1
|
He Y, He M, Liu T, Lu D, Zhou Z, Ma J. Adsorption-enhanced Fenton catalytic membrane for high-efficiency, high-quality drinking water treatment. JOURNAL OF HAZARDOUS MATERIALS 2025; 483:136632. [PMID: 39615384 DOI: 10.1016/j.jhazmat.2024.136632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 11/18/2024] [Accepted: 11/21/2024] [Indexed: 01/28/2025]
Abstract
To efficiently remove micropollutants from drinking water, this study developed an adsorption-enhanced Fenton catalytic membrane with a two-dimensional structure composed of graphene oxide loaded with iron-cyclodextrin metal-organic frameworks (FeCD-MOF). As water passes through the interlayer channels, micropollutants and hydrogen peroxide (H2O2) are adsorbed into the voids of the FeCD-MOF and the cavities of the CD. This process increases the concentration of micropollutants and H2O2 in the confined space, thereby significantly enhancing the efficiency of the Fenton catalytic reaction. Under a constant flux of 90 L/m2h and influent concentrations of 10 mg/L bisphenol A (BPA) and 3 mM H2O2, the membrane consistently maintained over 97.4 % BPA removal for 72 h. FeCD-MOF's excellent adsorption properties also enhance the stability of the treated water quality. Even with sudden increases in micropollutant concentration or interruptions in oxidant supply, the membrane maintained over 89.7 % BPA removal for an extended period solely through its adsorption capacity. Experimental results demonstrate that the membrane effectively removes various micropollutants, performs stably across a wide pH range, and resists interference from natural organic matter and ions, making it highly promising for drinking water treatment. Furthermore, compared to other MOF materials, FeCD-MOF has a significantly lower cost, enhancing its practicality.
Collapse
Affiliation(s)
- Yulun He
- State Key Laboratory of Urban Water Resources and Environment, Harbin Institute of Technology, Harbin 150090, PR China
| | - Mingrui He
- State Key Laboratory of Urban Water Resources and Environment, Harbin Institute of Technology, Harbin 150090, PR China.
| | - Ting Liu
- State Key Laboratory of Urban Water Resources and Environment, Harbin Institute of Technology, Harbin 150090, PR China
| | - Dongwei Lu
- State Key Laboratory of Urban Water Resources and Environment, Harbin Institute of Technology, Harbin 150090, PR China
| | - Zongyao Zhou
- State Key Laboratory of Urban Water Resources and Environment, Harbin Institute of Technology, Harbin 150090, PR China
| | - Jun Ma
- State Key Laboratory of Urban Water Resources and Environment, Harbin Institute of Technology, Harbin 150090, PR China
| |
Collapse
|
2
|
Farahbakhsh J, Golgoli M, Khiadani M, Najafi M, Suwaileh W, Razmjou A, Zargar M. Recent advances in surface tailoring of thin film forward osmosis membranes: A review. CHEMOSPHERE 2024; 346:140493. [PMID: 37890801 DOI: 10.1016/j.chemosphere.2023.140493] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 10/03/2023] [Accepted: 10/18/2023] [Indexed: 10/29/2023]
Abstract
The recent advancements in fabricating forward osmosis (FO) membranes have shown promising results in desalination and water treatment. Different methods have been applied to improve FO performance, such as using mixed or new draw solutions, enhancing the recovery of draw solutions, membrane modification, and developing FO-hybrid systems. However, reliable methods to address the current issues, including reverse salt flux, fouling, and antibacterial activities, are still in progress. In recent decades, surface modification has been applied to different membrane processes, including FO membranes. Introducing nanochannels, bioparticles, new monomers, and hydrophilic-based materials to the surface layer of FO membranes has significantly impacted their performance and efficiency and resulted in better control over fouling and concentration polarization (CP) in these membranes. This review critically investigates the recent developments in FO membrane processes and fabrication techniques for FO surface-layer modification. In addition, this study focuses on the latest materials and structures used for the surface modification of FO membranes. Finally, the current challenges, gaps, and suggestions for future studies in this field have been discussed in detail.
Collapse
Affiliation(s)
- Javad Farahbakhsh
- School of Engineering, Edith Cowan University, Joondalup, WA, 6027, Australia
| | - Mitra Golgoli
- School of Engineering, Edith Cowan University, Joondalup, WA, 6027, Australia
| | - Mehdi Khiadani
- School of Engineering, Edith Cowan University, Joondalup, WA, 6027, Australia
| | - Mohadeseh Najafi
- School of Engineering, Edith Cowan University, Joondalup, WA, 6027, Australia
| | - Wafa Suwaileh
- Chemical Engineering Program, Texas A&M University at Qatar, Education City, Doha, Qatar
| | - Amir Razmjou
- School of Engineering, Edith Cowan University, Joondalup, WA, 6027, Australia; School of Civil and Environmental Engineering, University of Technology Sydney (UTS), City Campus, Broadway, NSW, 2007, Australia; Mineral Recovery Research Center (MRRC), School of Engineering, Edith Cowan University, Joondalup, Perth, WA, 6027, Australia
| | - Masoumeh Zargar
- School of Engineering, Edith Cowan University, Joondalup, WA, 6027, Australia; Mineral Recovery Research Center (MRRC), School of Engineering, Edith Cowan University, Joondalup, Perth, WA, 6027, Australia.
| |
Collapse
|
3
|
Xu M, Zhu X, Zhu J, Wei S, Cong X, Wang Z, Yan Q, Weng L, Wang L. The recent advance of precisely designed membranes for sieving. NANOTECHNOLOGY 2023; 34:232003. [PMID: 36848663 DOI: 10.1088/1361-6528/acbf56] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Accepted: 02/27/2023] [Indexed: 06/18/2023]
Abstract
Developing new membranes with both high selectivity and permeability is critical in membrane science since conventional membranes are often limited by the trade-off between selectivity and permeability. In recent years, the emergence of advanced materials with accurate structures at atomic or molecular scale, such as metal organic framework, covalent organic framework, graphene, has accelerated the development of membranes, which benefits the precision of membrane structures. In this review, current state-of-the-art membranes are first reviewed and classified into three different types according to the structures of their building blocks, including laminar structured membranes, framework structured membranes and channel structured membranes, followed by the performance and applications for representative separations (liquid separation and gas separation) of these precisely designed membranes. Last, the challenges and opportunities of these advanced membranes are also discussed.
Collapse
Affiliation(s)
- Miaomiao Xu
- State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts and Telecommunications, Nanjing, People's Republic of China
- School of Geographic and Biologic Information, Nanjing University of Posts and Telecommunications, Nanjing, People's Republic of China
| | - Xianhu Zhu
- State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts and Telecommunications, Nanjing, People's Republic of China
| | - Jihong Zhu
- State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts and Telecommunications, Nanjing, People's Republic of China
| | - Siyuan Wei
- School of Geographic and Biologic Information, Nanjing University of Posts and Telecommunications, Nanjing, People's Republic of China
| | - Xuelong Cong
- State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts and Telecommunications, Nanjing, People's Republic of China
| | - Zhangyu Wang
- School of Geographic and Biologic Information, Nanjing University of Posts and Telecommunications, Nanjing, People's Republic of China
| | - Qiang Yan
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai, People's Republic of China
| | - Lixing Weng
- State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts and Telecommunications, Nanjing, People's Republic of China
- School of Geographic and Biologic Information, Nanjing University of Posts and Telecommunications, Nanjing, People's Republic of China
| | - Lianhui Wang
- State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts and Telecommunications, Nanjing, People's Republic of China
| |
Collapse
|
4
|
Singh SK, Maiti A, Pandey A, Jain N, Sharma C. Fouling limitations of osmotic pressure‐driven processes and its remedial strategies: A review. J Appl Polym Sci 2023. [DOI: 10.1002/app.53295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Affiliation(s)
- Satish Kumar Singh
- Department of Paper Technology Indian Institute of Technology Roorkee Saharanpur India
| | - Abhijit Maiti
- Department of Polymer and Process Engineering Indian Institute of Technology Roorkee Saharanpur India
| | - Aaditya Pandey
- Department of Polymer and Process Engineering Indian Institute of Technology Roorkee Saharanpur India
| | - Nishant Jain
- Department of Polymer and Process Engineering Indian Institute of Technology Roorkee Saharanpur India
| | - Chhaya Sharma
- Department of Paper Technology Indian Institute of Technology Roorkee Saharanpur India
| |
Collapse
|
5
|
In situ PEGylation of polyamide network of thin film composite membrane by inter-polymer H-bond complex formation. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.120640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
6
|
Liu C, He Q, Song D, Jackson J, Faria AF, Jiang X, Li X, Ma J, Sun Z. Electroless deposition of copper nanoparticles integrates polydopamine coating on reverse osmosis membranes for efficient biofouling mitigation. WATER RESEARCH 2022; 217:118375. [PMID: 35405551 DOI: 10.1016/j.watres.2022.118375] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 03/23/2022] [Accepted: 03/26/2022] [Indexed: 06/14/2023]
Abstract
In this study, highly antimicrobial CuNPs were integrated into a hydrophilic polydopamine (PDA) coating and immobilized on a RO TFC membrane via a mild and facile reduction approach to form a stable and durable dual-functional layer. Based on the XDLVO analysis, the introduction of PDA increased the membrane-foulant total interaction energy (ΔGmwf) to 14.13 mJ/m2, resulting in improved anti-adhesive properties as demonstrated by a 37% decrease in BSA adsorption for the modified membranes. The well dispersed and high loadings of CuNPs induced by PDA conferred strong bacterial toxicity to the modified membranes, reducing the viability of E. coli by 76%. Furthermore, the presence of catechol groups on PDA favors the formation of covalent bond with CuNPs, thus prolonging the durability of the copper-based anti-biofouling membranes. The combination of PDA coating and CuNPs functionalization imparts the membrane with simultaneous anti-adhesive and anti-microbial properties, leading to a substantial reduction in biofouling propensity in dynamic biofouling experiments. Specifically, the flux decline due to biofouling observed for the modified membranes significantly decreased from 65% to 39%, and biofilm thickness and TOC biomass were 58%, and 55% lower, respectively. This study provides a facile and versatile strategy to construct high performance RO membranes with excellent anti-biofouling functionality.
Collapse
Affiliation(s)
- Caihong Liu
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, College of Environment and Ecology, Chongqing University, Chongqing 400044, China.
| | - Qiang He
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, College of Environment and Ecology, Chongqing University, Chongqing 400044, China
| | - Dan Song
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Jennifer Jackson
- Engineering School of Sustainable Infrastructure & Environment (ESSIE), Department of Environmental Engineering Sciences, University of Florida, Gainesville, FL 32611-6580, USA
| | - Andreia F Faria
- Engineering School of Sustainable Infrastructure & Environment (ESSIE), Department of Environmental Engineering Sciences, University of Florida, Gainesville, FL 32611-6580, USA
| | - Xihui Jiang
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, College of Environment and Ecology, Chongqing University, Chongqing 400044, China
| | - Xueyan Li
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China
| | - Jun Ma
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Zhiqiang Sun
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China.
| |
Collapse
|
7
|
Xiao F, Ge H, Wang Y, Bian S, Tong Y, Gao C, Zhu G. Novel thin-film composite membrane with polydopamine-modified polyethylene support and tannic acid-Fe3+ interlayer for forward osmosis applications. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2021.119976] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
8
|
Feng X, Liu D, Ye H, Peng D, Wang J, Han S, Zhang Y. High-flux polyamide membrane with improved chlorine resistance for efficient dye/salt separation based on a new N-rich amine monomer. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2021.119533] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
9
|
Xiong S, Han C, Phommachanh A, Li W, Xu S, Wang Y. High-performance loose nanofiltration membrane prepared with assembly of covalently cross-linked polyethyleneimine-based polyelectrolytes for textile wastewater treatment. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2021.119105] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
10
|
Zhu L, Ding C, Zhu T, Wang Y. A review on the forward osmosis applications and fouling control strategies for wastewater treatment. Front Chem Sci Eng 2021. [DOI: 10.1007/s11705-021-2084-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
11
|
Zhao Q, Zhao DL, Chung TS. Thin-film nanocomposite membranes incorporated with defective ZIF-8 nanoparticles for brackish water and seawater desalination. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2021.119158] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
12
|
Application of Zwitterions in Forward Osmosis: A Short Review. Polymers (Basel) 2021; 13:polym13040583. [PMID: 33672026 PMCID: PMC7919480 DOI: 10.3390/polym13040583] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 02/11/2021] [Accepted: 02/12/2021] [Indexed: 11/30/2022] Open
Abstract
Forward osmosis (FO) is an important desalination method to produce potable water. It was also used to treat different wastewater streams, including industrial as well as municipal wastewater. Though FO is environmentally benign, energy intensive, and highly efficient; it still suffers from four types of fouling namely: organic fouling, inorganic scaling, biofouling and colloidal fouling or a combination of these types of fouling. Membrane fouling may require simple shear force and physical cleaning for sufficient recovery of membrane performance. Severe fouling may need chemical cleaning, especially when a slimy biofilm or severe microbial colony is formed. Modification of FO membrane through introducing zwitterionic moieties on the membrane surface has been proven to enhance antifouling property. In addition, it could also significantly improve the separation efficiency and longevity of the membrane. Zwitterion moieties can also incorporate in draw solution as electrolytes in FO process. It could be in a form of a monomer or a polymer. Hence, this review comprehensively discussed several methods of inclusion of zwitterionic moieties in FO membrane. These methods include atom transfer radical polymerization (ATRP); second interfacial polymerization (SIP); coating and in situ formation. Furthermore, an attempt was made to understand the mechanism of improvement in FO performance by zwitterionic moieties. Finally, the future prospective of the application of zwitterions in FO has been discussed.
Collapse
|
13
|
Yu X, Zhu T, Xu S, Zhang X, Yi M, Xiong S, Liu S, Shen L, Wang Y. Second interfacial polymerization of thin‐film composite hollow fibers with
amine‐
cyclodextrin
s
for pervaporation dehydration. AIChE J 2021. [DOI: 10.1002/aic.17144] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Xi Yu
- Key Laboratory of Material Chemistry for Energy Conversion and Storage Huazhong University of Science and Technology, Ministry of Education Wuhan China
- Hubei Key Laboratory of Material Chemistry and Service Failure School of Chemistry and Chemical Engineering, Huazhong University of Science & Technology Wuhan China
| | - Tengyang Zhu
- Key Laboratory of Material Chemistry for Energy Conversion and Storage Huazhong University of Science and Technology, Ministry of Education Wuhan China
- Hubei Key Laboratory of Material Chemistry and Service Failure School of Chemistry and Chemical Engineering, Huazhong University of Science & Technology Wuhan China
| | - Sheng Xu
- Key Laboratory of Material Chemistry for Energy Conversion and Storage Huazhong University of Science and Technology, Ministry of Education Wuhan China
- Hubei Key Laboratory of Material Chemistry and Service Failure School of Chemistry and Chemical Engineering, Huazhong University of Science & Technology Wuhan China
| | - Xuan Zhang
- Key Laboratory of Material Chemistry for Energy Conversion and Storage Huazhong University of Science and Technology, Ministry of Education Wuhan China
- Hubei Key Laboratory of Material Chemistry and Service Failure School of Chemistry and Chemical Engineering, Huazhong University of Science & Technology Wuhan China
| | - Ming Yi
- Key Laboratory of Material Chemistry for Energy Conversion and Storage Huazhong University of Science and Technology, Ministry of Education Wuhan China
- Hubei Key Laboratory of Material Chemistry and Service Failure School of Chemistry and Chemical Engineering, Huazhong University of Science & Technology Wuhan China
| | - Shu Xiong
- Key Laboratory of Material Chemistry for Energy Conversion and Storage Huazhong University of Science and Technology, Ministry of Education Wuhan China
- Hubei Key Laboratory of Material Chemistry and Service Failure School of Chemistry and Chemical Engineering, Huazhong University of Science & Technology Wuhan China
| | - Shutong Liu
- Key Laboratory of Material Chemistry for Energy Conversion and Storage Huazhong University of Science and Technology, Ministry of Education Wuhan China
- Hubei Key Laboratory of Material Chemistry and Service Failure School of Chemistry and Chemical Engineering, Huazhong University of Science & Technology Wuhan China
| | - Liang Shen
- Key Laboratory of Material Chemistry for Energy Conversion and Storage Huazhong University of Science and Technology, Ministry of Education Wuhan China
- Hubei Key Laboratory of Material Chemistry and Service Failure School of Chemistry and Chemical Engineering, Huazhong University of Science & Technology Wuhan China
| | - Yan Wang
- Key Laboratory of Material Chemistry for Energy Conversion and Storage Huazhong University of Science and Technology, Ministry of Education Wuhan China
- Hubei Key Laboratory of Material Chemistry and Service Failure School of Chemistry and Chemical Engineering, Huazhong University of Science & Technology Wuhan China
| |
Collapse
|
14
|
Yang J, Liu X, Tang J, Dėdinaitė A, Liu J, Miao R, Liu K, Peng J, Claesson PM, Liu X, Fang Y. Robust and Large-Area Calix[4]pyrrole-Based Nanofilms Enabled by Air/DMSO Interfacial Self-Assembly-Confined Synthesis. ACS APPLIED MATERIALS & INTERFACES 2021; 13:3336-3348. [PMID: 33356087 DOI: 10.1021/acsami.0c16831] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The modular construction of defect-free nanofilms with a large area remains a challenge. Herein, we present a scalable strategy for the preparation of calix[4]pyrrole (C[4]P)-based nanofilms through acryl hydrazone reaction conducted in a tetrahydrazide calix[4]pyrrole (CPTH)-based self-assembled layer at the air/DMSO interface. With this strategy, robust, regenerable, and defect-free nanofilms with an exceptionally large area (∼750 cm2) were constructed. The thickness and permeability of the film systems can be fine-tuned by varying the precursor concentration or by changing another building block. A typical nanofilm (C[4]P-TFB, ∼67 nm) depicted high water flux (39.9 L m-2 h-1 under 1 M Na2SO4), narrow molecular weight cut-off value (∼200 Da), and promising antifouling properties in the forward osmosis (FO) process. In addition, the nanofilms are stable over a wide pH range and tolerable to different organic solvents. Interestingly, the introduction of C[4]P endowed the nanofilms with both outstanding mechanical properties and unique group-selective separation capability, laying the foundation for wastewater treatment and pharmaceutical concentration.
Collapse
Affiliation(s)
- Jinglun Yang
- Key Laboratory of Applied Surface and Colloid Chemistry (Ministry of Education), School of Materials Science and Engineering, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710062, P. R. China
| | - Xiangquan Liu
- Key Laboratory of Applied Surface and Colloid Chemistry (Ministry of Education), School of Materials Science and Engineering, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710062, P. R. China
| | - Jiaqi Tang
- Key Laboratory of Applied Surface and Colloid Chemistry (Ministry of Education), School of Materials Science and Engineering, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710062, P. R. China
| | - Andra Dėdinaitė
- School of Engineering Sciences in Chemistry, Biotechnology and Health, Department of Chemistry, Division of Surface and Corrosion Science, KTH Royal Institute of Technology, Drottning Kristinas väg 51, SE-100 44 Stockholm, Sweden
- Division of Bioscience and Materials, RISE Research Institutes of Sweden, SE-114 86 Stockholm, Sweden
| | - Jianfei Liu
- Key Laboratory of Applied Surface and Colloid Chemistry (Ministry of Education), School of Materials Science and Engineering, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710062, P. R. China
| | - Rong Miao
- Key Laboratory of Applied Surface and Colloid Chemistry (Ministry of Education), School of Materials Science and Engineering, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710062, P. R. China
| | - Kaiqiang Liu
- Key Laboratory of Applied Surface and Colloid Chemistry (Ministry of Education), School of Materials Science and Engineering, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710062, P. R. China
| | - Junxia Peng
- Key Laboratory of Applied Surface and Colloid Chemistry (Ministry of Education), School of Materials Science and Engineering, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710062, P. R. China
| | - Per Martin Claesson
- School of Engineering Sciences in Chemistry, Biotechnology and Health, Department of Chemistry, Division of Surface and Corrosion Science, KTH Royal Institute of Technology, Drottning Kristinas väg 51, SE-100 44 Stockholm, Sweden
- Division of Bioscience and Materials, RISE Research Institutes of Sweden, SE-114 86 Stockholm, Sweden
| | - Xiaoyan Liu
- Key Laboratory of Applied Surface and Colloid Chemistry (Ministry of Education), School of Materials Science and Engineering, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710062, P. R. China
| | - Yu Fang
- Key Laboratory of Applied Surface and Colloid Chemistry (Ministry of Education), School of Materials Science and Engineering, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710062, P. R. China
| |
Collapse
|
15
|
Long Q, Chen J, Wang Z, Zhang Z, Qi G, Liu ZQ. Vein-supported porous membranes with enhanced superhydrophilicity and mechanical strength for oil-water separation. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2020.117517] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
16
|
Ni L, Zhu Y, Ma J, Wang Y. Novel strategy for membrane biofouling control in MBR with CdS/MIL-101 modified PVDF membrane by in situ visible light irradiation. WATER RESEARCH 2021; 188:116554. [PMID: 33128978 DOI: 10.1016/j.watres.2020.116554] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 09/12/2020] [Accepted: 10/21/2020] [Indexed: 06/11/2023]
Abstract
Novel control strategies for membrane biofouling with eco-friendly photocatalytic technology are critically needed in practical operation of membrane bioreactors (MBRs). In this study, a metal-organic frameworks (MOF) based photocatalytic membrane was firstly applied in an anammox MBR for a long-term biofouling control, where bacteria were inactivated and foulants were degraded simultaneously, with environmentally friendly and renewable visible light energy. By physicochemical characterization, the synthesized photocatalyst of CdS/MIL-101 showed superior visible-light photocatalytic ability, and the 1 wt% CdS/MIL-101 modified membrane C2 showed enhanced hydrophilicity and water permeability compared with the pristine membrane C0. In the long-term operation of anammox MBRs under waterproof lights irradiation, the filtration cycles of C2 (25-26 d) were obviously extended compared with C0 (10-14 d), while their average total nitrogen removal efficiencies were comparable up to 84%, indicating an excellent biofouling alleviation effect by using C2 with a satisfactory nitrogen removal performance maintained. By analysis of the biofilm on the fouled membranes, the organic foulants (especially extracellular polymeric substances) were degraded, and the live bacteria were inactivated effectively by the photocatalytic reactions of CdS/MIL-101 on C2. In the antimicrobial tests against model bacteria, C2 exhibited remarkable antimicrobial effect against both Gram-negative and Gram-positive bacteria with visible light irradiation by destruction of cell integrity with the inhibition rate of 92% for Escherichia coli and 95% for Staphylococcus aureus, respectively. In the model foulants (bovine serum albumin, sodium alginate, and humic acid) filtration tests, C2 showed higher antifouling capabilities, lower flux declining rates, and higher foulants rejection rates under visible light irradiation compared with C0. The reactive species of ·OH, e- and h+ generated on C2 were verified to play the predominant role in the anti-biofouling processes by simultaneous bacteria inactivation and foulants degradation. The findings offer a novel insight into the biofouling controlling in MBRs by simultaneous bacteria inactivation and foulants degradation with an eco-friendly method.
Collapse
Affiliation(s)
- Lingfeng Ni
- State Key Laboratory of Pollution Control and Resources Reuse, Shanghai Institute of Pollution Control and Ecological Security, College of Environmental Science and Engineering, Tongji University, Siping Road, Shanghai 200092, PR China
| | - Yijing Zhu
- State Key Laboratory of Pollution Control and Resources Reuse, Shanghai Institute of Pollution Control and Ecological Security, College of Environmental Science and Engineering, Tongji University, Siping Road, Shanghai 200092, PR China
| | - Jie Ma
- State Key Laboratory of Pollution Control and Resources Reuse, Shanghai Institute of Pollution Control and Ecological Security, College of Environmental Science and Engineering, Tongji University, Siping Road, Shanghai 200092, PR China
| | - Yayi Wang
- State Key Laboratory of Pollution Control and Resources Reuse, Shanghai Institute of Pollution Control and Ecological Security, College of Environmental Science and Engineering, Tongji University, Siping Road, Shanghai 200092, PR China.
| |
Collapse
|
17
|
Sun H, Bao S, Zhao H, Chen Y, Wang Y, Jiang C, Li P, Jason Niu Q. Polyarylate membrane with special circular microporous structure by interfacial polymerization for gas separation. Sep Purif Technol 2020. [DOI: 10.1016/j.seppur.2020.117370] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
18
|
Carbon nanotube-supported polyamide membrane with minimized internal concentration polarization for both aqueous and organic solvent forward osmosis process. J Memb Sci 2020. [DOI: 10.1016/j.memsci.2020.118273] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
19
|
Li J, Wang Q, Deng L, Kou X, Tang Q, Hu Y. Fabrication and characterization of carbon nanotubes-based porous composite forward osmosis membrane: Flux performance, separation mechanism, and potential application. J Memb Sci 2020. [DOI: 10.1016/j.memsci.2020.118050] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
20
|
Liao X, Zhang WH, Ge Q. A cage-like supramolecular draw solute that promotes forward osmosis for wastewater remediation and source recovery. J Memb Sci 2020. [DOI: 10.1016/j.memsci.2020.117862] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
21
|
Chen ZH, Liu Z, Hu JQ, Cai QW, Li XY, Wang W, Faraj Y, Ju XJ, Xie R, Chu LY. β-Cyclodextrin-modified graphene oxide membranes with large adsorption capacity and high flux for efficient removal of bisphenol A from water. J Memb Sci 2020. [DOI: 10.1016/j.memsci.2019.117510] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
22
|
Zhang X, Xiong S, Liu CX, Shen L, Ding C, Guan CY, Wang Y. Confining migration of amine monomer during interfacial polymerization for constructing thin-film composite forward osmosis membrane with low fouling propensity. Chem Eng Sci 2019. [DOI: 10.1016/j.ces.2019.06.010] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
23
|
Shen L, Yi M, Tian L, Wang F, Ding C, Sun S, Lu A, Su L, Wang Y. Efficient surface ionization and metallization of TFC membranes with superior separation performance, antifouling and anti-bacterial properties. J Memb Sci 2019. [DOI: 10.1016/j.memsci.2019.05.040] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
24
|
Yang Z, Zhou Y, Feng Z, Rui X, Zhang T, Zhang Z. A Review on Reverse Osmosis and Nanofiltration Membranes for Water Purification. Polymers (Basel) 2019; 11:E1252. [PMID: 31362430 PMCID: PMC6723865 DOI: 10.3390/polym11081252] [Citation(s) in RCA: 160] [Impact Index Per Article: 26.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 07/10/2019] [Accepted: 07/21/2019] [Indexed: 11/16/2022] Open
Abstract
Sustainable and affordable supply of clean, safe, and adequate water is one of the most challenging issues facing the world. Membrane separation technology is one of the most cost-effective and widely applied technologies for water purification. Polymeric membranes such as cellulose-based (CA) membranes and thin-film composite (TFC) membranes have dominated the industry since 1980. Although further development of polymeric membranes for better performance is laborious, the research findings and sustained progress in inorganic membrane development have grown fast and solve some remaining problems. In addition to conventional ceramic metal oxide membranes, membranes prepared by graphene oxide (GO), carbon nanotubes (CNTs), and mixed matrix materials (MMMs) have attracted enormous attention due to their desirable properties such as tunable pore structure, excellent chemical, mechanical, and thermal tolerance, good salt rejection and/or high water permeability. This review provides insight into synthesis approaches and structural properties of recent reverse osmosis (RO) and nanofiltration (NF) membranes which are used to retain dissolved species such as heavy metals, electrolytes, and inorganic salts in various aqueous solutions. A specific focus has been placed on introducing and comparing water purification performance of different classes of polymeric and ceramic membranes in related water treatment industries. Furthermore, the development challenges and research opportunities of organic and inorganic membranes are discussed and the further perspectives are analyzed.
Collapse
Affiliation(s)
- Zi Yang
- Department of Materials Science and Engineering, The Ohio State University, 2041 N. College Road, Columbus, OH 43210, USA.
| | - Yi Zhou
- Department of Materials Science and Engineering, The Ohio State University, 2041 N. College Road, Columbus, OH 43210, USA
| | - Zhiyuan Feng
- Department of Materials Science and Engineering, The Ohio State University, 2041 N. College Road, Columbus, OH 43210, USA
| | - Xiaobo Rui
- State Key Laboratory of Precision Measurement Technology and Instrument, Tianjin University, Tianjin 300072, China
| | - Tong Zhang
- Institute for Advanced Materials and Technology, University of Science and Technology Beijing, Beijing 100083, China
| | - Zhien Zhang
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, OH 43210, USA.
| |
Collapse
|
25
|
Jia TZ, Lu JP, Cheng XY, Xia QC, Cao XL, Wang Y, Xing W, Sun SP. Surface enriched sulfonated polyarylene ether benzonitrile (SPEB) that enhances heavy metal removal from polyacrylonitrile (PAN) thin-film composite nanofiltration membranes. J Memb Sci 2019. [DOI: 10.1016/j.memsci.2019.03.015] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
26
|
Yi M, Lau CH, Xiong S, Wei W, Liao R, Shen L, Lu A, Wang Y. Zwitterion-Ag Complexes That Simultaneously Enhance Biofouling Resistance and Silver Binding Capability of Thin Film Composite Membranes. ACS APPLIED MATERIALS & INTERFACES 2019; 11:15698-15708. [PMID: 30986345 DOI: 10.1021/acsami.9b02983] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Biofouling can be overcome with zwitterion grafts and antimicrobial, metallic nanoparticles. However, the mechanism underpinning this effective approach remains unclear. To elucidate the role of each component in this system while maximizing membrane antifouling and antimicrobial properties, here we performed a comparative study to investigate the impact of zwitterion type and their interactions with Ag of various states. Two different zwitterions (SO3--based and COO--based) were employed to modify polyamide (PA) thin film composite (TFC) membranes, and the metallized and mineralized membranes were developed via in situ formation of silver (Ag) nanoparticles and deposition of silver chloride (AgCl) particles on the zwitterion-modified TFC membranes. The presence of zwitterions was key to enhance Ag content, resulting in significantly improved antimicrobial and antifouling properties without compromising the nanofiltration separation performance. COO--based zwitterions were found more favorable toward Ag metallization and mineralization compared to SO3--based zwitterions. The underlying mechanisms underpinning this discovery were further revealed using density functional theory (DFT) to reveal Gibbs free energy of the binding between zwitterions and Ag+ ions. This fundamental knowledge is crucial for designing next-generation antibiofouling strategies.
Collapse
Affiliation(s)
- Ming Yi
- Key Laboratory of Material Chemistry for Energy Conversion and Storage , Huazhong University of Science and Technology, Ministry of Education , Wuhan , 430074 , People's Republic of China
| | - Cher Hon Lau
- School of Engineering , University of Edinburgh , Robert Stevenson Road , Edinburgh EH9 3FB , United Kingdom
| | - Shu Xiong
- Key Laboratory of Material Chemistry for Energy Conversion and Storage , Huazhong University of Science and Technology, Ministry of Education , Wuhan , 430074 , People's Republic of China
| | - Wenjie Wei
- Key Laboratory of Material Chemistry for Energy Conversion and Storage , Huazhong University of Science and Technology, Ministry of Education , Wuhan , 430074 , People's Republic of China
| | - Rongzhen Liao
- Key Laboratory of Material Chemistry for Energy Conversion and Storage , Huazhong University of Science and Technology, Ministry of Education , Wuhan , 430074 , People's Republic of China
| | - Liang Shen
- Key Laboratory of Material Chemistry for Energy Conversion and Storage , Huazhong University of Science and Technology, Ministry of Education , Wuhan , 430074 , People's Republic of China
| | | | - Yan Wang
- Key Laboratory of Material Chemistry for Energy Conversion and Storage , Huazhong University of Science and Technology, Ministry of Education , Wuhan , 430074 , People's Republic of China
| |
Collapse
|
27
|
Xiong S, Xu S, Phommachanh A, Yi M, Wang Y. Versatile Surface Modification of TFC Membrane by Layer-by-Layer Assembly of Phytic Acid-Metal Complexes for Comprehensively Enhanced FO Performance. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:3331-3341. [PMID: 30802043 DOI: 10.1021/acs.est.8b06628] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Polyamide TFC membranes are widely applied in membrane-based water treatment but generally suffer various fouling problems. In this work, the layer-by-layer assembly of phytic acid (PA) and metal ions (M) is constructed on the surface TFC membrane for the first time, to improve the bio/organic fouling resistances and separation performance of TFC membranes simultaneously. The PA molecule with six phosphonic acid groups of strong chelation ability acts as the organic ligand, and the metal ion acts as the inorganic cross-linker, inducing the assembly of hydrophilic and antibacterial PA-M (Ag or Cu) complexes on the TFC membrane surface. Various characterizations including FTIR, XPS, SEM, AFM, and EDX are employed to confirm the successful and uniform modification of PA-M. FO performance of the PA-M modified TFC membranes, i.e., TFC_PA-Ag and TFC_PA-Cu, is optimized by varying PA concentration and assembly cycles, where the water flux can be improved by 57% and 68%, respectively, without compromising the membrane selectivity. Additionally, the PA-M modification improves the biofouling and organic fouling resistances of the TFC membrane remarkably, owing to the enhanced antibacterial ability and hydrophilicity. The modified TFC membranes are also proven to show the excellent stability by the quantitative release test.
Collapse
Affiliation(s)
- Shu Xiong
- Key Laboratory of Material Chemistry for Energy Conversion and Storage , Huazhong University of Science & Technology , Ministry of Education, Wuhan 430074 , China
| | - Sheng Xu
- Key Laboratory of Material Chemistry for Energy Conversion and Storage , Huazhong University of Science & Technology , Ministry of Education, Wuhan 430074 , China
| | - Anny Phommachanh
- Key Laboratory of Material Chemistry for Energy Conversion and Storage , Huazhong University of Science & Technology , Ministry of Education, Wuhan 430074 , China
| | - Ming Yi
- Key Laboratory of Material Chemistry for Energy Conversion and Storage , Huazhong University of Science & Technology , Ministry of Education, Wuhan 430074 , China
| | - Yan Wang
- Key Laboratory of Material Chemistry for Energy Conversion and Storage , Huazhong University of Science & Technology , Ministry of Education, Wuhan 430074 , China
- Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering , Huazhong University of Science & Technology , Wuhan 430074 , China
| |
Collapse
|