1
|
Rizzuti A, Dilonardo E, Cozzolino G, Matera F, Carbone A, Musio B, Mastrorilli P. Optimized Sulfonated Poly(Ether Ether Ketone) Membranes for In-House Produced Small-Sized Vanadium Redox Flow Battery Set-Up. MEMBRANES 2024; 14:176. [PMID: 39195428 DOI: 10.3390/membranes14080176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 08/07/2024] [Accepted: 08/12/2024] [Indexed: 08/29/2024]
Abstract
The ionic exchange membranes represent a core component of redox flow batteries. Their features strongly affect the performance, durability, cost, and efficiency of these energy systems. Herein, the operating conditions of a lab-scale single-cell vanadium flow battery (VRFB) were optimized in terms of membrane physicochemical features and electrolyte composition, as a way to translate such conditions into a large-scale five-cell VRFB stack system. The effects of the sulfonation degree (SD) and the presence of a filler on the performances of sulfonated poly(ether ether ketone) (SPEEK) ion-selective membranes were investigated, using the commercial perfluorosulfonic-acid Nafion 115 membrane as a reference. Furthermore, the effect of a chloride-based electrolyte was evaluated by comparing it to the commonly used standard sulfuric acid electrolyte. Among the investigated membranes, the readily available SPEEK50-0 (SD = 50%; filler = 0%) resulted in it being permeable and selective to vanadium. Improved coulombic efficiency (93.4%) compared to that of Nafion 115 (88.9%) was achieved when SPEEK50-0, in combination with an optimized chloride-based electrolyte, was employed in a single-cell VRFB at a current density of 20 mA·cm-2. The optimized conditions were successfully applied for the construction of a five-cell VRFB stack system, exhibiting a satisfactory coulombic efficiency of 94.5%.
Collapse
Affiliation(s)
- Antonino Rizzuti
- Department of Civil, Environmental, Land, Building and Chemical Engineering (DICATECh), Politecnico di Bari, Via E. Orabona 4, 70125 Bari, BA, Italy
| | - Elena Dilonardo
- Department of Civil, Environmental, Land, Building and Chemical Engineering (DICATECh), Politecnico di Bari, Via E. Orabona 4, 70125 Bari, BA, Italy
- Institute of Nanotechnology, CNR-NANOTEC, Via G. Amendola, 122, 70125 Bari, BA, Italy
| | | | - Fabio Matera
- Institute of Microelectronics and Microsystems, CNR-IMM, Catania HQ, VIII Strada n. 5, 95100 Catania, CT, Italy
| | - Alessandra Carbone
- Institute for Advanced Energy Technologies, CNR-ITAE, Salita S. Lucia Sopra Contesse 5, 98126 Messina, ME, Italy
| | - Biagia Musio
- Department of Civil, Environmental, Land, Building and Chemical Engineering (DICATECh), Politecnico di Bari, Via E. Orabona 4, 70125 Bari, BA, Italy
| | - Piero Mastrorilli
- Department of Civil, Environmental, Land, Building and Chemical Engineering (DICATECh), Politecnico di Bari, Via E. Orabona 4, 70125 Bari, BA, Italy
| |
Collapse
|
2
|
Park EJ, Jannasch P, Miyatake K, Bae C, Noonan K, Fujimoto C, Holdcroft S, Varcoe JR, Henkensmeier D, Guiver MD, Kim YS. Aryl ether-free polymer electrolytes for electrochemical and energy devices. Chem Soc Rev 2024; 53:5704-5780. [PMID: 38666439 DOI: 10.1039/d3cs00186e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2024]
Abstract
Anion exchange polymers (AEPs) play a crucial role in green hydrogen production through anion exchange membrane water electrolysis. The chemical stability of AEPs is paramount for stable system operation in electrolysers and other electrochemical devices. Given the instability of aryl ether-containing AEPs under high pH conditions, recent research has focused on quaternized aryl ether-free variants. The primary goal of this review is to provide a greater depth of knowledge on the synthesis of aryl ether-free AEPs targeted for electrochemical devices. Synthetic pathways that yield polyaromatic AEPs include acid-catalysed polyhydroxyalkylation, metal-promoted coupling reactions, ionene synthesis via nucleophilic substitution, alkylation of polybenzimidazole, and Diels-Alder polymerization. Polyolefinic AEPs are prepared through addition polymerization, ring-opening metathesis, radiation grafting reactions, and anionic polymerization. Discussions cover structure-property-performance relationships of AEPs in fuel cells, redox flow batteries, and water and CO2 electrolysers, along with the current status of scale-up synthesis and commercialization.
Collapse
Affiliation(s)
- Eun Joo Park
- Los Alamos National Laboratory, Los Alamos, NM 87545, USA.
| | | | - Kenji Miyatake
- University of Yamanashi, Kofu 400-8510, Japan
- Waseda University, Tokyo 169-8555, Japan
| | - Chulsung Bae
- Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | - Kevin Noonan
- Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | - Cy Fujimoto
- Sandia National Laboratories, Albuquerque, NM 87123, USA
| | | | | | - Dirk Henkensmeier
- Korea Institute of Science and Technology (KIST), Seoul 02792, South Korea
- KIST School, University of Science and Technology (UST), Seoul 02792, South Korea
- KU-KIST School, Korea University, Seoul 02841, South Korea
| | - Michael D Guiver
- State Key Laboratory of Engines, Tianjin University, Tianjin 300072, China.
| | - Yu Seung Kim
- Los Alamos National Laboratory, Los Alamos, NM 87545, USA.
| |
Collapse
|
3
|
Advancements in Polyelectrolyte Membrane Designs for Vanadium Redox Flow Battery (VRFB). RESULTS IN CHEMISTRY 2023. [DOI: 10.1016/j.rechem.2023.100892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2023] Open
|
4
|
He M, Guan M, Zhan R, Zhou K, Fu H, Wang X, Zhong F, Ding M, Jia C. Two-Dimensional Materials Applied in Membranes of Redox Flow Battery. Chem Asian J 2023; 18:e202201152. [PMID: 36534005 DOI: 10.1002/asia.202201152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 12/14/2022] [Accepted: 12/15/2022] [Indexed: 12/23/2022]
Abstract
Redox flow batteries (RFBs) are one of the most promising techniques to store and convert green and renewable energy, benefiting from their advantages of high safety, flexible design and long lifespan. Membranes with fast and selective ions transport are required for the advances of RFBs. Remarkably, two-dimensional (2D) materials with high mechanical and chemical stability, strict size exclusion and abundantly modifiable functional groups, have attracted extensive attentions in the applications of energy fields. Herein, the improvements and perspectives of 2D materials working for ionic transportation and sieving in RFBs membranes are presented. The characteristics of various materials and their advantages and disadvantages in the applications of RFBs membranes particularly are focused. This review is expected to provide a guidance for the design of membranes based on 2D materials for RFBs.
Collapse
Affiliation(s)
- Murong He
- Institute of Energy Storage Technology, Changsha University of Science & Technology, Changsha, 410114, P. R. China.,College of Materials Science and Engineering, Changsha University of Science & Technology, Changsha, 410114, P. R. China
| | - Minyuan Guan
- Huzhou Power Supply Company of State Grid Zhejiang Electric Power Company Ltd., Huzhou, 313000, P. R. China
| | - Ruifeng Zhan
- Huzhou Power Supply Company of State Grid Zhejiang Electric Power Company Ltd., Huzhou, 313000, P. R. China.,Huzhou Electric Power Design Institute Company Ltd., Huzhou, 313000, P. R. China
| | - Kaiyun Zhou
- Huzhou Power Supply Company of State Grid Zhejiang Electric Power Company Ltd., Huzhou, 313000, P. R. China
| | - Hu Fu
- Institute of Energy Storage Technology, Changsha University of Science & Technology, Changsha, 410114, P. R. China.,College of Materials Science and Engineering, Changsha University of Science & Technology, Changsha, 410114, P. R. China
| | - Xinan Wang
- Institute of Energy Storage Technology, Changsha University of Science & Technology, Changsha, 410114, P. R. China.,College of Materials Science and Engineering, Changsha University of Science & Technology, Changsha, 410114, P. R. China
| | - Fangfang Zhong
- Institute of Energy Storage Technology, Changsha University of Science & Technology, Changsha, 410114, P. R. China.,College of Materials Science and Engineering, Changsha University of Science & Technology, Changsha, 410114, P. R. China
| | - Mei Ding
- Institute of Energy Storage Technology, Changsha University of Science & Technology, Changsha, 410114, P. R. China.,College of Materials Science and Engineering, Changsha University of Science & Technology, Changsha, 410114, P. R. China
| | - Chuankun Jia
- Institute of Energy Storage Technology, Changsha University of Science & Technology, Changsha, 410114, P. R. China.,College of Materials Science and Engineering, Changsha University of Science & Technology, Changsha, 410114, P. R. China
| |
Collapse
|
5
|
Yuan J, Xia Y, Chen X, Zhao Y, Li Y. Recent development in two-dimensional material-based membranes for redox flow battery. Curr Opin Chem Eng 2022. [DOI: 10.1016/j.coche.2022.100856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
6
|
Goel P, E. B, Mandal P, Shahi VK, Bandyopadhyay A, Chattopadhyay S. Di-quaternized graphene oxide based multi-cationic cross-linked monovalent selective anion exchange membrane for electrodialysis. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2021.119361] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
7
|
A Chemistry and Microstructure Perspective on Ion‐Conducting Membranes for Redox Flow Batteries. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202105619] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
8
|
Narducci R, Sgreccia E, Knauth P, Di Vona ML. Anion Exchange Membranes with 1D, 2D and 3D Fillers: A Review. Polymers (Basel) 2021; 13:3887. [PMID: 34833189 PMCID: PMC8622584 DOI: 10.3390/polym13223887] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 11/05/2021] [Accepted: 11/08/2021] [Indexed: 11/30/2022] Open
Abstract
Hydroxide exchange membrane fuel cells (AEMFC) are clean energy conversion devices that are an attractive alternative to the more common proton exchange membrane fuel cells (PEMFCs), because they present, among others, the advantage of not using noble metals like platinum as catalysts for the oxygen reduction reaction. The interest in this technology has increased exponentially over the recent years. Unfortunately, the low durability of anion exchange membranes (AEM) in basic conditions limits their use on a large scale. We present in this review composite AEM with one-dimensional, two-dimensional and three-dimensional fillers, an approach commonly used to enhance the fuel cell performance and stability. The most important filler types, which are discussed in this review, are carbon and titanate nanotubes, graphene and graphene oxide, layered double hydroxides, silica and zirconia nanoparticles. The functionalization of the fillers is the most important key to successful property improvement. The recent progress of mechanical properties, ionic conductivity and FC performances of composite AEM is critically reviewed.
Collapse
Affiliation(s)
- Riccardo Narducci
- Department Industrial Engineering and International Laboratory “Ionomer Materials for Energy”, University of Rome Tor Vergata, I-00133 Rome, Italy; (E.S.); (M.L.D.V.)
| | - Emanuela Sgreccia
- Department Industrial Engineering and International Laboratory “Ionomer Materials for Energy”, University of Rome Tor Vergata, I-00133 Rome, Italy; (E.S.); (M.L.D.V.)
| | - Philippe Knauth
- CNRS, Madirel (UMR 7246) and International Laboratory “Ionomer Materials for Energy”, Aix Marseille University, F-13013 Marseille, France;
| | - Maria Luisa Di Vona
- Department Industrial Engineering and International Laboratory “Ionomer Materials for Energy”, University of Rome Tor Vergata, I-00133 Rome, Italy; (E.S.); (M.L.D.V.)
| |
Collapse
|
9
|
Xiong P, Zhang L, Chen Y, Peng S, Yu G. A Chemistry and Microstructure Perspective on Ion-Conducting Membranes for Redox Flow Batteries. Angew Chem Int Ed Engl 2021; 60:24770-24798. [PMID: 34165884 DOI: 10.1002/anie.202105619] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Indexed: 01/04/2023]
Abstract
Redox flow batteries (RFBs) are among the most promising grid-scale energy storage technologies. However, the development of RFBs with high round-trip efficiency, high rate capability, and long cycle life for practical applications is highly restricted by the lack of appropriate ion-conducting membranes. Promising RFB membranes should separate positive and negative species completely and conduct balancing ions smoothly. Specific systems must meet additional requirements, such as high chemical stability in corrosive electrolytes, good resistance to organic solvents in nonaqueous systems, and excellent mechanical strength and flexibility. These rigorous requirements put high demands on the membrane design, essentially the chemistry and microstructure associated with ion transport channels. In this Review, we summarize the design rationale of recently reported RFB membranes at the molecular level, with an emphasis on new chemistry, novel microstructures, and innovative fabrication strategies. Future challenges and potential research opportunities within this field are also discussed.
Collapse
Affiliation(s)
- Ping Xiong
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Advanced Catalytic Engineer Research Center of the Ministry of Education, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, P. R. China
| | - Leyuan Zhang
- Materials Science and Engineering Program and Department of Mechanical Engineering, The University of Texas at Austin, Austin, TX, USA
| | - Yuyue Chen
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Advanced Catalytic Engineer Research Center of the Ministry of Education, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, P. R. China
| | - Sangshan Peng
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Advanced Catalytic Engineer Research Center of the Ministry of Education, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, P. R. China
| | - Guihua Yu
- Materials Science and Engineering Program and Department of Mechanical Engineering, The University of Texas at Austin, Austin, TX, USA
| |
Collapse
|
10
|
Temperature resistant cross-linked brominated poly phenylene oxide-functionalized graphene oxide nanocomposite anion exchange membrane for desalination. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2020.117730] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
11
|
Liu B, Zhang Y, Jiang Y, Qian P, Shi H. High performance acid-base composite membranes from sulfonated polysulfone containing graphitic carbon nitride nanosheets for vanadium redox flow battery. J Memb Sci 2019. [DOI: 10.1016/j.memsci.2019.117332] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
12
|
Amphoteric Ion Exchange Membranes Prepared by Preirradiation-Induced Emulsion Graft Copolymerization for Vanadium Redox Flow Battery. Polymers (Basel) 2019; 11:polym11091482. [PMID: 31514302 PMCID: PMC6780299 DOI: 10.3390/polym11091482] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 08/28/2019] [Accepted: 09/07/2019] [Indexed: 11/25/2022] Open
Abstract
A series of poly(vinylidene difluoride)-based amphoteric ion exchange membranes (AIEMs) were prepared by preirradiation-induced graft copolymerization of styrene and dimethylaminoethyl methacrylate in an aqueous emulsion media followed by solution casting, sulfonation, and protonation. The effects of absorbed dose and comonomer concentration on grafting yield (GY) were investigated. The highest GY of 44.5% at a low comonomer concentration of 0.9 M could be achieved. FTIR, TGA, and X-ray photoelectron spectroscopy (XPS) confirmed the successful grafting and sulfonation of the as-prepared AIEMs. Properties of the AIEMs such as water uptake, ion exchange capacity (IEC), ionic conductivity, and crossover behavior of VO2+ ions prepared by this novel technique were systematically investigated and compared with those of the commercial Nafion 115 membrane. It was found that at a GY of 28.4%, the AIEMs showed higher IEC and conductivity, lower permeability of VO2+ ions, and a longer time to maintain open circuit voltage than Nafion 115, which was attributed to their high GY and elaborate amphoteric structure. Consequently, this work has paved the way for the development of green and low-cost AIEMs with good performance for vanadium redox flow battery applications.
Collapse
|
13
|
Lai Y, Wan L, Wang B. PVDF/Graphene Composite Nanoporous Membranes for Vanadium Flow Batteries. MEMBRANES 2019; 9:membranes9070089. [PMID: 31331005 PMCID: PMC6680472 DOI: 10.3390/membranes9070089] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 07/16/2019] [Accepted: 07/17/2019] [Indexed: 11/16/2022]
Abstract
The development of chemically stable and high conductive membranes is one of the most important issues to improve the performance of vanadium flow batteries (VFBs). Herein, poly(vinylidene fluoride) (PVDF)/graphene composite nanoporous membranes were easily fabricated by manipulating crystallization processes. The graphene was used to enhance membrane selectivity and conductivity. In the nanoscale channels of the membranes, the graphene nanosheets reduced the apertures among the crystal grains, thus restraining vanadium ions crossover due to the size exclusion effect. Moreover, the oxygen groups on the graphene improved the surface hydrophilicity and formed hydrogen bonds with the PVDF polymer chains, which facilitated the proton transport. The composite membranes, with a 0.15 wt % graphene loading, showed a selectivity of 38.2 and conductivity of 37.1 mS/cm. The single cell exhibited a coulomb efficiency of 94.7%, a voltage efficiency of 88.5%, and an energy efficiency of 83.8%, which was 13% higher than that of the pristine PVDF membranes. The composite membranes showed excellent stability during 100 charge-discharge cycles. All these results indicate that the PVDF/graphene composite membrane is a promising candidate for VFB applications.
Collapse
Affiliation(s)
- Yiming Lai
- The state key laboratory of Chemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| | - Lei Wan
- The state key laboratory of Chemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| | - Baoguo Wang
- The state key laboratory of Chemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China.
| |
Collapse
|