1
|
Alizadeh MH, Pooresmaeil M, Namazi H. A perspective on recent advances in polysaccharide/covalent organic framework composite materials with applications potential in water remediation. Int J Biol Macromol 2025; 304:140912. [PMID: 39947559 DOI: 10.1016/j.ijbiomac.2025.140912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 01/21/2025] [Accepted: 02/09/2025] [Indexed: 02/17/2025]
Abstract
Researching the potential of various composite materials to remove water pollutants is an important issue for scientists, and polysaccharides are considered desirable materials in this field. Despite the unique advantages, combining these natural materials with a secondary component, especially porous compounds, could improve the performance of the desired system. Recently, highly porous constructs, such as covalent organic frameworks (COFs), was introduced for the composition of polysaccharides. Also, this combinations can solve the aggregation concern of COFs in water treatment areas. Therefore, the composition of the polysaccharides and COF materials effectively has demonstrated their ability to remove contaminants. The hydrogels, films, aerogels, and membranes are some formulations for these kind systems. When polysaccharides are combined with other substances like COF and Fe3O4 the resulting system displays new properties that expand its applicability while having the properties of both components. A survey of the published reports shows that up to now some comprehensive research explored the potential of polysaccharide/COF composite materials for water treatment. Considering these, the current mini review paper highlights the conducted studies on evaluated polysaccharide/COF composite materials, with a focus on the chitosan (CS), cellulose, alginate, and κ-carrageenan for water treatment containing various pollutants such as dyes, metals, pharmaceuticals and other chemical compounds.
Collapse
Affiliation(s)
- Mohammad Hossein Alizadeh
- Polymer Research Laboratory, Department of Organic and Biochemistry, Faculty of Chemistry, University of Tabriz, Tabriz, Iran
| | - Malihe Pooresmaeil
- Polymer Research Laboratory, Department of Organic and Biochemistry, Faculty of Chemistry, University of Tabriz, Tabriz, Iran
| | - Hassan Namazi
- Polymer Research Laboratory, Department of Organic and Biochemistry, Faculty of Chemistry, University of Tabriz, Tabriz, Iran; Research Center for Pharm Nanotechnology, Biomedicine Institute, Tabriz University of Medical Science, Tabriz, Iran.
| |
Collapse
|
2
|
Cai Y, Yu Y, Wu J, Qu J, Hu J, Tian D, Li J. Recent advances of pure/independent covalent organic framework membrane materials: preparation, properties and separation applications. NANOSCALE 2024; 16:961-977. [PMID: 38108437 DOI: 10.1039/d3nr05196j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
Covalent organic frameworks (COF) are porous crystalline polymers connected by covalent bonds. Due to their inherent high specific surface area, tunable pore size, and good stability, they have attracted extensive attention from researchers. In recent years, COF membrane materials developed rapidly, and a large amount of research work has been presented on the preparation methods, properties, and applications of COF membranes. This review focuses on the research on independent/pure continuous COF membranes. First, based on the membrane formation mechanism, COF membrane preparation methods are categorized into two main groups: bottom-up and top-down. Four methods are presented, namely, solvothermal, interfacial polymerization, steam-assisted conversion, and layer by layer. Then, the aperture, hydrophilicity/hydrophobicity and surface charge properties of COF membranes are summarized and outlined. According to the application directions of gas separation, water treatment, organic solvent nanofiltration, pervaporation and energy, the latest research results of COF membranes are presented. Finally, the challenges and future directions of COF membranes are summarized and an outlook provided. It is hoped that this work will inspire and motivate researchers in related fields.
Collapse
Affiliation(s)
- Yahui Cai
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Materials Science and Engineering, Nanjing Forestry University, No. 159 Longpan Road, Nanjing 210037, China.
| | - Yang Yu
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Materials Science and Engineering, Nanjing Forestry University, No. 159 Longpan Road, Nanjing 210037, China.
| | - Jianfei Wu
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Materials Science and Engineering, Nanjing Forestry University, No. 159 Longpan Road, Nanjing 210037, China.
| | - Jiafu Qu
- School of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China.
| | - Jundie Hu
- School of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China.
| | - Dan Tian
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Materials Science and Engineering, Nanjing Forestry University, No. 159 Longpan Road, Nanjing 210037, China.
| | - Jianzhang Li
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Materials Science and Engineering, Nanjing Forestry University, No. 159 Longpan Road, Nanjing 210037, China.
| |
Collapse
|
3
|
Elmerhi N, Kumar S, Abi Jaoude M, Shetty D. Covalent Organic Framework-derived Composite Membranes for Water Treatment. Chem Asian J 2024; 19:e202300944. [PMID: 38078624 DOI: 10.1002/asia.202300944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 12/11/2023] [Indexed: 12/29/2023]
Abstract
Water treatment has experienced a surge in the adoption of membrane separation technology. Covalent organic frameworks (COFs), a class of metal-free and open-framework materials, have emerged as potential membrane materials owing to their interconnected periodic porosity, tunability, and chemical stability. However, the challenges associated with processing COF powders into self-standing membranes have spurred the emergence of COF composite membranes. This review article highlights the rationale behind developing COF composite membranes and their categories, including mixed matrix membranes (MMMs) and thin film composite (TFC) membranes. The common fabrication techniques of each category are presented. In addition, the influence of COF additives on the performance of the resultant composite membranes is systematically discussed, with a focus on the recent progress in applying COF composite membranes in the separation of different categories of water pollutants, including organic ions/molecules, toxic solvents, proteins, toxic heavy metals, and radionuclides.
Collapse
Affiliation(s)
- Nada Elmerhi
- Department of Chemistry, Khalifa University, P.O. Box 127788, Abu Dhabi, United Arab Emirates
- Center for Catalysis and Separation (CeCaS), Khalifa University, P.O. Box 127788, Abu Dhabi, United Arab Emirates
| | - Sushil Kumar
- Department of Chemistry, Khalifa University, P.O. Box 127788, Abu Dhabi, United Arab Emirates
| | - Maguy Abi Jaoude
- Department of Chemistry, Khalifa University, P.O. Box 127788, Abu Dhabi, United Arab Emirates
- Center for Catalysis and Separation (CeCaS), Khalifa University, P.O. Box 127788, Abu Dhabi, United Arab Emirates
| | - Dinesh Shetty
- Department of Chemistry, Khalifa University, P.O. Box 127788, Abu Dhabi, United Arab Emirates
- Center for Catalysis and Separation (CeCaS), Khalifa University, P.O. Box 127788, Abu Dhabi, United Arab Emirates
| |
Collapse
|
4
|
Sabzehmeidani MM, Kazemzad M. Recent advances in surface-mounted metal-organic framework thin film coatings for biomaterials and medical applications: a review. Biomater Res 2023; 27:115. [PMID: 37950330 PMCID: PMC10638836 DOI: 10.1186/s40824-023-00454-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 10/22/2023] [Indexed: 11/12/2023] Open
Abstract
Coatings of metal-organic frameworks (MOFs) have potential applications in surface modification for medical implants, tissue engineering, and drug delivery systems. Therefore, developing an applicable method for surface-mounted MOF engineering to fabricate protective coating for implant tissue engineering is a crucial issue. Besides, the coating process was desgined for drug infusion and effect opposing chemical and mechanical resistance. In the present review, we discuss the techniques of MOF coatings for medical application in both in vitro and in vivo in various systems such as in situ growth of MOFs, dip coating of MOFs, spin coating of MOFs, Layer-by-layer methods, spray coating of MOFs, gas phase deposition of MOFs, electrochemical deposition of MOFs. The current study investigates the modification in the implant surface to change the properties of the alloy surface by MOF to improve properties such as reduction of the biofilm adhesion, prevention of infection, improvement of drugs and ions rate release, and corrosion resistance. MOF coatings on the surface of alloys can be considered as an opportunity or a restriction. The presence of MOF coatings in the outer layer of alloys would significantly demonstrate the biological, chemical and mechanical effects. Additionally, the impact of MOF properties and specific interactions with the surface of alloys on the anti-microbial resistance, anti-corrosion, and self-healing of MOF coatings are reported. Thus, the importance of multifunctional methods to improve the adhesion of alloy surfaces, microbial and corrosion resistance and prospects are summarized.
Collapse
Affiliation(s)
- Mohammad Mehdi Sabzehmeidani
- Department of Energy, Materials and Energy Research Center, Karaj, Iran.
- Department of Chemical Engineering, University of Science and Technology of Mazandaran, Behshahr, Iran.
| | - Mahmood Kazemzad
- Department of Energy, Materials and Energy Research Center, Karaj, Iran.
| |
Collapse
|
5
|
Wang J, Shao Z, Bai Y, He G, Wang X, Liu L, Liao B, Sun X, Lv K, Sun J. Fabrication and property evaluation of calcium-oxide-loaded microcapsules during supplemental heat-based exploitation of natural gas hydrates. RSC Adv 2023; 13:7212-7221. [PMID: 36875884 PMCID: PMC9982828 DOI: 10.1039/d3ra00265a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 02/27/2023] [Indexed: 03/06/2023] Open
Abstract
The exploitation of natural gas hydrates (NGHs) by traditional methods is far lower than the commercial target. Calcium oxide (CaO)-based in situ supplemental heat combined with depressurization is a novel method for effectively exploiting NGHs. In this study, we propose an in situ supplemental heat method with the sustained-release CaO-loaded microcapsules coated with polysaccharide film. The modified CaO-loaded microcapsules were coated with polysaccharide films using covalent layer-by-layer self-assembly and wet modification process, with (3-aminopropyl) trimethoxysilane as the coupling agent and modified cellulose and chitosan as the shell materials. Microstructural characterization and elemental analysis of the microcapsules verified the change in the surface composition during the fabrication process. We found that the overall particle size distribution was within the range of 1-100 μm, corresponding to the particle size distribution in the reservoir. Furthermore, the sustained-release microcapsules exhibit controllable exothermic behavior. The decomposition rates of the NGHs under the effect of CaO and CaO-loaded microcapsules coated with one and three layers of polysaccharide films were 36.2, 17.7, and 11.1 mmol h-1, respectively, while the exothermic time values were 0.16, 1.18, and 6.68 h, respectively. Finally, we propose an application method based on sustained-release CaO-loaded microcapsules used for the supplemental heat-based exploitation of NGHs.
Collapse
Affiliation(s)
- Jintang Wang
- School of Petroleum Engineering, China University of Petroleum (East China) Qingdao 266580 China .,Key Laboratory of Metallogenic Prediction of Nonferrous Metals and Geological Environment Monitoring (Central South University), Ministry of Education Changsha 410083 China
| | - Zihua Shao
- School of Petroleum Engineering, China University of Petroleum (East China) Qingdao 266580 China
| | - Yujing Bai
- School of Petroleum Engineering, China University of Petroleum (East China) Qingdao 266580 China
| | - Guolei He
- Institute of Exploration Techniques, Chinese Academy of Geosciences Langfang 065000 China
| | - Xudong Wang
- Shandong Institute of Petroleum and Chemical Technology Dongying 257061 China
| | - Lei Liu
- School of Petroleum Engineering, China University of Petroleum (East China) Qingdao 266580 China
| | - Bo Liao
- School of Petroleum Engineering, China University of Petroleum (East China) Qingdao 266580 China
| | - Xiaohui Sun
- School of Petroleum Engineering, China University of Petroleum (East China) Qingdao 266580 China
| | - Kaihe Lv
- School of Petroleum Engineering, China University of Petroleum (East China) Qingdao 266580 China
| | - Jinsheng Sun
- School of Petroleum Engineering, China University of Petroleum (East China) Qingdao 266580 China
| |
Collapse
|
6
|
Gupta I, Gupta O. Recent Advancements in the Recovery and Reuse of Organic Solvents Using Novel Nanomaterial-Based Membranes for Renewable Energy Applications. MEMBRANES 2023; 13:membranes13010108. [PMID: 36676915 PMCID: PMC9862370 DOI: 10.3390/membranes13010108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 01/09/2023] [Accepted: 01/10/2023] [Indexed: 05/12/2023]
Abstract
The energy crisis in the world is increasing rapidly owing to the shortage of fossil fuel reserves. Climate change and an increase in global warming necessitates a change in focus from petroleum-based fuels to renewable fuels such as biofuels. The remodeling of existing separation processes using various nanomaterials is of a growing interest to industrial separation methods. Recently, the design of membrane technologies has been the most focused research area concerning fermentation broth to enhance performance efficiency, while recovering those byproducts to be used as value added fuels. Specifically, the use of novel nano material membranes, which brings about a selective permeation of the byproducts, such as organic solvent, from the fermentation broth, positively affects the fermentation kinetics by eliminating the issue of product inhibition. In this review, which and how membrane-based technologies using novel materials can improve the separation performance of organic solvents is considered. In particular, technical approaches suggested in previous studies are discussed with the goal of emphasizing benefits and problems faced in order to direct research towards an optimized membrane separation performance for renewable fuel production on a commercial scale.
Collapse
Affiliation(s)
- Indrani Gupta
- Department of Chemistry and Environmental Science, New Jersey Institute of Technology, Newark, NJ 07102, USA
| | - Oindrila Gupta
- Vertex Pharmaceuticals Inc., Boston, MA 02210, USA
- Correspondence: ; Tel.: +1-201-467-1138
| |
Collapse
|
7
|
Si Z, Wu H, Qin P, Van der Bruggen B. Polydimethylsiloxane based membranes for biofuels pervaporation. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121612] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
8
|
Li Y, Liu M, Wu J, Li J, Yu X, Zhang Q. Highly stable β-ketoenamine-based covalent organic frameworks (COFs): synthesis and optoelectrical applications. FRONTIERS OF OPTOELECTRONICS 2022; 15:38. [PMID: 36637691 PMCID: PMC9756274 DOI: 10.1007/s12200-022-00032-5] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 03/09/2022] [Indexed: 05/15/2023]
Abstract
Covalent organic frameworks (COFs) are one class of porous materials with permanent porosity and regular channels, and have a covalent bond structure. Due to their interesting characteristics, COFs have exhibited diverse potential applications in many fields. However, some applications require the frameworks to possess high structural stability, excellent crystallinity, and suitable pore size. COFs based on β-ketoenamine and imines are prepared through the irreversible enol-to-keto tautomerization. These materials have high crystallinity and exhibit high stability in boiling water, with strong resistance to acids and bases, resulting in various possible applications. In this review, we first summarize the preparation methods for COFs based on β-ketoenamine, in the form of powders, films and foams. Then, the effects of different synthetic methods on the crystallinity and pore structure of COFs based on β-ketoenamine are analyzed and compared. The relationship between structures and different applications including fluorescence sensors, energy storage, photocatalysis, electrocatalysis, batteries and proton conduction are carefully summarized. Finally, the potential applications, large-scale industrial preparation and challenges in the future are presented.
Collapse
Affiliation(s)
- Yaqin Li
- Key Laboratory for Green Chemical Process of Ministry of Education, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan, 430074, China
- School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan, 430074, China
| | - Maosong Liu
- Key Laboratory for Green Chemical Process of Ministry of Education, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan, 430074, China
| | - Jinjun Wu
- School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan, 430074, China
| | - Junbo Li
- Key Laboratory for Green Chemical Process of Ministry of Education, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan, 430074, China
- School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan, 430074, China
| | - Xianglin Yu
- Key Laboratory for Green Chemical Process of Ministry of Education, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan, 430074, China.
| | - Qichun Zhang
- Department of Materials Science and Engineering, City University of Hongkong, Hong Kong SAR, 999077, China.
- Center of Super-Diamond and Advanced Films (COSDAF), City University of Hongkong, Hong Kong SAR, 999077, China.
| |
Collapse
|
9
|
Covalent organic framework membrane on electrospun polyvinylidene fluoride substrate with a hydrophilic intermediate layer. J Colloid Interface Sci 2022; 622:11-20. [DOI: 10.1016/j.jcis.2022.04.049] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 03/19/2022] [Accepted: 04/07/2022] [Indexed: 11/21/2022]
|
10
|
Zhu Z, Wang H, Cao C, Zou J, Wang M, Zhang Z, Wang Y, Cao Y, Pan F, Chen Y, Jiang Z. Covalent organic framework membranes prepared via mixed linker modulated assembly for hydrogen peroxide enrichment. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.121043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
11
|
Ultra-smooth and ultra-thin polyamide thin film nanocomposite membranes incorporated with functionalized MoS2 nanosheets for high performance organic solvent nanofiltration. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.120937] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
12
|
Two-dimensional covalent organic framework nanosheets: Synthesis and energy-related applications. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2021.10.060] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
13
|
Wang Q, Sun J, Wei D. Two‐Dimensional
Metal Organic Frameworks and Covalent Organic Frameworks. CHINESE J CHEM 2022. [DOI: 10.1002/cjoc.202100831] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Qiankun Wang
- State Key Laboratory of Molecular Engineering of Polymers Fudan University Shanghai 200433 China
- Department of Macromolecular Science Fudan University Shanghai 200433 China
- Laboratory of Molecular Materials and Devices Fudan University Shanghai 200433 China
| | - Jiang Sun
- State Key Laboratory of Molecular Engineering of Polymers Fudan University Shanghai 200433 China
- Department of Macromolecular Science Fudan University Shanghai 200433 China
- Laboratory of Molecular Materials and Devices Fudan University Shanghai 200433 China
| | - Dacheng Wei
- State Key Laboratory of Molecular Engineering of Polymers Fudan University Shanghai 200433 China
- Department of Macromolecular Science Fudan University Shanghai 200433 China
- Laboratory of Molecular Materials and Devices Fudan University Shanghai 200433 China
| |
Collapse
|
14
|
Han S, Mai Z, Wang Z, Zhang X, Zhu J, Shen J, Wang J, Wang Y, Zhang Y. Covalent Organic Framework-Mediated Thin-Film Composite Polyamide Membranes toward Precise Ion Sieving. ACS APPLIED MATERIALS & INTERFACES 2022; 14:3427-3436. [PMID: 34989545 DOI: 10.1021/acsami.1c19605] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Covalent organic frameworks (COFs) have evinced a potential solution that promises for fast and efficient molecular separation due to the presence of orderly arranged pores and regulable pore apertures. Herein, the synthesized COF (TPB-DMTP-COF) with the pore aperture matching the pore size of the nanofiltration (NF) membrane was utilized to modulate the physicochemical characters of the polyamide (PA) membranes. It is demonstrated that COFs with superior polymer affinity and hydrophilicity not only circumvent the nonselective interfacial cavities but also improve the hydrophilicity of the resultant thin-film nanocomposite (TFN) membranes. Furthermore, the predeposited COF layer is able to slow down the diffusion rate toward the reaction boundary through hydrogen bonding, which is consistent with the results of molecular dynamic (MD) and dissipative particle dynamic (DPD) simulations. In this context, COF-modulated TFN membranes show a roughened and thickened surface with bubble-shaped structures in contrast to the nodular structure of original polyamide membranes. Combined with the introduced in-plane pores of COFs, the resultant TFN membranes display a significantly elevated water permeance of 35.7 L m2 h-1 bar-1, almost 4-fold that of unmodified polyamide membranes. Furthermore, the selectivity coefficient of Cl-/SO42- for COF-modulated TFN membranes achieves a high value of 84 mainly related to the enhanced charge density, far exceeding the traditional NF membranes. This work is considered to provide a guideline of exploring hydrophilic COFs as an interlayer for constructing highly permeable membranes with precise ion-sieving ability.
Collapse
Affiliation(s)
- Shuangqiao Han
- School of Chemical Engineering, Zhengzhou University, Zhengzhou 450001, China
| | - Zhaohuan Mai
- Institute of Energy Conversion, Jiangxi Academy of Sciences, Changdong Rd., Nanchang 330096, China
| | - Zheng Wang
- School of Chemical Engineering, Zhengzhou University, Zhengzhou 450001, China
| | - Xiang Zhang
- School of Chemical Engineering, Zhengzhou University, Zhengzhou 450001, China
| | - Junyong Zhu
- School of Chemical Engineering, Zhengzhou University, Zhengzhou 450001, China
| | - Jiangnan Shen
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Jingtao Wang
- School of Chemical Engineering, Zhengzhou University, Zhengzhou 450001, China
| | - Yong Wang
- College of Chemical Engineering, Nanjing Tech University, Nanjing 210009, P. R. China
| | - Yatao Zhang
- School of Chemical Engineering, Zhengzhou University, Zhengzhou 450001, China
| |
Collapse
|
15
|
Dai L, Xu F, Huang K, Xia Y, Wang Y, Qu K, Xin L, Zhang D, Xiong Z, Wu Y, Guo X, Jin W, Xu Z. Ultrafast Water Transport in Two-Dimensional Channels Enabled by Spherical Polyelectrolyte Brushes with Controllable Flexibility. Angew Chem Int Ed Engl 2021; 60:19933-19941. [PMID: 34128294 DOI: 10.1002/anie.202107085] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Indexed: 11/08/2022]
Abstract
Fast water transport channels are crucial for water-related membrane separation processes. However, overcoming the trade-off between flux and selectivity is still a major challenge. To address this, we constructed spherical polyelectrolyte brush (SPB) structures with a highly hydrophilic polyelectrolyte brush layer, and introduced them into GO laminates, which increased both the flux and the separation factor. At 70 °C, the flux reached 5.23 kg m-2 h-1 , and the separation factor of butanol/water increased to ≈8000, which places it among the most selective separation membranes reported to date. Interestingly, further studies demonstrated that the enhancement of water transport was not only dependent on the hydrophilicity of the polyelectrolyte chains, but also influenced by their flexibility in the solvent. Quartz crystal microbalance with dissipation and molecular dynamics simulations revealed the structure-performance correlations between water molecule migration and the flexibility of the ordered polymer chains in the 2D confined space.
Collapse
Affiliation(s)
- Liheng Dai
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering, East China University of Science and Technology, No.130 Meilong Road, Shanghai, 200237, China
| | - Fang Xu
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering, East China University of Science and Technology, No.130 Meilong Road, Shanghai, 200237, China
| | - Kang Huang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, No. 30 Puzhu South Road, Nanjing, 211816, China
| | - Yongsheng Xia
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, No. 30 Puzhu South Road, Nanjing, 211816, China
| | - Yixing Wang
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering, East China University of Science and Technology, No.130 Meilong Road, Shanghai, 200237, China
| | - Kai Qu
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering, East China University of Science and Technology, No.130 Meilong Road, Shanghai, 200237, China
| | - Li Xin
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, No. 30 Puzhu South Road, Nanjing, 211816, China
| | - Dezhu Zhang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, No. 30 Puzhu South Road, Nanjing, 211816, China
| | - Zhaodi Xiong
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering, East China University of Science and Technology, No.130 Meilong Road, Shanghai, 200237, China
| | - Yulin Wu
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering, East China University of Science and Technology, No.130 Meilong Road, Shanghai, 200237, China
| | - Xuhong Guo
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering, East China University of Science and Technology, No.130 Meilong Road, Shanghai, 200237, China
| | - Wanqin Jin
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, No. 30 Puzhu South Road, Nanjing, 211816, China
| | - Zhi Xu
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering, East China University of Science and Technology, No.130 Meilong Road, Shanghai, 200237, China
| |
Collapse
|
16
|
Dai L, Xu F, Huang K, Xia Y, Wang Y, Qu K, Xin L, Zhang D, Xiong Z, Wu Y, Guo X, Jin W, Xu Z. Ultrafast Water Transport in Two‐Dimensional Channels Enabled by Spherical Polyelectrolyte Brushes with Controllable Flexibility. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202107085] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Liheng Dai
- State Key Laboratory of Chemical Engineering School of Chemical Engineering East China University of Science and Technology No.130 Meilong Road Shanghai 200237 China
| | - Fang Xu
- State Key Laboratory of Chemical Engineering School of Chemical Engineering East China University of Science and Technology No.130 Meilong Road Shanghai 200237 China
| | - Kang Huang
- State Key Laboratory of Materials-Oriented Chemical Engineering College of Chemical Engineering Nanjing Tech University No. 30 Puzhu South Road Nanjing 211816 China
| | - Yongsheng Xia
- State Key Laboratory of Materials-Oriented Chemical Engineering College of Chemical Engineering Nanjing Tech University No. 30 Puzhu South Road Nanjing 211816 China
| | - Yixing Wang
- State Key Laboratory of Chemical Engineering School of Chemical Engineering East China University of Science and Technology No.130 Meilong Road Shanghai 200237 China
| | - Kai Qu
- State Key Laboratory of Chemical Engineering School of Chemical Engineering East China University of Science and Technology No.130 Meilong Road Shanghai 200237 China
| | - Li Xin
- State Key Laboratory of Materials-Oriented Chemical Engineering College of Chemical Engineering Nanjing Tech University No. 30 Puzhu South Road Nanjing 211816 China
| | - Dezhu Zhang
- State Key Laboratory of Materials-Oriented Chemical Engineering College of Chemical Engineering Nanjing Tech University No. 30 Puzhu South Road Nanjing 211816 China
| | - Zhaodi Xiong
- State Key Laboratory of Chemical Engineering School of Chemical Engineering East China University of Science and Technology No.130 Meilong Road Shanghai 200237 China
| | - Yulin Wu
- State Key Laboratory of Chemical Engineering School of Chemical Engineering East China University of Science and Technology No.130 Meilong Road Shanghai 200237 China
| | - Xuhong Guo
- State Key Laboratory of Chemical Engineering School of Chemical Engineering East China University of Science and Technology No.130 Meilong Road Shanghai 200237 China
| | - Wanqin Jin
- State Key Laboratory of Materials-Oriented Chemical Engineering College of Chemical Engineering Nanjing Tech University No. 30 Puzhu South Road Nanjing 211816 China
| | - Zhi Xu
- State Key Laboratory of Chemical Engineering School of Chemical Engineering East China University of Science and Technology No.130 Meilong Road Shanghai 200237 China
| |
Collapse
|
17
|
Zhang X, Zhan ZM, Cheng FY, Xu ZL, Jin PR, Liu ZP, Ma XH, Xu XR, Van der Bruggen B. Thin-Film Composite Membrane Prepared by Interfacial Polymerization on the Integrated ZIF-L Nanosheets Interface for Pervaporation Dehydration. ACS APPLIED MATERIALS & INTERFACES 2021; 13:39819-39830. [PMID: 34375531 DOI: 10.1021/acsami.1c09221] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Thin-film composite (TFC) membranes are attracting wide attention because their ultrathin selective layer usually corresponds to the higher membrane flux for pervaporation. However, the direct preparation of the TFC membranes on ceramic substrates confronted with the great difficulties because the larger pores on ceramic substrate surfaces are detrimental to the formation of an intact polyamide (PA) selective layer produced by interfacial polymerization (IP) reaction. Here, the integrated ZIF-L nanosheets were proposed to be used as an assistance interlayer for the first time to eliminate the existence of the pores of the ceramic support, and provides a better basis for the formation of an intact PA selective layer by IP reaction between TMC and ethylenediamine (EDA). The experimental data obtained in pervaporation (PV) show that the increased flux from 1.1 to 2.9 kg/m2h corresponds to the decreased separation factor from 396 to 110 when the feed concentration of ethanol decreases from 95 wt % to 80 wt % at 50 °C. In addition, the membrane flux increases from 0.8 to 2.5 kg/m2h with a change of the separation factor from 683 to 111 when the operational temperature varies from 30 to 60 °C. These results demonstrate the great potential of the fabricated TFC membranes in practical application for PV dehydration of organic solutions.
Collapse
Affiliation(s)
- Xin Zhang
- State Key Laboratory of Chemical Engineering, Membrane Science and Engineering R&D Center, Chemical Engineering Research Center, School of Chemical Engineering, East China University of Science and Technology (ECUST), 130 Meilong Road, Shanghai 200237, P. R. China
- Department of Chemical Engineering, KU Leuven, Celestijnenlaan 200F, B-3001 Heverlee, Belgium
| | - Zi-Ming Zhan
- State Key Laboratory of Chemical Engineering, Membrane Science and Engineering R&D Center, Chemical Engineering Research Center, School of Chemical Engineering, East China University of Science and Technology (ECUST), 130 Meilong Road, Shanghai 200237, P. R. China
| | - Feng-Yi Cheng
- State Key Laboratory of Chemical Engineering, Membrane Science and Engineering R&D Center, Chemical Engineering Research Center, School of Chemical Engineering, East China University of Science and Technology (ECUST), 130 Meilong Road, Shanghai 200237, P. R. China
| | - Zhen-Liang Xu
- State Key Laboratory of Chemical Engineering, Membrane Science and Engineering R&D Center, Chemical Engineering Research Center, School of Chemical Engineering, East China University of Science and Technology (ECUST), 130 Meilong Road, Shanghai 200237, P. R. China
| | - Peng-Rui Jin
- Department of Chemical Engineering, KU Leuven, Celestijnenlaan 200F, B-3001 Heverlee, Belgium
| | - Ze-Peng Liu
- State Key Laboratory of Chemical Engineering, Membrane Science and Engineering R&D Center, Chemical Engineering Research Center, School of Chemical Engineering, East China University of Science and Technology (ECUST), 130 Meilong Road, Shanghai 200237, P. R. China
| | - Xiao-Hua Ma
- State Key Laboratory of Chemical Engineering, Membrane Science and Engineering R&D Center, Chemical Engineering Research Center, School of Chemical Engineering, East China University of Science and Technology (ECUST), 130 Meilong Road, Shanghai 200237, P. R. China
| | - Xin-Ru Xu
- State Key Laboratory of Chemical Engineering, Membrane Science and Engineering R&D Center, Chemical Engineering Research Center, School of Chemical Engineering, East China University of Science and Technology (ECUST), 130 Meilong Road, Shanghai 200237, P. R. China
| | - Bart Van der Bruggen
- Department of Chemical Engineering, KU Leuven, Celestijnenlaan 200F, B-3001 Heverlee, Belgium
| |
Collapse
|
18
|
Valenzuela C, Chen C, Sun M, Ye Z, Zhang J. Strategies and applications of covalent organic frameworks as promising nanoplatforms in cancer therapy. J Mater Chem B 2021; 9:3450-3483. [PMID: 33909746 DOI: 10.1039/d1tb00041a] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Cancer nanomedicine is the best option to face the limits of conventional chemotherapy and phototherapy methods, and thus the intensive quest for new nanomaterials to improve therapeutic efficacy and safety is still underway. Owing to their low density, well-defined structures, large surface area, finely tunable pore size, and metal ion free features, covalent organic frameworks (COFs) have been extensively studied in many research fields. The recent great interest in nanoscale COFs to improve the properties of bulk COFs has led to broadening of their applicability in the biomedical field, such as nanocarriers with an outstanding loading capacity and efficient delivery of therapeutic agents, smart theranostic nanoplatforms with excellent stability, high ROS generation, light-to-heat conversion capabilities, and different response and diagnostic characteristics. The COFs and related nanoplatforms with a wide variety of designability and functionalization have opened up a new avenue for exciting opportunities in cancer therapy. Herein we review the state-of-the-art technical and scientific developments in this emerging field, focusing on the overall progress addressed so far in building versatile COF-based nanoplatforms to enhance chemotherapy, photodynamic/photothermal therapy, and combination. Future perspectives for achieving the synergistic effect of cancer elimination and clinical translation are further discussed to motivate future contributions and explore new possibilities.
Collapse
Affiliation(s)
- Cristian Valenzuela
- Department of Polymer Science and Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China.
| | - Chu Chen
- Department of Polymer Science and Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China.
| | - Mengxiao Sun
- Department of Polymer Science and Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China.
| | - Zhanpeng Ye
- Department of Polymer Science and Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China.
| | - Jianhua Zhang
- Department of Polymer Science and Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China. and Tianjin Key Laboratory of Membrane Science and Desalination Technology, Tianjin University, Tianjin 300350, China
| |
Collapse
|
19
|
Enhanced water-selective performance of dual-layer hybrid membranes by incorporating carbon nanotubes. CHEMICAL ENGINEERING SCIENCE: X 2021. [DOI: 10.1016/j.cesx.2021.100102] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
|
20
|
Lee S, Kang T, Lee JY, Park J, Choi SH, Yu JY, Ok S, Park SH. Thin-Film Composite Nanofiltration Membranes for Non-Polar Solvents. MEMBRANES 2021; 11:184. [PMID: 33803122 PMCID: PMC8001804 DOI: 10.3390/membranes11030184] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 02/26/2021] [Accepted: 03/03/2021] [Indexed: 11/16/2022]
Abstract
Organic solvent nanofiltration (OSN) has been recognized as an eco-friendly separation system owing to its excellent cost and energy saving efficiency, easy scale-up in the narrow area and mild operation conditions. Membrane properties are the key part in terms of determining the separation efficiency in the OSN system. In this review paper, the recently reported OSN thin-film composite (TFC) membranes were investigated to understand insight of membrane materials and performance. Especially, we highlighted the representative study concepts and materials of the selective layer of OSN TFC membranes for non-polar solvents. The proper choice of monomers and additives for the selective layer forms much more interconnected voids and the enhanced microporosity, which can improve membrane performance of the OSN TFC membrane with reducing the transport resistance. Therefore, this review paper could be an important bridge to connect with the next-generation OSN TFC membranes for non-polar solvents.
Collapse
Affiliation(s)
- Seungmin Lee
- Energy Materials and Components R&D Group, Korea Institute of Industrial Technology, Busan 46938, Korea;
| | - Taewon Kang
- Department of Chemical Engineering, Changwon National University (CNU), Changwon 51140, Korea; (T.K.); (J.Y.L.); (J.P.); (S.H.C.); (J.-Y.Y.); (S.O.)
| | - Jong Young Lee
- Department of Chemical Engineering, Changwon National University (CNU), Changwon 51140, Korea; (T.K.); (J.Y.L.); (J.P.); (S.H.C.); (J.-Y.Y.); (S.O.)
| | - Jiyu Park
- Department of Chemical Engineering, Changwon National University (CNU), Changwon 51140, Korea; (T.K.); (J.Y.L.); (J.P.); (S.H.C.); (J.-Y.Y.); (S.O.)
| | - Seoung Ho Choi
- Department of Chemical Engineering, Changwon National University (CNU), Changwon 51140, Korea; (T.K.); (J.Y.L.); (J.P.); (S.H.C.); (J.-Y.Y.); (S.O.)
| | - Jin-Yeong Yu
- Department of Chemical Engineering, Changwon National University (CNU), Changwon 51140, Korea; (T.K.); (J.Y.L.); (J.P.); (S.H.C.); (J.-Y.Y.); (S.O.)
| | - Serin Ok
- Department of Chemical Engineering, Changwon National University (CNU), Changwon 51140, Korea; (T.K.); (J.Y.L.); (J.P.); (S.H.C.); (J.-Y.Y.); (S.O.)
| | - Sang-Hee Park
- Department of Chemical Engineering, Changwon National University (CNU), Changwon 51140, Korea; (T.K.); (J.Y.L.); (J.P.); (S.H.C.); (J.-Y.Y.); (S.O.)
| |
Collapse
|
21
|
Zhang S, Zhao S, Jing X, Niu Z, Feng X. Covalent organic framework-based membranes for liquid separation. Org Chem Front 2021. [DOI: 10.1039/d0qo01354d] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
This review summarizes the synthesis and characterization methods of COF-based membranes in recent years and discusses their separation mechanism and application in liquid separation.
Collapse
Affiliation(s)
- Sule Zhang
- Frontiers Science Center for High Energy Material
- Advanced Technology Research Institute (Jinan)
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials
- Key Laboratory of Cluster Science
- Ministry of Education
| | - Shuang Zhao
- Frontiers Science Center for High Energy Material
- Advanced Technology Research Institute (Jinan)
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials
- Key Laboratory of Cluster Science
- Ministry of Education
| | - Xuechun Jing
- Frontiers Science Center for High Energy Material
- Advanced Technology Research Institute (Jinan)
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials
- Key Laboratory of Cluster Science
- Ministry of Education
| | - Ziru Niu
- Frontiers Science Center for High Energy Material
- Advanced Technology Research Institute (Jinan)
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials
- Key Laboratory of Cluster Science
- Ministry of Education
| | - Xiao Feng
- Frontiers Science Center for High Energy Material
- Advanced Technology Research Institute (Jinan)
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials
- Key Laboratory of Cluster Science
- Ministry of Education
| |
Collapse
|
22
|
|
23
|
Zhu J, Yuan S, Wang J, Zhang Y, Tian M, Van der Bruggen B. Microporous organic polymer-based membranes for ultrafast molecular separations. Prog Polym Sci 2020. [DOI: 10.1016/j.progpolymsci.2020.101308] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
24
|
Guan Q, Wang GB, Zhou LL, Li WY, Dong YB. Nanoscale covalent organic frameworks as theranostic platforms for oncotherapy: synthesis, functionalization, and applications. NANOSCALE ADVANCES 2020; 2:3656-3733. [PMID: 36132748 PMCID: PMC9419729 DOI: 10.1039/d0na00537a] [Citation(s) in RCA: 77] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Accepted: 07/15/2020] [Indexed: 05/08/2023]
Abstract
Cancer nanomedicine is one of the most promising domains that has emerged in the continuing search for cancer diagnosis and treatment. The rapid development of nanomaterials and nanotechnology provide a vast array of materials for use in cancer nanomedicine. Among the various nanomaterials, covalent organic frameworks (COFs) are becoming an attractive class of upstarts owing to their high crystallinity, structural regularity, inherent porosity, extensive functionality, design flexibility, and good biocompatibility. In this comprehensive review, recent developments and key achievements of COFs are provided, including their structural design, synthesis methods, nanocrystallization, and functionalization strategies. Subsequently, a systematic overview of the potential oncotherapy applications achieved till date in the fast-growing field of COFs is provided with the aim to inspire further contributions and developments to this nascent but promising field. Finally, development opportunities, critical challenges, and some personal perspectives for COF-based cancer therapeutics are presented.
Collapse
Affiliation(s)
- Qun Guan
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University Jinan 250014 P. R. China
| | - Guang-Bo Wang
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University Jinan 250014 P. R. China
| | - Le-Le Zhou
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University Jinan 250014 P. R. China
| | - Wen-Yan Li
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University Jinan 250014 P. R. China
| | - Yu-Bin Dong
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University Jinan 250014 P. R. China
| |
Collapse
|
25
|
Abstract
In the wake of sustainable development, materials research is going through a green revolution that is putting energy-efficient and environmentally friendly materials and methods in the limelight. In this quest for greener alternatives, covalent organic frameworks (COFs) have emerged as a new generation of designable crystalline porous polymers for a wide array of clean-energy and environmental applications. In this contribution, we categorically review the merits and shortcomings of COF bulk powders, nanosheets, freestanding thin films/membranes, and membranes on porous supports in various separation processes, including separation of gases, pervaporation, organic solvent nanofiltration, water purification, radionuclide sequestration, and chiral separations, with particular reference to COF material pore size, host–guest interactions, stability, selectivity, and permeability. This review covers the fabrication strategies of nanosheets, films, and membranes, as well as performance parameters, and provides an overview of the separation landscape with COFs in relation to other porous polymers, while seeking to interpret the future research opportunities in this field.
Collapse
Affiliation(s)
- Saikat Das
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu 730000, China;, ,
| | - Jie Feng
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu 730000, China;, ,
| | - Wei Wang
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu 730000, China;, ,
| |
Collapse
|
26
|
Fang M, Montoro C, Semsarilar M. Metal and Covalent Organic Frameworks for Membrane Applications. MEMBRANES 2020; 10:E107. [PMID: 32455983 PMCID: PMC7281687 DOI: 10.3390/membranes10050107] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 05/19/2020] [Indexed: 12/16/2022]
Abstract
Better and more efficient membranes are needed to face imminent and future scientific, technological and societal challenges. New materials endowed with enhanced properties are required for the preparation of such membranes. Metal and Covalent Organic Frameworks (MOFs and COFs) are a new class of crystalline porous materials with large surface area, tuneable pore size, structure, and functionality, making them a perfect candidate for membrane applications. In recent years an enormous number of articles have been published on the use of MOFs and COFs in preparation of membranes for various applications. This review gathers the work reported on the synthesis and preparation of membranes containing MOFs and COFs in the last 10 years. Here we give an overview on membranes and their use in separation technology, discussing the essential factors in their synthesis as well as their limitations. A full detailed summary of the preparation and characterization methods used for MOF and COF membranes is given. Finally, applications of these membranes in gas and liquid separation as well as fuel cells are discussed. This review is aimed at both experts in the field and newcomers, including students at both undergraduate and postgraduate levels, who would like to learn about preparation of membranes from crystalline porous materials.
Collapse
Affiliation(s)
| | | | - Mona Semsarilar
- Institut Européen des Membranes—IEM UMR 5635, Univ Montpellier, CNRS, ENSCM, 34095 Montpellier, France;
| |
Collapse
|
27
|
Yao J, Liu C, Liu X, Guo J, Zhang S, Zheng J, Li S. Azobenzene-assisted exfoliation of 2D covalent organic frameworks into large-area, few-layer nanosheets for high flux and selective molecular separation membrane. J Memb Sci 2020. [DOI: 10.1016/j.memsci.2020.117864] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
28
|
In-situ synthetic modified metal-organic framework (MZIF-8) as an interlayer of the composite membranes for ethanol dehydration. J Memb Sci 2020. [DOI: 10.1016/j.memsci.2020.117916] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
29
|
Pan F, Li Y, Song Y, Wang M, Zhang Y, Yang H, Wang H, Jiang Z. Graphene oxide membranes with fixed interlayer distance via dual crosslinkers for efficient liquid molecular separations. J Memb Sci 2020. [DOI: 10.1016/j.memsci.2019.117486] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
30
|
Li J, Jing X, Li Q, Li S, Gao X, Feng X, Wang B. Bulk COFs and COF nanosheets for electrochemical energy storage and conversion. Chem Soc Rev 2020; 49:3565-3604. [DOI: 10.1039/d0cs00017e] [Citation(s) in RCA: 314] [Impact Index Per Article: 62.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The current advances, structure-property relationship and future perspectives in covalent organic frameworks (COFs) and their nanosheets for electrochemical energy storage (EES) and conversion (EEC) are summarized.
Collapse
Affiliation(s)
- Jie Li
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials
- Key Laboratory of Cluster Science
- Ministry of Education
- School of Chemistry and Chemical Engineering
- Beijing Institute of Technology
| | - Xuechun Jing
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials
- Key Laboratory of Cluster Science
- Ministry of Education
- School of Chemistry and Chemical Engineering
- Beijing Institute of Technology
| | - Qingqing Li
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials
- Key Laboratory of Cluster Science
- Ministry of Education
- School of Chemistry and Chemical Engineering
- Beijing Institute of Technology
| | - Siwu Li
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials
- Key Laboratory of Cluster Science
- Ministry of Education
- School of Chemistry and Chemical Engineering
- Beijing Institute of Technology
| | - Xing Gao
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials
- Key Laboratory of Cluster Science
- Ministry of Education
- School of Chemistry and Chemical Engineering
- Beijing Institute of Technology
| | - Xiao Feng
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials
- Key Laboratory of Cluster Science
- Ministry of Education
- School of Chemistry and Chemical Engineering
- Beijing Institute of Technology
| | - Bo Wang
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials
- Key Laboratory of Cluster Science
- Ministry of Education
- School of Chemistry and Chemical Engineering
- Beijing Institute of Technology
| |
Collapse
|
31
|
Matrix effect-free on-line pass-through cleanup procedure for the fast determination of local anesthetic drug by LC-MS/MS. J Chromatogr B Analyt Technol Biomed Life Sci 2019; 1130-1131:121831. [DOI: 10.1016/j.jchromb.2019.121831] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 10/08/2019] [Accepted: 10/11/2019] [Indexed: 11/17/2022]
|
32
|
In situ preparation of COF-LZU1 in poly(ether-block-amide) membranes for efficient pervaporation of n-butanol/water mixture. J Memb Sci 2019. [DOI: 10.1016/j.memsci.2019.03.044] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
33
|
Zhang C, Wu BH, Ma MQ, Wang Z, Xu ZK. Ultrathin metal/covalent-organic framework membranes towards ultimate separation. Chem Soc Rev 2019; 48:3811-3841. [PMID: 31179451 DOI: 10.1039/c9cs00322c] [Citation(s) in RCA: 227] [Impact Index Per Article: 37.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Metal/covalent-organic framework (MOF/COF) membranes have attracted increasing research interest and have been considered as state-of-the-art platforms applied in various environment- and energy-related separation/transportation processes. To break the trade-off between permeability and selectivity to achieve ultimate separation, recent studies have been oriented towards how to design and exploit ultrathin MOF/COF membranes (i.e. sub-1 μm-thick). Given great advances made in the past five years, it is valuable to timely and systematically summarize the recent development and shed light on the future trend in this multidisciplinary field. In this review, we first present the advanced strategies in fabricating ultrathin defect-free MOF/COF membranes such as in situ growth, contra-diffusion method, layer-by-layer (LBL) assembly, metal-based precursor as the pre-functionalized layer, interface-assisted strategy, and laminated assembly of MOF/COF nanosheets. Then, the recent progress in some emerging applications of ultrathin MOF/COF membranes beyond gas separation is highlighted, including water treatment and seawater desalination, organic solvent nanofiltration, and energy-related separation/transportation (i.e. lithium ion separation and proton conductivity). Finally, some unsolved scientific and technical challenges associated with future perspectives in this field are discussed, inspiring the development of next-generation separation membranes.
Collapse
Affiliation(s)
- Chao Zhang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China. and Department of Mechanical Engineering, City University of Hong Kong, Hong Kong 999077, China.
| | - Bai-Heng Wu
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China.
| | - Meng-Qi Ma
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China.
| | - Zuankai Wang
- Department of Mechanical Engineering, City University of Hong Kong, Hong Kong 999077, China.
| | - Zhi-Kang Xu
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China.
| |
Collapse
|
34
|
Yuan S, Li X, Zhu J, Zhang G, Van Puyvelde P, Van der Bruggen B. Covalent organic frameworks for membrane separation. Chem Soc Rev 2019; 48:2665-2681. [DOI: 10.1039/c8cs00919h] [Citation(s) in RCA: 455] [Impact Index Per Article: 75.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Covalent organic frameworks (COFs), a new class of crystalline porous materials, comprises periodically extended and covalently bound network structures.
Collapse
Affiliation(s)
- Shushan Yuan
- Institute of Materials Science and Technology
- Analysis and testing centre
- Sichuan University
- Chengdu 610064
- P. R. China
| | - Xin Li
- Department of Chemical Engineering
- KU Leuven
- B-3001 Leuven
- Belgium
| | - Junyong Zhu
- Department of Chemical Engineering
- KU Leuven
- B-3001 Leuven
- Belgium
| | - Gang Zhang
- Institute of Materials Science and Technology
- Analysis and testing centre
- Sichuan University
- Chengdu 610064
- P. R. China
| | | | | |
Collapse
|