Engineering and Earth Sciences, Clemson University, 342 Computer Court, Anderson, SC 29625, USA.
| | - Apparao M Rao
- Department of Physics and Astronomy, and Clemson Nanomaterials Institute, Clemson University, Clemson, SC 29634, USA.
| | - Scott M Husson
- Department of Chemical and Biomolecular Engineering, Clemson University, 127 Earle Hall, Clemson, SC 29634, USA.
| |
Collapse
|