1
|
Qi Y, Huang J, Qin S, Yan M, Huang X, Ren Y. An In Situ Polymerization Gel Polymer Electrolyte Based on Pentaerythritol Tetracrylate for High-Performance Lithium-Ion Batteries. ACS APPLIED MATERIALS & INTERFACES 2024. [PMID: 39565953 DOI: 10.1021/acsami.4c16084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2024]
Abstract
Problems occur frequently during the application of traditional liquid electrolyte batteries, such as fluid leakage and low energy density. As a product of liquid electrolyte transition to solid electrolyte, gel polymer electrolyte has its own advantages for achieving high conductivity and good thermal stability. In this study, pentaerythritol tetracrylate (PETEA) was used as the precursor to prepare polymer-based materials with the assistance of azobis(isobutyronitrile) (AIBN) as the initiator. Because fluorine is beneficial to improving the migration efficiency of Li+ and the electrochemical performance of the gel polymer electrolyte, dodecafluoroheptyl methacrylate (DFHMA) is introduced to the PETEA-based gel polymer electrolyte (GPE) system. The DFHMA-introduced GPE shows better electrochemical performance, battery cycle performance, conductivity, and lithium-ion migration number compared with the pristine PETEA-based GPE. In particular, the DFHMA-introduced GPE exhibits the best performance because the molar ratio of PETEA to DFHMA is 5:1. Herein, the electrochemical window is 4.6 V, the ionic conductivity reaches 1.207 mS cm-1, and the number of lithium-ion migrations reaches the value of 0.663. Because the electric current density is 2 C, the specific capacity of LiNi0.5Co0.2Mn0.3O2 (NCM523)/GPE/Li reaches 143.1 mAh g-1 after 100 cycles.
Collapse
Affiliation(s)
- Yanli Qi
- School of Materials Science and Engineering, Jiangsu Province Engineering Research Center of Intelligent Manufacturing Technology for the New Energy Vehicle Power Battery, Changzhou Key Laboratory of Intelligent Manufacturing and Advanced Technology for Power Battery, Changzhou Key Laboratory of the Vital Technology for Power Battery and Management System, Changzhou University, Changzhou, Jiangsu 213164, China
| | - Jiali Huang
- School of Materials Science and Engineering, Jiangsu Province Engineering Research Center of Intelligent Manufacturing Technology for the New Energy Vehicle Power Battery, Changzhou Key Laboratory of Intelligent Manufacturing and Advanced Technology for Power Battery, Changzhou Key Laboratory of the Vital Technology for Power Battery and Management System, Changzhou University, Changzhou, Jiangsu 213164, China
| | - Shaopan Qin
- School of Materials Science and Engineering, Jiangsu Province Engineering Research Center of Intelligent Manufacturing Technology for the New Energy Vehicle Power Battery, Changzhou Key Laboratory of Intelligent Manufacturing and Advanced Technology for Power Battery, Changzhou Key Laboratory of the Vital Technology for Power Battery and Management System, Changzhou University, Changzhou, Jiangsu 213164, China
| | - Maoyin Yan
- School of Materials Science and Engineering, Jiangsu Province Engineering Research Center of Intelligent Manufacturing Technology for the New Energy Vehicle Power Battery, Changzhou Key Laboratory of Intelligent Manufacturing and Advanced Technology for Power Battery, Changzhou Key Laboratory of the Vital Technology for Power Battery and Management System, Changzhou University, Changzhou, Jiangsu 213164, China
| | - Xiaobing Huang
- College of Chemistry and Materials Engineering, Hunan University of Arts and Science, Changde, Hunan 415000, China
| | - Yurong Ren
- School of Materials Science and Engineering, Jiangsu Province Engineering Research Center of Intelligent Manufacturing Technology for the New Energy Vehicle Power Battery, Changzhou Key Laboratory of Intelligent Manufacturing and Advanced Technology for Power Battery, Changzhou Key Laboratory of the Vital Technology for Power Battery and Management System, Changzhou University, Changzhou, Jiangsu 213164, China
| |
Collapse
|
2
|
Huang W, Liu C, Fang X, Peng H, Yang Y, Li Y. Electro-Spun P(VDF-HFP)/Silica Composite Gel Electrolytes for High-Performance Lithium-Ion Batteries. MATERIALS (BASEL, SWITZERLAND) 2024; 17:5083. [PMID: 39459788 PMCID: PMC11509766 DOI: 10.3390/ma17205083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Revised: 10/09/2024] [Accepted: 10/16/2024] [Indexed: 10/28/2024]
Abstract
This work presents a facile way to fabricate a polymer/ceramics composite gel electrolyte to improve the overall properties of lithium-ion batteries. Lithium salt-grafted silica was synthesized and mixed with P(VDF-HFP) to produce a nanofiber film by the electrostatic spinning method. After coating a layer of SiO2 onto the surface of nanofibers through a sol-gel method, a composite nanofiber film was obtained. It was then immersed in plasticizer until saturation to make a composite gel electrolyte film. Electrochemical test results showed that the obtained gel electrolyte film shows high thermal stability (~450 °C), high ionic conductivity of 1.3 × 10-3 S cm-1 at 25 °C and a lithium-ion transference number of 0.58, and superior cycling stability, providing a new direction for manufacturing secondary batteries with higher safety and performance.
Collapse
Affiliation(s)
| | | | | | | | | | - Yi Li
- Jiangsu Key Laboratory of Advanced Functional Polymer Materials, Department of Polymer Science and Engineering, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| |
Collapse
|
3
|
Zhao X, Xu J, Zhang J, Guo M, Wu Z, Li Y, Xu C, Yin H, Wang X. Fluorescent double network ionogels with fast self-healability and high resilience for reliable human motion detection. MATERIALS HORIZONS 2023; 10:646-656. [PMID: 36533533 DOI: 10.1039/d2mh01325h] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Fascinating properties are displayed by high-performance ionogel-based flexible strain sensors, thereby gaining increasing attention in various applications ranging from human motion monitoring to soft robotics. However, the integration of excellent properties such as optical and mechanical properties and satisfactory sensing performance for one ionogel sensor is still a challenge. In particular, fatigue-resistant and self-healing properties are essential to continuous sensing. Herein, we design a flexible ion-conductive sensor based on a multifunctional ionogel with a double network using polyacrylamide, amino-modified agarose, 1,3,5-benzenetricarboxaldehyde and 1-ethyl-3-methylimidazolium chloride. The ionogel exhibits comprehensive properties including high transparency (>95%), nonflammability, strong adhesion and good temperature tolerance (about -96 to 260 °C), especially adaptive for extreme conditions. The dynamic imine bonds and abundant hydrogen bonds endow the ionogel with excellent self-healing capability, to realize rapid self-repair within minutes, as well as good mechanical properties and ductility to dissipate input energy and realize high resilience. Notably, unexpected fluorescence has been observed for the ionogel because of the gelation-induced emission phenomenon. Flexible strain sensors prepared directly from ionogels can sensitively monitor and differentiate various human motions, exhibiting a fast response time (38 ms), high sensitivity (gauge factor = 3.13 at 800% strain), good durability (>1000 cycles) and excellent stability over a wide temperature range (-30 to 80 °C). Therefore, the prepared ionogel as a high-performance flexible strain sensor in this study shows tremendous potential in wearable devices and soft ionotronics.
Collapse
Affiliation(s)
- Xiangjie Zhao
- College of Chemistry and Material Science, Shandong Agricultural University, Tai'an 271018, P. R. China.
- Key Laboratory of Agricultural Film Application of Ministry of Agriculture and Rural Affairs, Tai'an 271018, P. R. China
| | - Jiaheng Xu
- College of Chemistry and Chemical Engineering, Taishan University, Tai'an 271000, P. R. China
| | - Jingyue Zhang
- College of Chemistry and Material Science, Shandong Agricultural University, Tai'an 271018, P. R. China.
- Key Laboratory of Agricultural Film Application of Ministry of Agriculture and Rural Affairs, Tai'an 271018, P. R. China
| | - Mengru Guo
- College of Chemistry and Material Science, Shandong Agricultural University, Tai'an 271018, P. R. China.
- Key Laboratory of Agricultural Film Application of Ministry of Agriculture and Rural Affairs, Tai'an 271018, P. R. China
| | - Zhelun Wu
- College of Chemistry and Material Science, Shandong Agricultural University, Tai'an 271018, P. R. China.
- Key Laboratory of Agricultural Film Application of Ministry of Agriculture and Rural Affairs, Tai'an 271018, P. R. China
| | - Yueyue Li
- College of Chemistry and Material Science, Shandong Agricultural University, Tai'an 271018, P. R. China.
- Key Laboratory of Agricultural Film Application of Ministry of Agriculture and Rural Affairs, Tai'an 271018, P. R. China
| | - Chao Xu
- College of Chemistry and Material Science, Shandong Agricultural University, Tai'an 271018, P. R. China.
- Key Laboratory of Agricultural Film Application of Ministry of Agriculture and Rural Affairs, Tai'an 271018, P. R. China
| | - Hongzong Yin
- College of Chemistry and Material Science, Shandong Agricultural University, Tai'an 271018, P. R. China.
- Key Laboratory of Agricultural Film Application of Ministry of Agriculture and Rural Affairs, Tai'an 271018, P. R. China
| | - Xiaolin Wang
- College of Chemistry and Material Science, Shandong Agricultural University, Tai'an 271018, P. R. China.
- Key Laboratory of Agricultural Film Application of Ministry of Agriculture and Rural Affairs, Tai'an 271018, P. R. China
| |
Collapse
|
4
|
Ma C, Geng H, Liu X. Low concentration salt triggered in-situ asymmetric gel electrolyte for Li-S battery. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.141640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
|
5
|
Porous Sodium Alginate/Boehmite Coating Layer Constructed on PP Nonwoven Substrate as a Battery Separator through Polydopamine‐Induced Water‐Based Coating Method. ChemElectroChem 2022. [DOI: 10.1002/celc.202200818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
6
|
Facile Li-ion conduction and synergistic electrochemical performance via dual functionalization of flexible solid electrolyte for Li metal batteries. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.120349] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
7
|
Safety-enhanced Polymer Electrolytes with High Ambient-temperature Lithium-ion Conductivity Based on ABA Triblock Copolymers. CHINESE JOURNAL OF POLYMER SCIENCE 2021. [DOI: 10.1007/s10118-021-2648-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
8
|
Li S, Ren W, Huang Y, Zhou Q, Luo C, Li Z, Li X, Wang M, Cao H. Building more secure LMBs with gel polymer electrolytes based on dual matrices of PAN and HPMC by improving compatibility with anode and tuning lithium ion transference. Electrochim Acta 2021. [DOI: 10.1016/j.electacta.2021.138950] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
9
|
Tsao CH, Lin YT, Hsu SY, Okada S, Kuo D, Hou SS, Kuo PL. Crosslinked solidified gel electrolytes via in-situ polymerization featuring high ionic conductivity and stable lithium deposition for long-term durability lithium battery. Electrochim Acta 2020. [DOI: 10.1016/j.electacta.2020.137076] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
10
|
Liu M, Wang Y, Li M, Li G, Li B, Zhang S, Ming H, Qiu J, Chen J, Zhao P. A new composite gel polymer electrolyte based on matrix of PEGDA with high ionic conductivity for lithium-ion batteries. Electrochim Acta 2020. [DOI: 10.1016/j.electacta.2020.136622] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
11
|
Zhou X, Jiang H, Zheng H, Sun Y, Liang X, Xiang H. Nonflammable hybrid solid electrolyte membrane for a solid-state lithium battery compatible with conventional porous electrodes. J Memb Sci 2020. [DOI: 10.1016/j.memsci.2020.117820] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
12
|
Karuppasamy K, Theerthagiri J, Vikraman D, Yim CJ, Hussain S, Sharma R, Maiyalagan T, Qin J, Kim HS. Ionic Liquid-Based Electrolytes for Energy Storage Devices: A Brief Review on Their Limits and Applications. Polymers (Basel) 2020; 12:E918. [PMID: 32326662 PMCID: PMC7240671 DOI: 10.3390/polym12040918] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Revised: 04/11/2020] [Accepted: 04/11/2020] [Indexed: 11/16/2022] Open
Abstract
Since the ability of ionic liquid (IL) was demonstrated to act as a solvent or an electrolyte, IL-based electrolytes have been widely used as a potential candidate for renewable energy storage devices, like lithium ion batteries (LIBs) and supercapacitors (SCs). In this review, we aimed to present the state-of-the-art of IL-based electrolytes electrochemical, cycling, and physicochemical properties, which are crucial for LIBs and SCs. ILs can also be regarded as designer solvents to replace the more flammable organic carbonates and improve the green credentials and performance of energy storage devices, especially LIBs and SCs. This review affords an outline of the progress of ILs in energy-related applications and provides essential ideas on the emerging challenges and openings that may motivate the scientific communities to move towards IL-based energy devices. Finally, the challenges in design of the new type of ILs structures for energy and environmental applications are also highlighted.
Collapse
Affiliation(s)
- K Karuppasamy
- Division of Electronics and Electrical Engineering, Dongguk University-Seoul, Seoul 04620, Korea; (K.K.); (D.V.); (C.-J.Y.)
| | - Jayaraman Theerthagiri
- Centre of Excellence for Energy Research, Centre for Nanoscience and Nanotechnology, Sathyabama Institute of Science and Technology (Deemed to be University), Chennai 600119, India;
| | - Dhanasekaran Vikraman
- Division of Electronics and Electrical Engineering, Dongguk University-Seoul, Seoul 04620, Korea; (K.K.); (D.V.); (C.-J.Y.)
| | - Chang-Joo Yim
- Division of Electronics and Electrical Engineering, Dongguk University-Seoul, Seoul 04620, Korea; (K.K.); (D.V.); (C.-J.Y.)
| | - Sajjad Hussain
- Graphene Research Institute, Sejong University, Seoul 05006, Korea;
- Institute of Nano and Advanced Materials Engineering, Sejong University, Seoul 05006, Korea
| | - Ramakant Sharma
- Integrated Organic Electronics Lab, School of Electrical Engineering, Korea Advanced Institute of Science and Technology, Daejeon 34141, Korea;
| | - Thandavaryan Maiyalagan
- Electrochemical Energy Laboratory, Department of Chemistry, SRM Institute of Science and Technology, Kattankulathur 603203, India;
| | - Jiaqian Qin
- Research Unit of Advanced Materials for Energy Storage, Metallurgy and Materials Science Research Institute, Chulalongkorn University, Bangkok 10330, Thailand;
| | - Hyun-Seok Kim
- Division of Electronics and Electrical Engineering, Dongguk University-Seoul, Seoul 04620, Korea; (K.K.); (D.V.); (C.-J.Y.)
| |
Collapse
|
13
|
Fire-resistant, high-performance gel polymer electrolytes derived from poly(ionic liquid)/P(VDF-HFP) composite membranes for lithium ion batteries. J Memb Sci 2020. [DOI: 10.1016/j.memsci.2020.117827] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
14
|
Investigation on Electrochemical Performance of New Flexible Nanocomposite Poly(Vinylidene Fluoride-co-Hexafluoropropylene) Polymer Electrolytes. INT J POLYM SCI 2020. [DOI: 10.1155/2020/3583806] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
This research paper as an article investigates electrochemical performance of poly(vinylidene fluoride-co-hexafluoropropylene) (PVdF-co-HFP) flexible nanocomposite polymer electrolytes which have been prepared successfully with incorporation of zinc oxide (ZnO) nanofiller. First, nanofillers are incorporated in a polymer matrix to form the flexible nanocomposite PVdF-co-HFP polymer membranes (PI-CMPM), and it is obtained by phase inversion technique. Contact angles of PI-CMPM have achieved a maximum of 136°. After this procedure, it has been activated by using a 1.0 M LiClO4 containing of DMC/EC (1 : 1 v/v ratio) electrolyte solution to get flexible nanocomposite polymer electrolytes (PI-CMPE). The optimized PI-CMPM has increased the electrolyte uptake by 150%. It reaches the maximum ionic conductivity value of 2.47×10−3 S cm−1 at room temperature. Optimized PI-CMPE achieved a maximum transference number of 0.61, which may be further evidence for the ability to fabricate high-performance lithium ion polymer batteries.
Collapse
|
15
|
Zhang H, An X, Liu L, Lu Z, Liu H, Ni Y. Preparation of cellulose-based lithium ion battery membrane enhanced with alkali-treated polysulfonamide fibers and cellulose nanofibers. J Memb Sci 2019. [DOI: 10.1016/j.memsci.2019.117346] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
16
|
Highly Conductive and Flexible Gel Polymer Electrolyte with Bis(Fluorosulfonyl)imide Lithium Salt via UV Curing for Li-Ion Batteries. MEMBRANES 2019; 9:membranes9110139. [PMID: 31671534 PMCID: PMC6918264 DOI: 10.3390/membranes9110139] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 10/24/2019] [Accepted: 10/28/2019] [Indexed: 11/16/2022]
Abstract
A series of new self-standing gel polymer electrolytes (SGPEs) were fabricated by ultraviolet (UV) curing and investigated for application in flexible lithium-ion batteries. Compared with traditional gel polymer electrolytes (combine with solvents or plasticizers), these new SGPEs were prepared simply by curing different weight ratios of lithium bis(fluorosulfonyl)imide (LiFSI) with a methacrylic linear monomer, poly (ethylene glycol) dimethacrylate (PEGDMA). Noticeably, there were no solvents or plasticizers combined with the final SGPEs. Owing to this, the SGPEs showed high flexibility and strong mechanical stability. Some paramount physicochemical and electrochemical characters were observed. The SGPEs demonstrated good thermal stability below 150 °C and an extremely low glass transition temperature (Tg) (around −75 °C). Moreover, plastic crystal behaviors were also identified in this study. Ultimately, the SGPEs demonstrated excellent ionic conductivity at room temperature, which proves that these new SGPEs could be widely applied as a prospective electrolyte in flexible lithium-ion batteries.
Collapse
|
17
|
Li B, Huang Y, Cheng P, Liu B, Yin Z, Lin Y, Li X, Wang M, Cao H, Wu Y. Upgrading comprehensive performances of gel polymer electrolyte based on polyacrylonitrile via copolymerizing acrylonitrile with N-vinylpryrrolidone. Electrochim Acta 2019. [DOI: 10.1016/j.electacta.2019.134572] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
18
|
Wang X, Wang X, Lu Y. Realizing High Voltage Lithium Cobalt Oxide in Lithium-Ion Batteries. Ind Eng Chem Res 2019. [DOI: 10.1021/acs.iecr.9b01236] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Affiliation(s)
- Xiao Wang
- State Key Laboratory of Chemical Engineering, Institute of Pharmaceutical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
| | - Xinyang Wang
- State Key Laboratory of Chemical Engineering, Institute of Pharmaceutical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
| | - Yingying Lu
- State Key Laboratory of Chemical Engineering, Institute of Pharmaceutical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
| |
Collapse
|
19
|
Yu R, Li S, Chen G, Zuo C, Zhou B, Ni M, Peng H, Xie X, Xue Z. Monochromatic "Photoinitibitor"-Mediated Holographic Photopolymer Electrolytes for Lithium-Ion Batteries. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2019; 6:1900205. [PMID: 31131205 PMCID: PMC6524123 DOI: 10.1002/advs.201900205] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Revised: 03/02/2019] [Indexed: 05/25/2023]
Abstract
A new polymer electrolyte based on holographic photopolymer is designed and fabricated. Ethylene carbonate (EC) and propylene carbonate (PC) are introduced as the photoinert substances. Upon laser-interference-pattern illumination, photopolymerization occurs within the constructive regions which subsequently results in a phase separation between the photogenerated polymer and unreacted EC-PC, affording holographic photopolymer electrolytes (HPEs) with a pitch of ≈740 nm. Interestingly, both diffraction efficiency and ionic conductivity increase with an augmentation of the EC-PC content. With 50 wt% of EC-PC, the diffraction efficiency and ionic conductivity are ≈60% and 2.13 × 10-4 S cm-1 at 30 °C, respectively, which are 60 times and 5 orders of magnitude larger than the electrolyte without EC-PC. Notably, the HPEs afford better anisotropy and more stable electrochemical properties when incorporating N,N-dimethylacrylamide. The HPEs exhibit good toughness under bending, excellent optical transparency under ambient conditions, and astonishing capabilities of reconstructing colored images. The HPEs here open a door to design flexible and transparent electronics with good mechanical, electrical, and optical functions.
Collapse
Affiliation(s)
- Ronghua Yu
- Key Laboratory for Material Chemistry of Energy Conversion and Storage Ministry of Education School of Chemistry and Chemical Engineering Huazhong University of Science and Technology Wuhan 430074 China
| | - Sibo Li
- Key Laboratory for Material Chemistry of Energy Conversion and Storage Ministry of Education School of Chemistry and Chemical Engineering Huazhong University of Science and Technology Wuhan 430074 China
- School of Materials Science and Engineering Wuhan Institute of Technology Wuhan 430074 China
| | - Guannan Chen
- Key Laboratory for Material Chemistry of Energy Conversion and Storage Ministry of Education School of Chemistry and Chemical Engineering Huazhong University of Science and Technology Wuhan 430074 China
| | - Cai Zuo
- Key Laboratory for Material Chemistry of Energy Conversion and Storage Ministry of Education School of Chemistry and Chemical Engineering Huazhong University of Science and Technology Wuhan 430074 China
| | - Binghua Zhou
- Key Laboratory for Material Chemistry of Energy Conversion and Storage Ministry of Education School of Chemistry and Chemical Engineering Huazhong University of Science and Technology Wuhan 430074 China
| | - Mingli Ni
- Key Laboratory for Material Chemistry of Energy Conversion and Storage Ministry of Education School of Chemistry and Chemical Engineering Huazhong University of Science and Technology Wuhan 430074 China
| | - Haiyan Peng
- Key Laboratory for Material Chemistry of Energy Conversion and Storage Ministry of Education School of Chemistry and Chemical Engineering Huazhong University of Science and Technology Wuhan 430074 China
| | - Xiaolin Xie
- Key Laboratory for Material Chemistry of Energy Conversion and Storage Ministry of Education School of Chemistry and Chemical Engineering Huazhong University of Science and Technology Wuhan 430074 China
| | - Zhigang Xue
- Key Laboratory for Material Chemistry of Energy Conversion and Storage Ministry of Education School of Chemistry and Chemical Engineering Huazhong University of Science and Technology Wuhan 430074 China
| |
Collapse
|
20
|
Electrolyte for energy storage/conversion (Li+, Na+, Mg2+) devices based on PVC and their associated polymer: a comprehensive review. J Solid State Electrochem 2019. [DOI: 10.1007/s10008-019-04203-x] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|