1
|
Yeon SY, Kim Y, Kang CM, Park S, Chung TD. Aqueous power source integrated on a microfluidic chip. Proc Natl Acad Sci U S A 2025; 122:e2423610122. [PMID: 39918946 PMCID: PMC11831149 DOI: 10.1073/pnas.2423610122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Accepted: 01/07/2025] [Indexed: 02/09/2025] Open
Abstract
The growing demand for portable sensors for point-of-care (POC) and onsite health monitoring has led to significant interest in developing suitable power sources. In this study, we developed a microfluidic chip-integrated reverse electrodialysis (μRED) system for ecofriendly power generation with monolithic operation. Leveraging its fully ionic characteristic, μRED was successfully applied to an ionic diode, thereby demonstrating its capability for seamless integration. The feasibility of operating a bipolar electrode sensor without an external power supply was demonstrated, highlighting its broad applicability in electrochemical portable sensors. μRED has great potential for future applications, including electrochemical sensors for POC diagnostics and wearable devices.
Collapse
Affiliation(s)
- Song Yi Yeon
- Department of Chemistry, Seoul National University, Seoul08826, Republic of Korea
| | - Yunju Kim
- Department of Chemistry, Seoul National University, Seoul08826, Republic of Korea
| | - Chung Mu Kang
- Advanced Institutes of Convergence Technology, Suwon-si16229, Gyeonggi-do, Republic of Korea
| | - Sanguk Park
- Department of Chemistry, Seoul National University, Seoul08826, Republic of Korea
| | - Taek Dong Chung
- Department of Chemistry, Seoul National University, Seoul08826, Republic of Korea
- Advanced Institutes of Convergence Technology, Suwon-si16229, Gyeonggi-do, Republic of Korea
| |
Collapse
|
2
|
Azimi G, Mosadeghsedghi S, Dashtban Kenari SL, Baghbanzadeh M, Volchek K. Class II (three-layer system) phenomenological model based on limiting current density and dynamic chelation chemistry for separation of rare earth elements using electrodialysis. Sci Rep 2024; 14:18340. [PMID: 39112665 PMCID: PMC11306324 DOI: 10.1038/s41598-024-69031-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 07/30/2024] [Indexed: 08/10/2024] Open
Abstract
This paper presents an in-depth investigation into the optimization of rare earth element (REE) separation through electrodialysis, leveraging a newly developed Class II phenomenological model. This study explores the pivotal roles of the HEDTA/Nd molar ratio and pH of feed solution on enhancing the separation efficiency of neodymium (Nd) and praseodymium (Pr) from lanthanum (La) and cerium (Ce). By integrating expanded Nernst-Planck equations and the concept of limiting current density, the model offers a sophisticated understanding of ion transport dynamics and the impacts of concentration polarization. Experimental validation confirms the model's predictive accuracy, demonstrating its practical applicability for industrial-scale operations. The research delineates how operational parameters such as chelating agent concentration and pH critically influence the purity and yield of separated REEs. The dynamic nature of chelation chemistry is also examined, highlighting its evolution during the electrodialysis process and its effect on the system's overall performance. Key findings illustrate that lower HEDTA/Nd molar ratios significantly enhance the purity of Nd + Pr by minimizing the chelation of La and Ce, thus facilitating their migration to the concentrate compartment. Conversely, higher ratios maximize yield by retaining more Nd + Pr in the feed compartment. This dual approach allows for optimized separation based on specific industrial requirements. The outcomes of this study not only advance the field of REE separation but also provide a framework for further research into more efficient and sustainable extraction methods. The developed model and its validation represent a step forward in the practical application of electrodialysis in REE processing, offering substantial benefits for the critical materials sector.
Collapse
Affiliation(s)
- Gisele Azimi
- Laboratory for Strategic Materials, Department of Chemical Engineering and Applied Chemistry, University of Toronto, 200 College Street, Toronto, ON, M5S 3E5, Canada.
| | - Sanaz Mosadeghsedghi
- CanmetMINING, Natural Resources Canada, 555 Booth Street, Ottawa, ON, K1A 0G1, Canada
| | | | | | - Konstantin Volchek
- CanmetMINING, Natural Resources Canada, 555 Booth Street, Ottawa, ON, K1A 0G1, Canada
| |
Collapse
|
3
|
Ding L, Azimi G. Mathematical modeling of rare earth element separation in electrodialysis with adjacent anion exchange membranes and ethylenediaminetetraacetic acid as chelating agent. Sci Rep 2024; 14:12240. [PMID: 38806606 PMCID: PMC11133418 DOI: 10.1038/s41598-024-62885-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Accepted: 05/22/2024] [Indexed: 05/30/2024] Open
Abstract
This research delves into the effective use of electrodialysis for the separation of rare earth elements (REEs), specifically separating dysprosium (Dy) from praseodymium (Pr) and neodymium (Nd). A robust mathematical model based on the extended Nernst-Planck equation is introduced, simulating the process within a configuration that includes two adjacent anion exchange membranes. The model integrates aspects such as feed equilibrium, ion exchange within the membrane, and overall ion flux. Validation of the model's predictability was conducted through Chi-squared tests and root mean square error (RMSE) calculations, affirming its capability to accurately predict ion concentrations across different compartments. The study examines essential parameters such as applied voltage, rinse solution concentration, and feed concentration, assessing their impacts on separation performance and energy efficiency. Results indicate that higher voltages above 8 V, while speeding up separation, detrimentally impact energy use. It also highlights a critical balance in rinse solution concentration; lower concentrations below 0.05 mol/L enhance energy efficiency but may undercut separation efficacy due to early depletion. A linear correlation between the necessary rinse concentration and feed concentration was established, with higher feed concentrations demonstrating reduced specific energy consumption, thus enhancing overall efficiency. However, challenges remain in current efficiency due to the independent migration of SO42- ions in this specific setup. The findings advocate exploring alternative configurations, like alternating cation and anion exchange membranes, to optimize both environmental and economic aspects of REE separation. This study provides valuable insights and recommendations for refining electrodialysis systems in REE processing, contributing to sustainable and cost-effective electrodialysis systems.
Collapse
Affiliation(s)
- Lingyang Ding
- Laboratory for Strategic Materials, Department of Chemical Engineering and Applied Chemistry, University of Toronto, 200 College Street, Toronto, ON, M5S 3E5, Canada
| | - Gisele Azimi
- Laboratory for Strategic Materials, Department of Chemical Engineering and Applied Chemistry, University of Toronto, 200 College Street, Toronto, ON, M5S 3E5, Canada.
| |
Collapse
|
4
|
Platek-Mielczarek A, Lang J, Töpperwien F, Walde D, Scherer M, Taylor DP, Schutzius TM. Engineering Electrode Rinse Solution Fluidics for Carbon-Based Reverse Electrodialysis Devices. ACS APPLIED MATERIALS & INTERFACES 2023; 15:48826-48837. [PMID: 37812816 PMCID: PMC10591279 DOI: 10.1021/acsami.3c10680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 09/22/2023] [Indexed: 10/11/2023]
Abstract
Natural salinity gradients are a promising source of so-called "blue energy", a renewable energy source that utilizes the free energy of mixing for power generation. One promising blue energy technology that converts these salinity gradients directly into electricity is reverse electrodialysis (RED). Used at its full potential, it could provide a substantial portion of the world's electricity consumption. Previous theoretical and experimental works have been done on optimizing RED devices, with the latter often focusing on precious and expensive metal electrodes. However, in order to rationally design and apply RED devices, we need to investigate all related transport phenomena─especially the fluidics of salinity gradient mixing and the redox electrolyte at various concentrations, which can have complex intertwined effects─in a fully functioning and scalable system. Here, guided by fundamental electrochemical and fluid dynamics theories, we work with an iron-based redox electrolyte with carbon electrodes in a RED device with tunable microfluidic environments and study the fundamental effects of electrolyte concentration and flow rate on the potential-driven redox activity and power output. We focus on optimizing the net power output, which is the difference between the gross power output generated by the RED device and the pumping power input, needed for salinity gradient mixing and redox electrolyte reactions. We find through this holistic approach that the electrolyte concentration in the electrode rinse solution is crucial for increasing the electrical current, while the pumping power input depends nonlinearly on the membrane separation distance. Finally, from this understanding, we designed a five cell-pair (CP) RED device that achieved a net power density of 224 mW m-2 CP-1, a 60% improvement compared to the nonoptimized case. This study highlights the importance of the electrode rinse solution fluidics and composition when rationally designing RED devices based on scalable carbon-based electrodes.
Collapse
Affiliation(s)
- Anetta Platek-Mielczarek
- Laboratory
for Multiphase Thermofluidics and Surface Nanoengineering, Department
of Mechanical and Process Engineering, ETH
Zurich, Sonneggstrasse 3, Zurich CH-8092, Switzerland
| | - Johanna Lang
- Laboratory
for Multiphase Thermofluidics and Surface Nanoengineering, Department
of Mechanical and Process Engineering, ETH
Zurich, Sonneggstrasse 3, Zurich CH-8092, Switzerland
| | - Feline Töpperwien
- Laboratory
for Multiphase Thermofluidics and Surface Nanoengineering, Department
of Mechanical and Process Engineering, ETH
Zurich, Sonneggstrasse 3, Zurich CH-8092, Switzerland
| | - Dario Walde
- Laboratory
for Multiphase Thermofluidics and Surface Nanoengineering, Department
of Mechanical and Process Engineering, ETH
Zurich, Sonneggstrasse 3, Zurich CH-8092, Switzerland
| | - Muriel Scherer
- Laboratory
for Multiphase Thermofluidics and Surface Nanoengineering, Department
of Mechanical and Process Engineering, ETH
Zurich, Sonneggstrasse 3, Zurich CH-8092, Switzerland
| | - David P. Taylor
- Laboratory
of Thermodynamics in Emerging Technologies, Department of Mechanical
and Process Engineering, ETH Zurich, Sonneggstrasse 3, Zurich 8092, Switzerland
| | - Thomas M. Schutzius
- Laboratory
for Multiphase Thermofluidics and Surface Nanoengineering, Department
of Mechanical and Process Engineering, ETH
Zurich, Sonneggstrasse 3, Zurich CH-8092, Switzerland
- Department
of Mechanical Engineering, University of
California, Berkeley, Berkeley, California 94720, United States
| |
Collapse
|
5
|
Al-Amshawee SKA, Yunus MYBM, Dakhil IH. Ion exchange membrane electrodialysis for water and wastewater processing: application of ladder-type membrane spacers to impact solution concentration and flow dynamics. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023:10.1007/s11356-023-27940-z. [PMID: 37308631 DOI: 10.1007/s11356-023-27940-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 05/23/2023] [Indexed: 06/14/2023]
Abstract
Concentration polarization, which creates a thin boundary layer along the membranes in electrochemical reactors and electrodialysis-related processes, is one of the main issues. Membrane spacers provide swirling motion in the stream and distribute fluid toward the membrane, which effectively breaks the polarization layer and maximizes flux steadily. Membrane spacers and the spacer-bulk attack angle are reviewed systematically in the current study. The study then in-depth reviews a ladder-type configuration composed of longitudinal (0° attack angle) and transverse (90° attack angle) filaments, and its effects on solution flow direction and hydrodynamics. The review discovered that, at the tradeoff of high-pressure losses, a laddered spacer can provide mass transfer and mixing activity along the channel while preserving comparable patterns of concentration near the membrane wall. Pressure losses are driven by a change in the direction of velocity vectors. Dead spots in the spacer design that are created by the large contribution of the spacer manifolds can be reduced using the high-pressure drop. Laddered spacers also permit long, tortuous flow paths, which help to create turbulent flow and prevent concentration polarization. The absence of spacers produces limited mixing and broad polarization effects. A major portion of streamlines changes direction at ladder spacer strands positioned transverse to the main flow by moving in a zigzag manner up and down the filaments of the spacer. Flow at 90° is perpendicular to the transverse wires in [Formula: see text]-coordinate, no change in [Formula: see text]-coordinate.
Collapse
Affiliation(s)
- Sajjad Khudhur Abbas Al-Amshawee
- Centre for Sustainability of Ecosystem & Earth Resources (Earth Centre), Universiti Malaysia Pahang, 26300, Gambang, Pahang, Malaysia.
| | - Mohd Yusri Bin Mohd Yunus
- Centre for Sustainability of Ecosystem & Earth Resources (Earth Centre), Universiti Malaysia Pahang, 26300, Gambang, Pahang, Malaysia
- Faculty of Chemical and Process Engineering Technology, Universiti Malaysia Pahang, 26300, Gambang, Pahang, Malaysia
| | - Ihsan Habib Dakhil
- Department of Chemical Engineering, Al-Muthanna University, Engineering College, 66001, Al-Samawa, Al-Muthanna, Iraq
| |
Collapse
|
6
|
Solonchenko K, Kirichenko A, Kirichenko K. Stability of Ion Exchange Membranes in Electrodialysis. MEMBRANES 2022; 13:52. [PMID: 36676859 PMCID: PMC9866250 DOI: 10.3390/membranes13010052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 12/26/2022] [Accepted: 12/29/2022] [Indexed: 06/17/2023]
Abstract
During electrodialysis the ion exchange membranes are affected by such factors as passage of electric current, heating, tangential flow of solution and exposure to chemical agents. It can potentially cause the degradation of ion exchange groups and of polymeric backbone, worsening the performance of the process and necessitating the replacement of the membranes. This article aims to review how the composition and the structure of ion exchange membranes change during the electrodialysis or the studies imitating it.
Collapse
Affiliation(s)
- Ksenia Solonchenko
- Physical Chemistry Department, Faculty of Chemistry and High Technologies, Kuban State University, 149 Stavropolskaya St., 350040 Krasnodar, Russia
| | - Anna Kirichenko
- Department of Electric Engineering, Thermotechnics, Renewable Energy Sources, Faculty of Energetics, Kuban State Agrarian University named after I.T. Trubilin, 13 Kalinina St., 350004 Krasnodar, Russia
| | - Ksenia Kirichenko
- Physical Chemistry Department, Faculty of Chemistry and High Technologies, Kuban State University, 149 Stavropolskaya St., 350040 Krasnodar, Russia
| |
Collapse
|
7
|
Sugimoto Y, Ujike R, Higa M, Kakihana Y, Higa M. Power Generation Performance of Reverse Electrodialysis (RED) Using Various Ion Exchange Membranes and Power Output Prediction for a Large RED Stack. MEMBRANES 2022; 12:membranes12111141. [PMID: 36422133 PMCID: PMC9697558 DOI: 10.3390/membranes12111141] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 11/05/2022] [Accepted: 11/08/2022] [Indexed: 05/31/2023]
Abstract
Reverse electrodialysis (RED) power generation using seawater (SW) and river water is expected to be a promising environmentally friendly power generation system. Experiments with large RED stacks are needed for the practical application of RED power generation, but only a few experimental results exist because of the need for large facilities and a large area of ion-exchange membranes (IEMs). In this study, to predict the power output of a large RED stack, the power generation performances of a lab-scale RED stack (40 membrane pairs and 7040 cm2 total effective membrane area) with several IEMs were evaluated. The results were converted to the power output of a pilot-scale RED stack (299 membrane pairs and 179.4 m2 total effective membrane area) via the reference IEMs. The use of low-area-resistance IEMs resulted in lower internal resistance and higher power density. The power density was 2.3 times higher than that of the reference IEMs when natural SW was used. The net power output was expected to be approximately 230 W with a pilot-scale RED stack using low-area-resistance IEMs and natural SW. This value is one of the indicators of the output of a large RED stack and is a target to be exceeded with further improvements in the RED system.
Collapse
Affiliation(s)
- Yu Sugimoto
- Graduate School of Science and Technology for Innovation, Yamaguchi University, 2-16-1 Tokiwadai, Ube, Yamaguchi 755-8611, Japan
- Blue Energy Center for SGE Technology (BEST), Yamaguchi University, 2-16-1 Tokiwadai, Ube, Yamaguchi 755-8611, Japan
| | - Ryo Ujike
- Graduate School of Science and Technology for Innovation, Yamaguchi University, 2-16-1 Tokiwadai, Ube, Yamaguchi 755-8611, Japan
| | - Minato Higa
- Graduate School of Science and Technology for Innovation, Yamaguchi University, 2-16-1 Tokiwadai, Ube, Yamaguchi 755-8611, Japan
- Blue Energy Center for SGE Technology (BEST), Yamaguchi University, 2-16-1 Tokiwadai, Ube, Yamaguchi 755-8611, Japan
| | - Yuriko Kakihana
- Graduate School of Science and Technology for Innovation, Yamaguchi University, 2-16-1 Tokiwadai, Ube, Yamaguchi 755-8611, Japan
- Blue Energy Center for SGE Technology (BEST), Yamaguchi University, 2-16-1 Tokiwadai, Ube, Yamaguchi 755-8611, Japan
| | - Mitsuru Higa
- Graduate School of Science and Technology for Innovation, Yamaguchi University, 2-16-1 Tokiwadai, Ube, Yamaguchi 755-8611, Japan
- Blue Energy Center for SGE Technology (BEST), Yamaguchi University, 2-16-1 Tokiwadai, Ube, Yamaguchi 755-8611, Japan
| |
Collapse
|
8
|
Kalkus T, Shanahan CJ, Smart J, Coskun A, Mayer M. Harvesting Electrical Power during Carbon Capture using Various Amine Solvents. ENERGY & FUELS : AN AMERICAN CHEMICAL SOCIETY JOURNAL 2022; 36:11051-11061. [PMID: 36148000 PMCID: PMC9483915 DOI: 10.1021/acs.energyfuels.2c02279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 08/18/2022] [Indexed: 06/16/2023]
Abstract
There exists an urgent demand for the advancement of technologies that reduce and capture carbon dioxide (CO2) emissions to mitigate anthropogenic contributions to climate change. This paper compares the maximum power densities achieved from the combination of reverse electrodialysis (RED) with carbon capture (CC) using various CC solvents. Carbon capture reverse electrodialysis (CCRED) harvests energy from the salinity gradients generated from the reaction of CO2 with specific solvents, generally amines. To eliminate the requirement of freshwater as an external resource, we took advantage of a semiclosed system that would allow the inputs to be industrial emissions and heat and the outputs to be electrical power, clean emissions, and captured CO2. We assessed the power density that can be attained using CCRED with five commonly studied CC solvents: monoethanolamine (MEA), diethanolamine (DEA), N-methyldiethanolamine (MDEA), 2-amino-2-methyl-2-propanol (AMP), and ammonia. We achieved the highest power density, 0.94 W m-2 cell-1, using ammonia. This work provides a foundation for future iterations of CCRED that may help to incentivize adoption of CC technology.
Collapse
Affiliation(s)
- Trevor
J. Kalkus
- Adolphe
Merkle Institute, University of Fribourg, Chemin des Verdiers 4, 1700 Fribourg, Switzerland
| | - Caitlin J. Shanahan
- Adolphe
Merkle Institute, University of Fribourg, Chemin des Verdiers 4, 1700 Fribourg, Switzerland
| | - Jansie Smart
- Department
of Chemistry, University of Fribourg, Chemin du Musee 9, 1700 Fribourg, Switzerland
| | - Ali Coskun
- Department
of Chemistry, University of Fribourg, Chemin du Musee 9, 1700 Fribourg, Switzerland
| | - Michael Mayer
- Adolphe
Merkle Institute, University of Fribourg, Chemin des Verdiers 4, 1700 Fribourg, Switzerland
| |
Collapse
|
9
|
Effect of Gaskets Geometry on the Performance of a Reverse Electrodialysis Cell. ENERGIES 2022. [DOI: 10.3390/en15093361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Abstract
Salinity gradient energy (SGE) allows the difference in salt concentration in two volumes of water to be harnessed and transformed into clean energy. The most advanced SGE technology is reverse electrodialysis (RED) cells. Recent studies have focused on ways to optimize the flow distribution in the compartments containing the water, for which it is necessary to consider the characteristics of the solutions, the cell dimensions, the operating conditions, as well as their influence on the hydrodynamics and mass transport in the system. In this study, two spacers with different gasket geometry were designed, fabricated, and compared experimentally through voltage and current measurements. The power output was computed, obtaining a maximum power density of 0.14 W/m2. Results show that the geometry of the cell components directly influences the physicochemical principles governing the RED process and is closely related to the cell output parameters. In turn, it is possible to increase the performance of a RED cell by optimizing the gasket geometry by reducing dead zones.
Collapse
|
10
|
Seo M, Park S, Ryu J, Kim SJ. Adhesive lift method for patterning arbitrary-shaped thin ion-selective films in micro/nanofluidic device. LAB ON A CHIP 2022; 22:1723-1735. [PMID: 35373806 DOI: 10.1039/d2lc00185c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Micro/nanofluidic platforms with nanoporous films have been utilized as research tools for studying electrokinetic phenomena occurring not only in macro-scale systems such as electro-desalination but also in micro-scale systems such as bio-molecular preconcentrators. However, due to the limitations of fabrication techniques, studies with nanoporous films are mainly limited to vary the physicochemical properties of the films such as surface charge and pore size, despite the enormous effect of the membrane morphology on the phenomena that is to be expected. Therefore, we propose an economic and feasible nanofabrication method called the "adhesive lift method" for patterning thin arbitrarily-shaped nanoporous film to integrate it into micro/nanofluidic platforms. The conformal patterning of the nanoporous films (Nafion or poly(3,4-ethylenedioxythiophene)polystyrene sulfonate (PEDOT:PSS) in this work) was accomplished with spin coating, oxygen plasma treatment and the "adhesive lift technique". Using the fabricated platforms, the initiation of ion concentration polarization along the film with various shapes was demonstrated. In particular, various electrokinetic characteristics of overlimiting conductance depending on the length scale of the microchannels were successfully demonstrated. Therefore, the presented adhesive lift method would provide platforms which can nearly mimic practical macro-scale fluidic systems so that the method would be very useful for studying various electrokinetic phenomena inside it.
Collapse
Affiliation(s)
- Myungjin Seo
- Department of Electrical and Computer Engineering, Seoul National University, Seoul 08826, Republic of Korea.
| | - Sungmin Park
- Creative Research Center for Brain Science, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea
| | - Junghwan Ryu
- Department of Forest Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Sung Jae Kim
- Department of Electrical and Computer Engineering, Seoul National University, Seoul 08826, Republic of Korea.
- SOFT Foundry Institute, Seoul National University, Seoul 08826, Republic of Korea
- Inter-university Semiconductor Research Center, Seoul National University, Seoul 08826, Republic of Korea
| |
Collapse
|
11
|
Sugioka M, Yoshida N, Yamane T, Kakihana Y, Higa M, Matsumura T, Sakoda M, Iida K. Long-term evaluation of an air-cathode microbial fuel cell with an anion exchange membrane in a 226L wastewater treatment reactor. ENVIRONMENTAL RESEARCH 2022; 205:112416. [PMID: 34808126 DOI: 10.1016/j.envres.2021.112416] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 11/13/2021] [Accepted: 11/18/2021] [Indexed: 06/13/2023]
Abstract
Although the treatment of municipal wastewater using microbial fuel cells (MFCs) has been extensively studied, scaling the systems up for practical use remains challenging. In this study, a 226 L sewage treatment reactor was equipped with 27 MFC units, and its chemical oxygen demand (COD) removal and electricity production were evaluated. The MFC units were tubular air cores with a diameter of 5 cm and length of 100 cm, which were wrapped with a carbon-based cathode, anion exchange membrane (AEM), and nonwoven graphite fabric. The air-cathode-AEM MFC generated 0.12-0.30 A/m2, 0.072-0.51 W/m3, and 1.7-4.6 Wh/m3 in a chemostat reactor with a COD of 140-36 mg/L and hydraulic retention time (HRT) of 9-42 h throughout a year. The decrease in the COD was represented as the first-order rate constant of 0.038. The rate constant was comparable to that of other air-cathode MFCs with cation exchange membranes, indicating the necessity of a posttreatment to meet the discharge standard. It has been estimated that the MFC operation for 24 h before post-aeration can reduce the energy required to meet the discharge standard by 70%, suggesting the potential applicability of MFC in long HRT-treatments such as oxidation ditch. The resistances of the anode, cathode, and AEM were 15, 7.0, and 0.51 mΩ m2, respectively, and surface dirt rather than deterioration primarily increased the AEM resistance. A current exceeding 0.2 A/m2 significantly increases the anode potential, indicating that the current was limited by low COD. Increasing the anode-specific surface area can improve air-AEM MFCs used for practical applications.
Collapse
Affiliation(s)
- Mari Sugioka
- Department of Civil and Environmental Engineering, Nagoya Institute of Technology (Nitech), Gokiso-Cho, Showa-Ku, Nagoya, Aichi, Japan
| | - Naoko Yoshida
- Department of Civil and Environmental Engineering, Nagoya Institute of Technology (Nitech), Gokiso-Cho, Showa-Ku, Nagoya, Aichi, Japan.
| | - Taiki Yamane
- Department of Civil and Environmental Engineering, Nagoya Institute of Technology (Nitech), Gokiso-Cho, Showa-Ku, Nagoya, Aichi, Japan
| | - Yuriko Kakihana
- Graduate School of Sciences and Technology for Innovation, Yamaguchi University, Japan
| | - Mitsuru Higa
- Graduate School of Sciences and Technology for Innovation, Yamaguchi University, Japan
| | | | - Mitsuhiro Sakoda
- Water & Sewage Department, Tamano Consultants Co., Ltd., 2-17-14, Higashisakura, Higashi-ku, Nagoya, Aichi, Japan
| | - Kazuki Iida
- River & Water Resources Division, NIPPON KOEI Co., Ltd., 5-4 Kojimachi, Chiyoda-ku, Tokyo, Japan
| |
Collapse
|
12
|
Reverse electrodialysis for power production with ion-permselective spacers and its optimization. J APPL ELECTROCHEM 2022. [DOI: 10.1007/s10800-022-01678-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
13
|
Itoshiro R, Yoshida N, Yagi T, Kakihana Y, Higa M. Effect of Ion Selectivity on Current Production in Sewage Microbial Fuel Cell Separators. MEMBRANES 2022; 12:183. [PMID: 35207104 PMCID: PMC8878261 DOI: 10.3390/membranes12020183] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 01/28/2022] [Accepted: 01/31/2022] [Indexed: 12/04/2022]
Abstract
This study compared the performance of two microbial fuel cells (MFCs) equipped with separators of anion or cation exchange membranes (AEMs or CEMs) for sewage wastewater treatment. Under chemostat feeding of sewage wastewater (hydraulic retention time of approximately 7 h and polarization via an external resistance of 1 Ω), the MFCs with AEM (MFCAEM) generated a maximum current that was 4-5 times greater than that generated by the MFC with CEM (MFCCEM). The high current in the MFCAEM was attributed to the approximately neutral pH of its cathode, in contrast to the extremely high pH of the MFCCEM cathode. Due to the elimination of the pH imbalance, the cathode resistance for the MFCAEM (13-19 Ω·m2) was lower than that for the MFCCEM (41-44 Ω·m2). The membrane resistance measured as the Cl- mobility of AEMs for the MFCAEM operated for 35, 583, and 768 days showed an increase with operation time and depth, and this increase contributed minimally to the cathode resistance of the MFCAEM. These results indicate the advantage of the AEM over the CEM for air-cathode MFCs. The membrane resistance may increase when the AEM is applied in large-scale MFCs on a meter scale for extended periods.
Collapse
Affiliation(s)
- Ryoya Itoshiro
- Department of Civil Engineering, Nagoya Institute of Technology (Nitech), Nagoya 466-8555, Japan; (R.I.); (T.Y.)
| | - Naoko Yoshida
- Department of Civil Engineering, Nagoya Institute of Technology (Nitech), Nagoya 466-8555, Japan; (R.I.); (T.Y.)
| | - Toshiyuki Yagi
- Department of Civil Engineering, Nagoya Institute of Technology (Nitech), Nagoya 466-8555, Japan; (R.I.); (T.Y.)
| | - Yuriko Kakihana
- Graduate School of Sciences and Technology for Innovation, Yamaguchi University, Yoshida, Yamaguchi 753-8511, Japan; (Y.K.); (M.H.)
| | - Mitsuru Higa
- Graduate School of Sciences and Technology for Innovation, Yamaguchi University, Yoshida, Yamaguchi 753-8511, Japan; (Y.K.); (M.H.)
| |
Collapse
|
14
|
Nam JY, Jwa E, Eom H, Kim H, Hwang K, Jeong N. Enhanced energy recovery using a cascaded reverse electrodialysis stack for salinity gradient power generation. WATER RESEARCH 2021; 200:117255. [PMID: 34062402 DOI: 10.1016/j.watres.2021.117255] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 05/04/2021] [Accepted: 05/11/2021] [Indexed: 06/12/2023]
Abstract
Despite significant advances in the field applications of reserve electrodialysis (RED) to produce salinity gradient power, net energy production remains an issue owing to limitations such as high energy requirement for high flow rates of feed solutions, and severe fouling and pressure build up when thin spacers are used. Therefore, to maximize the performance and efficiency of energy harvesting in the RED, a cascaded RED stack, with multiple stages between the anode and cathode electrodes, was investigated. In cascaded stacks, 100-cell paired stacks were divided into several stages, so the feed water flowed into the first stage, and the effluent from the first stage was then reused in the next stages. This cascaded stack could overcome the typical drawbacks of RED (large amount of feed water required, intensive pumping energy, and low net energy production). Although 25% of the feed water volume was used in the 4-stage cascaded stack (100-cell-pairs) compared to the conventional stack (100-cell-pairs with a parallel flow operation), much more energy was produced with the 4-stage cascaded stack. The net power density and net specific energy with the 4-stage cascaded stack were the highest at 0.5 cm/s (0.48 W/m2) and 0.25 cm/s (0.06 kWh/m3), respectively. This is very promising for the practical application of RED since feed water volumes can be greatly reduced, which could reduce the burden on the feed water pretreatment step. Consequently, we can build a compact RED plant with smaller pretreatment processes and fewer RED unit stacks.
Collapse
Affiliation(s)
- Joo-Youn Nam
- Marine Energy Convergence and Integration Research Team, Jeju Global Research Center, Korea Institute of Energy Research, 200 Haemajihaean-ro, Gujwa-eup, Jeju 63357, Korea.
| | - Eunjin Jwa
- Marine Energy Convergence and Integration Research Team, Jeju Global Research Center, Korea Institute of Energy Research, 200 Haemajihaean-ro, Gujwa-eup, Jeju 63357, Korea
| | - Hyunji Eom
- Marine Energy Convergence and Integration Research Team, Jeju Global Research Center, Korea Institute of Energy Research, 200 Haemajihaean-ro, Gujwa-eup, Jeju 63357, Korea; Department of Chemical & Biological Engineering, Jeju National University, 102 Jejudaehak-ro, Jeju 63243, Korea
| | - Hanki Kim
- Marine Energy Convergence and Integration Research Team, Jeju Global Research Center, Korea Institute of Energy Research, 200 Haemajihaean-ro, Gujwa-eup, Jeju 63357, Korea
| | - Kyosik Hwang
- Marine Energy Convergence and Integration Research Team, Jeju Global Research Center, Korea Institute of Energy Research, 200 Haemajihaean-ro, Gujwa-eup, Jeju 63357, Korea
| | - Namjo Jeong
- Marine Energy Convergence and Integration Research Team, Jeju Global Research Center, Korea Institute of Energy Research, 200 Haemajihaean-ro, Gujwa-eup, Jeju 63357, Korea
| |
Collapse
|
15
|
Effect of current-induced ion transfer on the electrical resistance of reverse electrodialysis stack by chronopotentiometry. Electrochim Acta 2021. [DOI: 10.1016/j.electacta.2021.138446] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
16
|
Use of the Microheterogeneous Model to Assess the Applicability of Ion-Exchange Membranes in the Process of Generating Electricity from a Concentration Gradient. MEMBRANES 2021; 11:membranes11060406. [PMID: 34071631 PMCID: PMC8230344 DOI: 10.3390/membranes11060406] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 05/20/2021] [Accepted: 05/21/2021] [Indexed: 11/18/2022]
Abstract
The paper shows the possibility of using a microheterogeneous model to estimate the transport numbers of counterions through ion-exchange membranes. It is possible to calculate the open-circuit potential and power density of the reverse electrodialyzer using the data obtained. Eight samples of heterogeneous ion-exchange membranes were studied, two samples for each of the following types of membranes: Ralex CM, Ralex AMH, MK-40, and MA-41. Samples in each pair differed in the year of production and storage conditions. In the work, these samples were named “batch 1” and “batch 2”. According to the microheterogeneous model, to calculate the transport numbers of counterions, it is necessary to use the concentration dependence of the electrical conductivity and diffusion permeability. The electrolyte used was a sodium chloride solution with a concentration range corresponding to the conditional composition of river water and the salinity of the Black Sea. During the research, it was found that samples of Ralex membranes of different batches have similar characteristics over the entire range of investigated concentrations. The calculated values of the transfer numbers for membranes of different batches differ insignificantly: ±0.01 for Ralex AMH in 1 M NaCl. For MK-40 and MA-41 membranes, a significant scatter of characteristics was found, especially in concentrated solutions. As a result, in 1 M NaCl, the transport numbers differ by ±0.05 for MK-40 and ±0.1 for MA-41. The value of the open circuit potential for the Ralex membrane pair showed that the experimental values of the potential are slightly lower than the theoretical ones. At the same time, the maximum calculated power density is higher than the experimental values. The maximum power density achieved in the experiment on reverse electrodialysis was 0.22 W/m2, which is in good agreement with the known literature data for heterogeneous membranes. The discrepancy between the experimental and theoretical data may be the difference in the characteristics of the membranes used in the reverse electrodialysis process from the tested samples and does not consider the shadow effect of the spacer in the channels of the electrodialyzer.
Collapse
|
17
|
Honarparvar S, Zhang X, Chen T, Alborzi A, Afroz K, Reible D. Frontiers of Membrane Desalination Processes for Brackish Water Treatment: A Review. MEMBRANES 2021; 11:246. [PMID: 33805438 PMCID: PMC8066301 DOI: 10.3390/membranes11040246] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 03/19/2021] [Accepted: 03/23/2021] [Indexed: 12/31/2022]
Abstract
Climate change, population growth, and increased industrial activities are exacerbating freshwater scarcity and leading to increased interest in desalination of saline water. Brackish water is an attractive alternative to freshwater due to its low salinity and widespread availability in many water-scarce areas. However, partial or total desalination of brackish water is essential to reach the water quality requirements for a variety of applications. Selection of appropriate technology requires knowledge and understanding of the operational principles, capabilities, and limitations of the available desalination processes. Proper combination of feedwater technology improves the energy efficiency of desalination. In this article, we focus on pressure-driven and electro-driven membrane desalination processes. We review the principles, as well as challenges and recent improvements for reverse osmosis (RO), nanofiltration (NF), electrodialysis (ED), and membrane capacitive deionization (MCDI). RO is the dominant membrane process for large-scale desalination of brackish water with higher salinity, while ED and MCDI are energy-efficient for lower salinity ranges. Selective removal of multivalent components makes NF an excellent option for water softening. Brackish water desalination with membrane processes faces a series of challenges. Membrane fouling and scaling are the common issues associated with these processes, resulting in a reduction in their water recovery and energy efficiency. To overcome such adverse effects, many efforts have been dedicated toward development of pre-treatment steps, surface modification of membranes, use of anti-scalant, and modification of operational conditions. However, the effectiveness of these approaches depends on the fouling propensity of the feed water. In addition to the fouling and scaling, each process may face other challenges depending on their state of development and maturity. This review provides recent advances in the material, architecture, and operation of these processes that can assist in the selection and design of technologies for particular applications. The active research directions to improve the performance of these processes are also identified. The review shows that technologies that are tunable and particularly efficient for partial desalination such as ED and MCDI are increasingly competitive with traditional RO processes. Development of cost-effective ion exchange membranes with high chemical and mechanical stability can further improve the economy of desalination with electro-membrane processes and advance their future applications.
Collapse
Affiliation(s)
- Soraya Honarparvar
- Department of Chemical Engineering, Texas Tech University, Lubbock, TX 79409, USA; (S.H.); (X.Z.); (T.C.); (K.A.)
| | - Xin Zhang
- Department of Chemical Engineering, Texas Tech University, Lubbock, TX 79409, USA; (S.H.); (X.Z.); (T.C.); (K.A.)
| | - Tianyu Chen
- Department of Chemical Engineering, Texas Tech University, Lubbock, TX 79409, USA; (S.H.); (X.Z.); (T.C.); (K.A.)
| | - Ashkan Alborzi
- Department of Civil, Environmental and Construction Engineering, Texas Tech University, Lubbock, TX 79409, USA;
| | - Khurshida Afroz
- Department of Chemical Engineering, Texas Tech University, Lubbock, TX 79409, USA; (S.H.); (X.Z.); (T.C.); (K.A.)
| | - Danny Reible
- Department of Chemical Engineering, Texas Tech University, Lubbock, TX 79409, USA; (S.H.); (X.Z.); (T.C.); (K.A.)
- Department of Civil, Environmental and Construction Engineering, Texas Tech University, Lubbock, TX 79409, USA;
| |
Collapse
|
18
|
Choi J, Kim WS, Kim HK, Yang S, Jeong NJ. Ultra-thin pore-filling membranes with mirror-image wave patterns for improved power density and reduced pressure drops in stacks of reverse electrodialysis. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2020.118885] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
19
|
Power Generation Performance of a Pilot-Scale Reverse Electrodialysis Using Monovalent Selective Ion-Exchange Membranes. MEMBRANES 2021; 11:membranes11010027. [PMID: 33401447 PMCID: PMC7823906 DOI: 10.3390/membranes11010027] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 12/23/2020] [Accepted: 12/24/2020] [Indexed: 11/17/2022]
Abstract
Reverse electrodialysis (RED) is a promising process for harvesting energy from the salinity gradient between two solutions without environmental impacts. Seawater (SW) and river water (RW) are considered the main RED feed solutions because of their good availability. In Okinawa Island (Japan), SW desalination via the reverse osmosis (RO) can be integrated with the RED process due to the production of a large amount of RO brine (concentrated SW, containing ~1 mol/dm3 of NaCl), which is usually discharged directly into the sea. In this study, a pilot-scale RED stack, with 299 cell pairs and 179.4 m2 of effective membrane area, was installed in the SW desalination plant. For the first time, asymmetric monovalent selective membranes with monovalent selective layer just at the side of the membranes were used as the ion exchange membranes (IEMs) inside the RED stack. Natural and model RO brines, as well as SW, were used as the high-concentrate feed solutions. RW, which was in fact surface water in this study and close to the desalination plant, was utilized as the low-concentrate feed solution. The power generation performance investigated by the current-voltage (I-V) test showed the maximum gross power density of 0.96 and 1.46 W/m2 respectively, when the natural and model RO brine/RW were used. These are a 50-60% improvement of the maximum gross power of 0.62 and 0.97 W/m2 generated from the natural and model SW, respectively. The approximate 50% more power generated from the model feed solutions can be assigned to the suppression of concentration polarization of the RED stack due to the absence of multivalent ions.
Collapse
|
20
|
Sun Y, Li J, Li M, Ma Z, Wang X, Wang Q, Wang X, Xu D, Gao J, Gao X. Towards improved hydrodynamics of the electrodialysis (ED) cell via computational fluid dynamics and cost estimation model: Effects of spacer parameters. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2020.117599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
21
|
Alkali Attack on Cation-Exchange Membranes with Polyvinyl Chloride Backing and Binder: Comparison with Anion-Exchange Membranes. MEMBRANES 2020; 10:membranes10090228. [PMID: 32932857 PMCID: PMC7558534 DOI: 10.3390/membranes10090228] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 09/08/2020] [Accepted: 09/09/2020] [Indexed: 11/17/2022]
Abstract
Systematic alkali immersion tests of cation-exchange membranes (CEM) with polyvinyl chloride (PVC) as their backing and binder were conducted to compare that of an Anion-exchange membrane (AEM) with the same PVC materials to investigate the mechanism of dehydrochlorination. In the immersion tests, originally colorless and transparent AEM turned violet, and chemical structure analysis showed that polyene was produced by the dehydrochlorination reaction. However, the CEM did not change in color, chemical structure or membrane properties during the test with less than 1M alkali solutions. According to the Donnan equilibrium theory and the experiments using CEM and AEM, the hydroxide ion concentration in the CEM was much lower than that in the AEM under the same conditions. However, when the alkali immersion test was performed using the CEM under more severe conditions (6 M for 168 h at 40 °C), there was a slight change in the color and chemical structure of the CEM, clearly indicating that not only AEMs, but also CEMs with PVC matrixes were deteriorated by alkali, depending on the conditions.
Collapse
|
22
|
Kujawski W, Yaroshchuk A, Zholkovskiy E, Koter I, Koter S. Analysis of Membrane Transport Equations for Reverse Electrodialysis (RED) Using Irreversible Thermodynamics. Int J Mol Sci 2020; 21:E6325. [PMID: 32878293 PMCID: PMC7503923 DOI: 10.3390/ijms21176325] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 08/26/2020] [Accepted: 08/27/2020] [Indexed: 11/17/2022] Open
Abstract
Reverse electrodialysis (RED) is an electro-membrane process for the conversion of mixing energy into electricity. One important problem researchers' face when modeling the RED process is the choice of the proper membrane transport equations. In this study, using experimental data that describe the membrane Nafion 120 in contact with NaCl aqueous solutions, the linear transport equation of irreversible thermodynamics was applied to calculate the power density of the RED system. Various simplifying assumptions about transport equation (i.e., four-, three-, and two-coefficients approaches) are proposed and discussed. We found that the two-coefficients approach, using the membrane conductivity and the apparent transport number of ions, describes the power density with good accuracy. In addition, the influence of the membrane thickness and the concentration polarization on the power density is also demonstrated.
Collapse
Affiliation(s)
- Wojciech Kujawski
- Faculty of Chemistry, Nicolaus Copernicus University in Toruń, 87-100 Toruń, Poland;
- MEPhI, National Research Nuclear University, 115409 Moscow, Russia
| | - Andriy Yaroshchuk
- ICREA & Polytechnic University of Catalonia—Barcelona Tech, 08034 Barcelona, Spain;
| | - Emiliy Zholkovskiy
- Institute of Bio-Colloid Chemistry, National Academy of Sciences of Ukraine, 03680 Kyiv-142, Ukraine;
| | - Izabela Koter
- Faculty of Chemistry, Nicolaus Copernicus University in Toruń, 87-100 Toruń, Poland;
| | - Stanislaw Koter
- Faculty of Chemistry, Nicolaus Copernicus University in Toruń, 87-100 Toruń, Poland;
| |
Collapse
|
23
|
Jalili Z, Burheim OS, Einarsrud KE. Computational Fluid Dynamics Modeling of the Resistivity and Power Density in Reverse Electrodialysis: A Parametric Study. MEMBRANES 2020; 10:E209. [PMID: 32872394 PMCID: PMC7558600 DOI: 10.3390/membranes10090209] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 08/21/2020] [Accepted: 08/25/2020] [Indexed: 12/02/2022]
Abstract
Electrodialysis (ED) and reverse electrodialysis (RED) are enabling technologies which can facilitate renewable energy generation, dynamic energy storage, and hydrogen production from low-grade waste heat. This paper presents a computational fluid dynamics (CFD) study for maximizing the net produced power density of RED by coupling the Navier-Stokes and Nernst-Planck equations, using the OpenFOAM software. The relative influences of several parameters, such as flow velocities, membrane topology (i.e., flat or spacer-filled channels with different surface corrugation geometries), and temperature, on the resistivity, electrical potential, and power density are addressed by applying a factorial design and a parametric study. The results demonstrate that temperature is the most influential parameter on the net produced power density, resulting in a 43% increase in the net peak power density compared to the base case, for cylindrical corrugated channels.
Collapse
Affiliation(s)
- Zohreh Jalili
- Department of Energy and Process Engineering, Norwegian University of Science and Technology (NTNU), 7491 Trondheim, Norway;
- Department of Materials Science and Engineering, Norwegian University of Science and Technology (NTNU), 7491 Trondheim, Norway;
| | - Odne Stokke Burheim
- Department of Energy and Process Engineering, Norwegian University of Science and Technology (NTNU), 7491 Trondheim, Norway;
| | - Kristian Etienne Einarsrud
- Department of Materials Science and Engineering, Norwegian University of Science and Technology (NTNU), 7491 Trondheim, Norway;
| |
Collapse
|
24
|
Gurreri L, Tamburini A, Cipollina A, Micale G. Electrodialysis Applications in Wastewater Treatment for Environmental Protection and Resources Recovery: A Systematic Review on Progress and Perspectives. MEMBRANES 2020; 10:E146. [PMID: 32660014 PMCID: PMC7408617 DOI: 10.3390/membranes10070146] [Citation(s) in RCA: 109] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 07/02/2020] [Accepted: 07/04/2020] [Indexed: 12/19/2022]
Abstract
This paper presents a comprehensive review of studies on electrodialysis (ED) applications in wastewater treatment, outlining the current status and the future prospect. ED is a membrane process of separation under the action of an electric field, where ions are selectively transported across ion-exchange membranes. ED of both conventional or unconventional fashion has been tested to treat several waste or spent aqueous solutions, including effluents from various industrial processes, municipal wastewater or salt water treatment plants, and animal farms. Properties such as selectivity, high separation efficiency, and chemical-free treatment make ED methods adequate for desalination and other treatments with significant environmental benefits. ED technologies can be used in operations of concentration, dilution, desalination, regeneration, and valorisation to reclaim wastewater and recover water and/or other products, e.g., heavy metal ions, salts, acids/bases, nutrients, and organics, or electrical energy. Intense research activity has been directed towards developing enhanced or novel systems, showing that zero or minimal liquid discharge approaches can be techno-economically affordable and competitive. Despite few real plants having been installed, recent developments are opening new routes for the large-scale use of ED techniques in a plethora of treatment processes for wastewater.
Collapse
Affiliation(s)
| | - Alessandro Tamburini
- Dipartimento di Ingegneria, Università degli Studi di Palermo, viale delle Scienze Ed. 6, 90128 Palermo, Italy; (L.G.); (A.C.); (G.M.)
| | | | | |
Collapse
|
25
|
Dong F, Jin D, Xu S, Xu L, Wu X, Wang P, Leng Q, Xi R. Numerical simulation of flow and mass transfer in profiled membrane channels for reverse electrodialysis. Chem Eng Res Des 2020. [DOI: 10.1016/j.cherd.2020.02.025] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
26
|
Mehdizadeh S, Yasukawa M, Abo T, Kuno M, Noguchi Y, Higa M. The Effect of Feed Solution Temperature on the Power Output Performance of a Pilot-Scale Reverse Electrodialysis (RED) System with Different Intermediate Distance. MEMBRANES 2019; 9:membranes9060073. [PMID: 31216734 PMCID: PMC6630688 DOI: 10.3390/membranes9060073] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/27/2019] [Revised: 06/10/2019] [Accepted: 06/17/2019] [Indexed: 12/01/2022]
Abstract
Membrane-based reverse electrodialysis (RED) can convert the salinity gradient energy between two solutions into electric power without any environmental impact. Regarding the practical application of the RED process using natural seawater and river water, the RED performance depends on the climate (temperature). In this study, we have evaluated the effect of the feed solution temperature on the resulting RED performance using two types of pilot-scale RED stacks consisting of 200 cell pairs having a total effective membrane area of 40 m2 with different intermediate distances (200 µm and 600 µm). The temperature dependence of the resistance of the solution compartment and membrane, open circuit voltage (OCV), maximum gross power output, pumping energy, and subsequent net power output of the system was individually evaluated. Increasing the temperature shows a positive influence on all the factors studied, and interesting linear relationships were obtained in all the cases, which allowed us to provide simple empirical equations to predict the resulting performance. Furthermore, the temperature dependence was strongly affected by the experimental conditions, such as the flow rate and type of stack, especially in the case of the pilot-scale stack.
Collapse
Affiliation(s)
- Soroush Mehdizadeh
- Graduate School of Sciences and Technology for Innovation, Yamaguchi University, 2-16-1 Tokiwadai, Ube, Yamaguchi 755-8611, Japan.
| | - Masahiro Yasukawa
- Graduate School of Sciences and Technology for Innovation, Yamaguchi University, 2-16-1 Tokiwadai, Ube, Yamaguchi 755-8611, Japan.
- Blue Energy Center for SGE Technology (BEST), Yamaguchi University, 2-16-1 Tokiwadai, Ube, Yamaguchi 755-8611, Japan.
| | - Takakazu Abo
- Graduate School of Sciences and Technology for Innovation, Yamaguchi University, 2-16-1 Tokiwadai, Ube, Yamaguchi 755-8611, Japan.
| | - Masaya Kuno
- Graduate School of Sciences and Technology for Innovation, Yamaguchi University, 2-16-1 Tokiwadai, Ube, Yamaguchi 755-8611, Japan.
| | - Yuki Noguchi
- Graduate School of Sciences and Technology for Innovation, Yamaguchi University, 2-16-1 Tokiwadai, Ube, Yamaguchi 755-8611, Japan.
| | - Mitsuru Higa
- Graduate School of Sciences and Technology for Innovation, Yamaguchi University, 2-16-1 Tokiwadai, Ube, Yamaguchi 755-8611, Japan.
- Blue Energy Center for SGE Technology (BEST), Yamaguchi University, 2-16-1 Tokiwadai, Ube, Yamaguchi 755-8611, Japan.
| |
Collapse
|