1
|
Li T, Li Y, Mao J. Transition metal supported UiO-67 materials and their applications in catalysis. Front Chem 2025; 13:1596868. [PMID: 40520677 PMCID: PMC12163014 DOI: 10.3389/fchem.2025.1596868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2025] [Accepted: 05/20/2025] [Indexed: 06/18/2025] Open
Abstract
Metal-organic frameworks (MOFs) have emerged as promising platforms for heterogeneous catalysis due to their tunable structures and high specific surface areas. Results indicate that modified composite MOFs not only exhibit superior water stability but also demonstrate broader applicability in catalysis, such as Fenton-like oxidation, Morita-Baylis-Hillman reactions, ethylene dimerization, and various photoelectrochemical processes. Among them, UiO-67, a zirconium-based MOF, has attracted extensive attention for its exceptional chemical stability, high catalytic activity, and well-defined microporous structure. This review introduces composites formed by different types of single and multi-metal loadings on UiO-67 and their demonstrated catalytic performance. It emphasizes the structure-performance relationships of these composites, highlighting how metal loading and spatial distribution influence their reactivity and stability. The current application status and existing challenges of UiO-67 series materials and their derivatives in catalysis are systematically reviewed. By integrating experimental results and mechanistic insights, this work underscores the transformative potential of UiO-67 series materials in meeting the demands of sustainable catalysis.
Collapse
Affiliation(s)
- Tingting Li
- Chongqing Key Laboratory of High Active Traditional Chinese Drug Delivery system, Chongqing Medical and Pharmaceutical College, Chongqing, China
| | - Yan Li
- Chongqing Key Laboratory of High Active Traditional Chinese Drug Delivery system, Chongqing Medical and Pharmaceutical College, Chongqing, China
| | - Jingxin Mao
- Chongqing Key Laboratory of High Active Traditional Chinese Drug Delivery system, Chongqing Medical and Pharmaceutical College, Chongqing, China
- College of Pharmaceutical Sciences, Southwest University, Chongqing, China
| |
Collapse
|
2
|
Bautista-Cano KI, Hinojosa-Reyes L, Ruiz-Ruiz EJ, Díaz Barriga-Castro E, Guzmán-Mar JL, Hernández-Ramírez A. Efficient photocatalytic activity and selective adsorption of UiO-67 (Zr)/g-C 3N 4 composite toward a mixture of parabens. ENVIRONMENTAL RESEARCH 2024; 258:119477. [PMID: 38909943 DOI: 10.1016/j.envres.2024.119477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 06/10/2024] [Accepted: 06/20/2024] [Indexed: 06/25/2024]
Abstract
In this study, UiO-67 (Zr)/g-C3N4 composites (U67N) were synthesized at wt.% ratios of 05:95, 15:85, and 30:70 using the solvothermal method at 80 °C for 24 h followed by calcination at 350 °C. The composites were characterized using UV-Vis diffuse reflectance spectroscopy, Fourier-transform infrared spectroscopy, photoluminescence spectroscopy, X-ray photoelectron spectroscopy, X-ray diffraction, scanning electron microscopy-energy-dispersive X-ray spectroscopy, transmission electron microscopy, and nitrogen physisorption analysis. In addition, thermal stability analysis of UiO-67 was conducted using thermogravimetric analysis. The photocatalytic performance of the composites was assessed during the degradation and mineralization of a mixture of methylparaben (MeP) and propylparaben (PrP) under simulated sunlight. The adsorption process of U67N 15:85 was characterized through kinetic studies and adsorption capacity experiments, which were modeled using pseudo-first-order and pseudo-second-order kinetics and Langmuir and Freundlich isotherms, respectively. The influence of pH levels 3, 5, and 7 on the photocatalytic degradation of the mixture was investigated, revealing enhanced degradation and mineralization at pH 3. The U67N composite exhibited dual capability in removing contaminants through adsorption and photocatalytic processes. Among the prepared composites, U67N 15:85 demonstrated the highest photocatalytic activity, achieving removal efficiencies of 96.8% for MeP, 92.5% for PrP, and 45.7% for total organic carbon in 300 kJ/m2 accumulated energy (3 h of reaction time). The detoxification of the effluent was confirmed through acute toxicity evaluation using the Vibrio fischeri method. The oxidation mechanism of the heterojunction formed between UiO-67 (Zr) and g-C3N4 was proposed based on PL analysis, photoelectrochemistry studies (including photocurrent response, Nyquist, and Mott-Schottky analyses), and scavenger assays.
Collapse
Affiliation(s)
- K I Bautista-Cano
- Universidad Autónoma de Nuevo León (UANL), Facultad de Ciencias Químicas, Ave. Universidad s/n, Cd. Universitaria, 66455, San Nicolás de los Garza, N.L., Mexico
| | - L Hinojosa-Reyes
- Universidad Autónoma de Nuevo León (UANL), Facultad de Ciencias Químicas, Ave. Universidad s/n, Cd. Universitaria, 66455, San Nicolás de los Garza, N.L., Mexico.
| | - E J Ruiz-Ruiz
- Universidad Autónoma de Nuevo León (UANL), Facultad de Ciencias Químicas, Ave. Universidad s/n, Cd. Universitaria, 66455, San Nicolás de los Garza, N.L., Mexico
| | - E Díaz Barriga-Castro
- Centro de Investigación en Química Aplicada (CIQA), Blvd. Enrique Reyna Hermosillo No. 140, 25294, Saltillo, Coahuila, Mexico
| | - J L Guzmán-Mar
- Universidad Autónoma de Nuevo León (UANL), Facultad de Ciencias Químicas, Ave. Universidad s/n, Cd. Universitaria, 66455, San Nicolás de los Garza, N.L., Mexico
| | - A Hernández-Ramírez
- Universidad Autónoma de Nuevo León (UANL), Facultad de Ciencias Químicas, Ave. Universidad s/n, Cd. Universitaria, 66455, San Nicolás de los Garza, N.L., Mexico
| |
Collapse
|
3
|
Soleimani R, Saeedi Dehaghani AH. A theoretical probe into the separation of CO 2/CH 4/N 2 mixtures with polysulfone/polydimethylsiloxane-nano zinc oxide MMM. Sci Rep 2023; 13:9543. [PMID: 37308483 DOI: 10.1038/s41598-023-36051-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 05/28/2023] [Indexed: 06/14/2023] Open
Abstract
In the current investigation, molecular dynamics (MD) and Grand Canonical Monte Carlo (GCMC) simulation as remarkable and competent approaches have been employed for understanding structural and transport properties of MMMs in the realm of gas separation. The two commonly used polymers i.e. polysulfone (Psf) and polydimethylsiloxane (PDMS) as well as zinc oxide (ZnO) nanoparticle (NP) were used to carefully examine the transport properties of three light gasses (CO2, N2 and CH4) through simple Psf, Psf/PDMS composite loaded by different amounts of ZnO NP. Also, the fractional free volume (FFV), X-ray diffraction (XRD), glass transition temperature (Tg), and Equilibrium density were calculated to scrutinize the structural characterizations of the membranes. Moreover, the effect of feed pressure (4-16 bar) on gas separation performance of simulated MMMs was investigated. Results obtained in different experiments showed a clear improvement in the performance of simulated membranes by adding PDMS to PSf matrix. The selectivity of studied MMMs was in the range from 50.91 to 63.05 at pressures varying from 4 to 16 bar for the CO2/N2 gas pair, whereas the corresponding value for CO2/CH4 system was found to be in the range 27.27-46.24. For 6 wt% ZnO in 80%PSf + 20%PDMS membrane, high permeabilities of 78.02, 2.86 and 1.33 barrers were observed for CO2, CH4 and N2 gases, respectively. The 90%PSf + 10%PDMS membrane with 2% ZnO had a highest CO2/N2 selectivity value of 63.05 and its CO2 permeability at 8 bar was 57 barrer.
Collapse
Affiliation(s)
- Reza Soleimani
- Faculty of Chemical Engineering, Tarbiat Modares University, P.O. Box 14115-143, Tehran, Iran
| | - Amir Hossein Saeedi Dehaghani
- Department of Petroleum Engineering, Faculty of Chemical Engineering, Tarbiat Modares University, P.O. Box 14115-143, Tehran, Iran.
| |
Collapse
|
4
|
Gumbo M, Makhubela BCE, Mehlana G. Two novel metal-organic frameworks functionalised with pentamethylcyclopentadienyl iridium(III) chloride for catalytic conversion of carbon dioxide to formate. Dalton Trans 2023; 52:6501-6514. [PMID: 37097114 DOI: 10.1039/d3dt00635b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2023]
Abstract
Hydrogenation of CO2 to formate is a vital reaction, because formate is an excellent hydrogen carrier, which yields blue hydrogen. Blue hydrogen is comparatively cheaper and attractive as the world envisions the hydrogen economy. In this work, two isostructural lanthanide-based MOFs (JMS-6 and JMS-7 [Ln(bpdc)3/2(dmf)2(H2O)2]n) were prepared and used as support materials for molecular catalysts. The bipyridyl MOF backbone were functionalised using pentamethylcyclopentadienyl iridium(III) chloride to give Ir(III)@JMS-6a and Ir(III)@JMS-7a. XPS of the functionalised MOFs show downfield shifts in the N 1s binding energy indicating successful grafting of the complex to the MOF. Hydrogenation experiments in the presence of an organic base showed that the functionalised MOFs were active towards converting CO2 to formate. Ir(III)@JMS-6a and Ir(III)@JMS-7a exhibited the highest turnover numbers of 813 and 621 respectively. ICP-OES indicated insignificant leaching during catalysis. TEM images and XPS data of the recovered catalyst ruled out the presence of Ir(0), confirming that the activity observed was attributed to the molecular Iridium(III) centres.
Collapse
Affiliation(s)
- Maureen Gumbo
- Department of Chemical Sciences, Faculty of Science and Technology, Midlands State University, Private Bag 9055, Senga Road, Gweru, Zimbabwe.
- Research Centre for Synthesis and Catalysis, Department of Chemical Sciences, University of Johannesburg, Auckland Park, Kingsway Campus, 2006, South Africa
| | - Banothile C E Makhubela
- Research Centre for Synthesis and Catalysis, Department of Chemical Sciences, University of Johannesburg, Auckland Park, Kingsway Campus, 2006, South Africa
| | - Gift Mehlana
- Department of Chemical Sciences, Faculty of Science and Technology, Midlands State University, Private Bag 9055, Senga Road, Gweru, Zimbabwe.
| |
Collapse
|
5
|
Anwar MI, Asad M, Ma L, Zhang W, Abbas A, Khan MY, Zeeshan M, Khatoon A, Gao R, Manzoor S, Naeem Ashiq M, Hussain S, Shahid M, Yang G. Nitrogenous MOFs and their composites as high-performance electrode material for supercapacitors: Recent advances and perspectives. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2022.214967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
6
|
Habib N, Durak Ö, Uzun A, Keskin S. Incorporation of a pyrrolidinium-based ionic liquid/MIL-101(Cr) composite into Pebax sets a new benchmark for CO2/N2 selectivity. Sep Purif Technol 2023. [DOI: 10.1016/j.seppur.2023.123346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
7
|
Regulating the pore engineering of MOFs by the confined dissolving of PSA template to improve CO2 capture. J Memb Sci 2023. [DOI: 10.1016/j.memsci.2023.121373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
8
|
Kang M, Kim TH, Han HH, Min HJ, Bae YS, Kim JH. Submicron-thick, mixed-matrix membranes with metal-organic frameworks for CO2 separation: MIL-140C vs. UiO-67. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.120788] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
9
|
Habib N, Durak O, Zeeshan M, Uzun A, Keskin S. A novel IL/MOF/polymer mixed matrix membrane having superior CO2/N2 selectivity. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.120712] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
10
|
Wang X, Zhang Y, Chen X, Wang Y, He M, Shan Y, Li Y, Zhang F, Chen X, Kita H. Preparation of Pebax 1657/MAF-7 Mixed Matrix Membranes with Enhanced CO 2/N 2 Separation by Active Site of Triazole Ligand. MEMBRANES 2022; 12:786. [PMID: 36005701 PMCID: PMC9412359 DOI: 10.3390/membranes12080786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Revised: 08/07/2022] [Accepted: 08/12/2022] [Indexed: 06/15/2023]
Abstract
Fillers play a critical role in the performance of mixed matrix membranes (MMMs). Microporous metal azolate frameworks (MAFs) are a subclass material of metal-organic frameworks (MOFs). Due to the uncoordinated nitrogen of the organic ligands, MAF-7 (SOD-[Zn(mtz)2], Hmtz = 3-methyl-1,2,4-triazole, window: d = 0.34 nm) shows excellent CO2 adsorption performance. In this work, Pebax 1657/MAF-7 MMMs were prepared by a sample solution casting method with MAF-7 particles as fillers for the first time. By means of X-ray diffraction (XRD), scanning electron microscope (SEM), infrared radiation (IR), and thermogravimetry (TG), the compositional and structural properties of the mixed matrix membrane with different filler content were analyzed. The results show that the compatibility of MAF-7 and Pebax is good with a filler content of 5 wt.%. The pure gas testing showed that mixed matrix membrane has a high ideal CO2/N2 selectivity of 124.84 together with a better CO2 permeability of 76.15 Barrer with the optimized filler content of 5 wt.%. The obtained membrane showed 323.04% enhancement in selectivity of CO2/N2 and 27.74% increase in the permeability of CO2 compared to the pristine membrane at 25 °C and 3 bar. The excellent separation performance may be due to the ligands that can afford a Lewis base active site for CO2 binding with the uniform dispersion of MAF-7 particles in Pebax and the favorable interface compatibility. The obtained membrane overcomes the Robeson's upper bound in 2008 for CO2/N2 separation. This work provides a new strategy by utilizing MAFs as fillers with triazole ligand to enhance the gas separation performance of mixed matrix membranes.
Collapse
Affiliation(s)
- Xingqian Wang
- State-Province Joint Engineering Laboratory of Zeolite Membrane Materials, Institute of Advanced Materials (IAM), College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, China
| | - Yuping Zhang
- State-Province Joint Engineering Laboratory of Zeolite Membrane Materials, Institute of Advanced Materials (IAM), College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, China
| | - Xinwei Chen
- The Attached Middle School to Jiangxi Normal University, Nanchang 330031, China
| | - Yifei Wang
- State-Province Joint Engineering Laboratory of Zeolite Membrane Materials, Institute of Advanced Materials (IAM), College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, China
| | - Mingliang He
- State-Province Joint Engineering Laboratory of Zeolite Membrane Materials, Institute of Advanced Materials (IAM), College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, China
| | - Yongjiang Shan
- State-Province Joint Engineering Laboratory of Zeolite Membrane Materials, Institute of Advanced Materials (IAM), College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, China
| | - Yuqin Li
- State-Province Joint Engineering Laboratory of Zeolite Membrane Materials, Institute of Advanced Materials (IAM), College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, China
| | - Fei Zhang
- State-Province Joint Engineering Laboratory of Zeolite Membrane Materials, Institute of Advanced Materials (IAM), College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, China
| | - Xiangshu Chen
- State-Province Joint Engineering Laboratory of Zeolite Membrane Materials, Institute of Advanced Materials (IAM), College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, China
| | - Hidetoshi Kita
- Environmental Science and Engineering, Graduate School of Science and Engineering, Yamaguchi University, Ube 755-8611, Japan
| |
Collapse
|
11
|
Fe-complex modified cellulose acetate composite membrane with excellent photo-Fenton catalytic activity. Carbohydr Polym 2022; 296:119960. [DOI: 10.1016/j.carbpol.2022.119960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 08/02/2022] [Accepted: 08/03/2022] [Indexed: 11/23/2022]
|
12
|
Mixed matrix membrane development progress and prospect of using 2D nanosheet filler for CO2 separation and capture. J CO2 UTIL 2022. [DOI: 10.1016/j.jcou.2022.102094] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
13
|
Imtiaz A, Othman MHD, Jilani A, Khan IU, Kamaludin R, Iqbal J, Al-Sehemi AG. Challenges, Opportunities and Future Directions of Membrane Technology for Natural Gas Purification: A Critical Review. MEMBRANES 2022; 12:membranes12070646. [PMID: 35877848 PMCID: PMC9321681 DOI: 10.3390/membranes12070646] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Revised: 06/01/2022] [Accepted: 06/09/2022] [Indexed: 12/03/2022]
Abstract
Natural gas is an important and fast-growing energy resource in the world and its purification is important in order to reduce environmental hazards and to meet the required quality standards set down by notable pipeline transmission, as well as distribution companies. Therefore, membrane technology has received great attention as it is considered an attractive option for the purification of natural gas in order to remove impurities such as carbon dioxide (CO2) and hydrogen sulphide (H2S) to meet the usage and transportation requirements. It is also recognized as an appealing alternative to other natural gas purification technologies such as adsorption and cryogenic processes due to its low cost, low energy requirement, easy membrane fabrication process and less requirement for supervision. During the past few decades, membrane-based gas separation technology employing hollow fibers (HF) has emerged as a leading technology and underwent rapid growth. Moreover, hollow fiber (HF) membranes have many advantages including high specific surface area, fewer requirements for maintenance and pre-treatment. However, applications of hollow fiber membranes are sometimes restricted by problems related to their low tensile strength as they are likely to get damaged in high-pressure applications. In this context, braid reinforced hollow fiber membranes offer a solution to this problem and can enhance the mechanical strength and lifespan of hollow fiber membranes. The present review includes a discussion about different materials used to fabricate gas separation membranes such as inorganic, organic and mixed matrix membranes (MMM). This review also includes a discussion about braid reinforced hollow fiber (BRHF) membranes and their ability to be used in natural gas purification as they can tackle high feed pressure and aggressive feeds without getting damaged or broken. A BRHF membrane possesses high tensile strength as compared to a self-supported membrane and if there is good interfacial bonding between the braid and the separation layer, high tensile strength, i.e., upto 170Mpa can be achieved, and due to these factors, it is expected that BRHF membranes could give promising results when used for the purification of natural gas.
Collapse
Affiliation(s)
- Aniqa Imtiaz
- Advanced Membrane Technology Research Centre, Universiti Teknologi Malaysia, Johor Bahru 81310 UTM, Johor, Malaysia; (A.I.); (R.K.)
- School of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, Johor Bahru 81310 UTM, Johor, Malaysia
| | - Mohd Hafiz Dzarfan Othman
- Advanced Membrane Technology Research Centre, Universiti Teknologi Malaysia, Johor Bahru 81310 UTM, Johor, Malaysia; (A.I.); (R.K.)
- School of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, Johor Bahru 81310 UTM, Johor, Malaysia
- Correspondence: (M.H.D.O.); or (A.J.)
| | - Asim Jilani
- Centre of Nanotechnology, King Abdul-Aziz University, Jeddah 21589, Saudi Arabia;
- Correspondence: (M.H.D.O.); or (A.J.)
| | - Imran Ullah Khan
- Department of Chemical and Energy Engineering, Pak-Austria Fachhochshule, Institute of Applied Sciences & Technology, Khanpur Road, Mang, Haripur 22650, Pakistan;
| | - Roziana Kamaludin
- Advanced Membrane Technology Research Centre, Universiti Teknologi Malaysia, Johor Bahru 81310 UTM, Johor, Malaysia; (A.I.); (R.K.)
- School of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, Johor Bahru 81310 UTM, Johor, Malaysia
| | - Javed Iqbal
- Centre of Nanotechnology, King Abdul-Aziz University, Jeddah 21589, Saudi Arabia;
| | - Abdullah G. Al-Sehemi
- Research Center for Advanced Materials Science (RCAMS), King Khalid University, P.O. Box 9004, Abha 61413, Saudi Arabia;
- Department of Chemistry, College of Science, King Khalid University, P.O. Box 9004, Abha 61413, Saudi Arabia
| |
Collapse
|
14
|
Pan MM, Ouyang Y, Song YL, Si LQ, Jiang M, Yu X, Xu L, Willner I. Au 3+ -Functionalized UiO-67 Metal-Organic Framework Nanoparticles: O 2•- and •OH Generating Nanozymes and Their Antibacterial Functions. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2200548. [PMID: 35460191 DOI: 10.1002/smll.202200548] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 03/03/2022] [Indexed: 06/14/2023]
Abstract
The synthesis and characterization of Au3+ -modified UiO-67 metal-organic framework nanoparticles, Au3+ -NMOFs, are described. The Au3+ -NMOFs reveal dual oxidase-like and peroxidase-like activities and act as an active catalyst for the catalyzed generation of O2•- under aerobic conditions or •OH in the presence of H2 O2 . The two reactive oxygen species (ROS) agents O2•- and •OH are cooperatively formed by Au3+ -NMOFs under aerobic conditions, and in the presence of H2 O2. The Au3+ -NMOFs are applied as an effective catalyst for the generation ROS agents for antibacterial and wound healing applications. Effective antibacterial cell death and inhibition of cell proliferation of Staphylococcus aureus (S. aureus) and Escherichia coli (E. coli) bacterial colonies are demonstrated in the presence of the Au3+ -NMOFs. In addition, in vivo experiments demonstrate effective wound healing of mice wounds infected by S. aureus, treated by the Au3+ -NMOFs.
Collapse
Affiliation(s)
- Meng-Meng Pan
- Tongji School of Pharmacy, Huazhong University of Science and Technology, Wuhan, 430030, P. R. China
| | - Yu Ouyang
- Institute of Chemistry, The Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Jerusalem, 91904, Israel
| | - Yong-Li Song
- Tongji School of Pharmacy, Huazhong University of Science and Technology, Wuhan, 430030, P. R. China
| | - Lu-Qin Si
- Tongji School of Pharmacy, Huazhong University of Science and Technology, Wuhan, 430030, P. R. China
| | - Ming Jiang
- Tongji School of Pharmacy, Huazhong University of Science and Technology, Wuhan, 430030, P. R. China
| | - Xu Yu
- Tongji School of Pharmacy, Huazhong University of Science and Technology, Wuhan, 430030, P. R. China
| | - Li Xu
- Tongji School of Pharmacy, Huazhong University of Science and Technology, Wuhan, 430030, P. R. China
| | - Itamar Willner
- Institute of Chemistry, The Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Jerusalem, 91904, Israel
| |
Collapse
|
15
|
Morphology Effect of Zinc Oxide Nanoparticles on the Gas Separation Performance of Polyurethane Mixed Matrix Membranes for CO2 Recovery from CH4, O2, and N2. MEMBRANES 2022; 12:membranes12060577. [PMID: 35736291 PMCID: PMC9230613 DOI: 10.3390/membranes12060577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 05/28/2022] [Accepted: 05/29/2022] [Indexed: 11/17/2022]
Abstract
The effect of the morphology and content of zinc oxide nanoparticles (ZnO-NPs) on the physicochemical, mechanical, and gas transport properties of the polyurethane (PU) mixed matrix membranes (MMMs) with respect to CO2 recovery from CH4, O2, and N2 was studied. The MMMs based on PU with spherical and rod-shaped ZnO-NPs at various loadings, namely, 0.05, 0.1, 0.5, 1, and 2 wt. %, were prepared with membrane density control and studied using AFM, wettability measurements, surface free energy calculation, gas separation and mechanical testing. To evaluate the resistance of the ZnO-NPs to agglomeration in the polymer solutions, zeta potential was determined. The ZnO-NPs with average cross sectional size of 30 nm were obtained by plasma-enhanced chemical vapor deposition (PECVD) from elemental high-purity zinc in a zinc-oxygen-hydrogen plasma-forming gas mixture. It was established that the spherical ZnO-NPs are promising to improve the gas performance of PU-based MMMs for CO2 recovery from natural gas, while the rod-shaped NPs better demonstrate their potential in capturing CO2 in flue gases.
Collapse
|
16
|
Goh SH, Lau HS, Yong WF. Metal-Organic Frameworks (MOFs)-Based Mixed Matrix Membranes (MMMs) for Gas Separation: A Review on Advanced Materials in Harsh Environmental Applications. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2107536. [PMID: 35224843 DOI: 10.1002/smll.202107536] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Revised: 01/27/2022] [Indexed: 06/14/2023]
Abstract
The booming of global environmental awareness has driven the scientific community to search for alternative sustainable approaches. This is accentuated in the 13th sustainable development goal (SDG13), climate action, where urgent efforts are salient in combating the drastic effects of climate change. Membrane separation is one of the indispensable gas purification technologies that effectively reduces the carbon footprint and is energy-efficient for large-scale integration. Metal-organic frameworks (MOFs) are recognized as promising fillers embedded in mixed matrix membranes (MMMs) to enhance gas separation performance. Tremendous research studies on MOFs-based MMMs have been conducted. Herein, this review offers a critical summary of the MOFs-based MMMs developed in the past 3 years. The basic models to estimate gas transport, preparation methods, and challenges in developing MMMs are discussed. Subsequently, the application and separation performance of a variety of MOFs-based MMMs including those of advanced MOFs materials are summarized. To accommodate industrial needs and resolve commercialization hurdles, the latest exploration of MOF materials for a harsh operating condition is emphasized. Along with the contemplation on the outlook, future perspective, and opportunities of MMMs, it is anticipated that this review will serve as a stepping stone for the coming MMMs research on sustainable and benign environmental application.
Collapse
Affiliation(s)
- Shu Hua Goh
- School of Energy and Chemical Engineering, Xiamen University Malaysia, Selangor Darul Ehsan, 43900, Malaysia
| | - Hui Shen Lau
- School of Energy and Chemical Engineering, Xiamen University Malaysia, Selangor Darul Ehsan, 43900, Malaysia
| | - Wai Fen Yong
- School of Energy and Chemical Engineering, Xiamen University Malaysia, Selangor Darul Ehsan, 43900, Malaysia
- College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian, 361005, China
| |
Collapse
|
17
|
Kulak H, Thür R, Vankelecom IFJ. MOF/Polymer Mixed-Matrix Membranes Preparation: Effect of Main Synthesis Parameters on CO 2/CH 4 Separation Performance. MEMBRANES 2022; 12:membranes12040425. [PMID: 35448395 PMCID: PMC9026548 DOI: 10.3390/membranes12040425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 04/11/2022] [Accepted: 04/11/2022] [Indexed: 12/10/2022]
Abstract
Design and preparation of mixed-matrix membranes (MMMs) with minimum defects and high performance for desired gas separations is still challenging as it depends on a variety of MMM synthesis parameters. In this study, 6FDA-DAM:DABA based MMMs using MOF-808 as filler were prepared to examine the impact of multiple variables on the preparation process of MMMs, including variation in polymer concentration, filler loading, volume of solution cast per membrane area, solvent type used and solvent evaporation rate, and to identify their impact on the CO2/CH4 separation performance of these membranes. Solvent evaporation rate proved to be the most critical synthesis parameter, directly influencing the performance and visual appearance of the membranes. Although less dominantly influencing the MMM performance, polymer concentration and solution volume also had an important role via control over the casting solution viscosity, particle agglomeration, and particle settling rate. Among all solvents studied, MMMs prepared with chloroform led to the best performance for this polymer-filler system. Chloroform-based MMMs containing 10 and 30 wt.% MOF-808 showed 73% and 62% increase in CO2 permeability, respectively, without a decrease in separation factor compared to unfilled membranes. The results indicate that enhanced gas separation performance of MMMs strongly depends on the cumulative effect of various synthesis parameters rather than individual impact, thus requiring a system-specific design and optimization.
Collapse
|
18
|
Li W, Peng L, Li Y, Chen Z, Duan C, Yan S, Yuan B. Hyper cross‐linked polymers containing amino group functionalized polyimide mixed matrix membranes for gas separation. J Appl Polym Sci 2022. [DOI: 10.1002/app.52171] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Weixin Li
- School of Chemical Engineering and Technology Hebei University of Technology Tianjin China
| | - Longfei Peng
- School of Chemical Engineering and Technology Hebei University of Technology Tianjin China
| | - Yinhui Li
- School of Chemical Engineering and Technology Hebei University of Technology Tianjin China
| | - Zan Chen
- Key Laboratory of Membrane and Membrane Process China National Offshore Oil Corporation Tianjin Chemical Research & Design Institute Tianjin China
| | - Cuijia Duan
- Key Laboratory of Membrane and Membrane Process China National Offshore Oil Corporation Tianjin Chemical Research & Design Institute Tianjin China
| | - Shuo Yan
- Key Laboratory of Membrane and Membrane Process China National Offshore Oil Corporation Tianjin Chemical Research & Design Institute Tianjin China
| | - Biao Yuan
- Key Laboratory of Membrane and Membrane Process China National Offshore Oil Corporation Tianjin Chemical Research & Design Institute Tianjin China
| |
Collapse
|
19
|
Mg2(dobdc) crystals adhere to Matrimid matrix membranes bridged by diethylenetriamine (DETA) as an adhesion agent for efficient CO2 separation. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2021.119635] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
20
|
Ahmadipouya S, Ahmadijokani F, Molavi H, Rezakazemi M, Arjmand M. CO2/CH4 separation by mixed-matrix membranes holding functionalized NH2-MIL-101(Al) nanoparticles: Effect of amino-silane functionalization. Chem Eng Res Des 2021. [DOI: 10.1016/j.cherd.2021.09.011] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
21
|
|
22
|
Kong L, Li Z, Zhang H, Zhang M, Zhu J, Deng M, Chen Z, Ling Y, Zhou Y. Ultrafine Fe-modulated Ni nanoparticles embedded within nitrogen-doped carbon from Zr-MOFs-confined conversion for efficient oxygen evolution reaction. Front Chem Sci Eng 2021. [DOI: 10.1007/s11705-021-2087-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
23
|
van Essen M, van den Akker L, Thür R, Houben M, Vankelecom IF, Borneman Z, Nijmeijer K. The influence of pore aperture, volume and functionality of isoreticular gmelinite zeolitic imidazolate frameworks on the mixed gas CO2/N2 and CO2/CH4 separation performance in mixed matrix membranes. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2020.118103] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
24
|
Wang X, Sun W, Tian Y, Dang K, Zhang Q, Shen Z, Zhan S. Conjugated π Electrons of MOFs Drive Charge Separation at Heterostructures Interface for Enhanced Photoelectrochemical Water Oxidation. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2100367. [PMID: 33690986 DOI: 10.1002/smll.202100367] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Indexed: 06/12/2023]
Abstract
Photoanode material with high efficiency and stability is extensively desirable in photoelectrochemical (PEC) water splitting for green/renewable energy source. Herein, novel heterostructures is constructed via coating rutile TiO2 nanorods with metal organic framework (MOF) materials UiO-66 or UiO-67 (UiO-66@TiO2 and UiO-67@TiO2 ), respectively. The π electrons in the MOF linkers could increase the local electronegativity near the heterojunction interface due to the conjugation effect, thereby enhancing the internal electric field (IEF) at the heterojunction interface. The IEF could drive charge transfer following Z-scheme mechanism in the prepared heterostructures, inducing photogenerated charge separation efficiency increasing as 156% and 253% for the UiO-66@TiO2 and UiO-67@TiO2 , respectively. Correspondingly, the UiO-66@TiO2 and UiO-67@TiO2 enhanced the photocurrent density as approximate two- and threefolds compared with that of pristine TiO2 for PEC water oxidation in universal pH electrolytes. This work demonstrates an effective method of regulating the IEF of heterojunction toward further improved charge separation.
Collapse
Affiliation(s)
- Xuewei Wang
- Department of Chemistry, Analytical Instruments Center, Beijing Key Laboratory for Optical Materials and Photonic Devices, Capital Normal University, 105 North Road of Western Third Ring, Haidian District, Beijing, 100048, P. R. China
| | - Wenming Sun
- College of Science, China Agricultural University, Beijing, 100193, P. R. China
| | - Yang Tian
- Department of Chemistry, Analytical Instruments Center, Beijing Key Laboratory for Optical Materials and Photonic Devices, Capital Normal University, 105 North Road of Western Third Ring, Haidian District, Beijing, 100048, P. R. China
| | - Kun Dang
- Department of Chemistry, Analytical Instruments Center, Beijing Key Laboratory for Optical Materials and Photonic Devices, Capital Normal University, 105 North Road of Western Third Ring, Haidian District, Beijing, 100048, P. R. China
| | - Qimeng Zhang
- Department of Chemistry, Analytical Instruments Center, Beijing Key Laboratory for Optical Materials and Photonic Devices, Capital Normal University, 105 North Road of Western Third Ring, Haidian District, Beijing, 100048, P. R. China
| | - Zhurui Shen
- School of Materials Science and Engineering, Nankai University, Tianjin, 300350, P. R. China
| | - Sihui Zhan
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, P. R. China
| |
Collapse
|
25
|
Introducing two-dimensional metal-organic frameworks with axial coordination anion into Pebax for CO2/CH4 separation. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2020.118107] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
26
|
Taghizadeh M, Taghizadeh A, Vatanpour V, Ganjali MR, Saeb MR. Deep eutectic solvents in membrane science and technology: Fundamental, preparation, application, and future perspective. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2020.118015] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
27
|
Liu N, Cheng J, Hou W, Yang X, Zhou J. Pebax‐based mixed matrix membranes loaded with graphene oxide/core shell
ZIF
‐8@
ZIF
‐67 nanocomposites improved
CO
2
permeability and selectivity. J Appl Polym Sci 2021. [DOI: 10.1002/app.50553] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Niu Liu
- State Key Laboratory of Clean Energy Utilization Zhejiang University Hangzhou China
| | - Jun Cheng
- State Key Laboratory of Clean Energy Utilization Zhejiang University Hangzhou China
| | - Wen Hou
- State Key Laboratory of Clean Energy Utilization Zhejiang University Hangzhou China
| | - Xiao Yang
- State Key Laboratory of Clean Energy Utilization Zhejiang University Hangzhou China
| | - Junhu Zhou
- State Key Laboratory of Clean Energy Utilization Zhejiang University Hangzhou China
| |
Collapse
|
28
|
McMillan AH, Mora‐Macías J, Teyssandier J, Thür R, Roy E, Ochoa I, De Feyter S, Vankelecom IFJ, Roeffaers MBJ, Lesher‐Pérez SC. Self‐sealing thermoplastic fluoroelastomer enables rapid fabrication of modular microreactors. NANO SELECT 2021. [DOI: 10.1002/nano.202000241] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Affiliation(s)
- Alexander H. McMillan
- Elvesys Microfluidics Innovation Center Paris France
- Department of Microbial and Molecular Systems Centre for Membrane Separations Adsorption, Catalysis and Spectroscopy for Sustainable Solutions (cMACS) KU Leuven Leuven Belgium
| | - Juan Mora‐Macías
- Department of Mining, Mechanical, Energy and Construction Engineering University of Huelva Huelva Spain
| | - Joan Teyssandier
- Division of Molecular Imaging and Photonics, Department of Chemistry KU Leuven Leuven Belgium
| | - Raymond Thür
- Department of Microbial and Molecular Systems Centre for Membrane Separations Adsorption, Catalysis and Spectroscopy for Sustainable Solutions (cMACS) KU Leuven Leuven Belgium
| | | | - Ignacio Ochoa
- Tissue Microenvironment Lab (TME) Aragón Institute of Engineering Research (I3A Institute for Health Research Aragon (IIS Aragón Biomedical Research Networking Center in Bioengineering Biomaterials and Nanomedicine (CIBER‐BBN) University of Zaragoza Zaragoza Spain
| | - Steven De Feyter
- Division of Molecular Imaging and Photonics, Department of Chemistry KU Leuven Leuven Belgium
| | - Ivo F. J. Vankelecom
- Department of Microbial and Molecular Systems Centre for Membrane Separations Adsorption, Catalysis and Spectroscopy for Sustainable Solutions (cMACS) KU Leuven Leuven Belgium
| | - Maarten B. J. Roeffaers
- Department of Microbial and Molecular Systems Centre for Membrane Separations Adsorption, Catalysis and Spectroscopy for Sustainable Solutions (cMACS) KU Leuven Leuven Belgium
| | | |
Collapse
|
29
|
Yuan Y, Qiao Z, Xu J, Wang J, Zhao S, Cao X, Wang Z, Guiver MD. Mixed matrix membranes for CO2 separations by incorporating microporous polymer framework fillers with amine-rich nanochannels. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2020.118923] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
30
|
Shahid S, Baron GV, Denayer JF, Martens JA, Wee LH, Vankelecom IF. Hierarchical ZIF-8 composite membranes: Enhancing gas separation performance by exploiting molecular dynamics in hierarchical hybrid materials. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2020.118943] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
31
|
Effects of Fe(II)/Fe(III) of Fe-MOFs on catalytic performance in plasma/Fenton-like system. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2020.125745] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
32
|
Xin Q, Shao W, Ma Q, Ye X, Huang Z, Li B, Wang S, Li H, Zhang Y. Efficient CO 2 Separation of Multi-Permselective Mixed Matrix Membranes with a Unique Interfacial Structure Regulated by Mesoporous Nanosheets. ACS APPLIED MATERIALS & INTERFACES 2020; 12:48067-48076. [PMID: 32969215 DOI: 10.1021/acsami.0c10895] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
A facile strategy to elevate gas separation performances of polymers is to introduce a versatile particle. In this study, the novel F-Ce nanosheets are synthesized, and then F-Ce is functionalized with 1-ethyl-3-methylimidazole thiocyanate (ionic liquids, ILs), obtaining multifunctional f-F-Ce nanosheets by the facile and environment-friendly methods. The multifunctional f-F-Ce nanosheets are incorporated into the Pebax (Pebax 1657) matrix to fabricate mixed matrix membranes (MMMs) for efficient CO2 separation. The f-F-Ce nanosheets play versatile parts in elevating membrane gas separation performance. On the one hand, f-F-Ce tends to arrange horizontally and constructs a unique interfacial structure for cross-layer CO2 transport in MMMs. On the other hand, the abundant mesopores from f-F-Ce construct high-speed CO2 transport channels in MMMs and notably elevate the gas permeability. Moreover, the as-prepared MMMs separate CO2 efficiently due to the comprehensive improvements of diffusivity selectivity, solubility selectivity, and reactivity selectivity. First, the high aspect ratio of f-F-Ce provides the tortuous pathways for gas transport and generates the rigid interface between the Pebax matrix and f-F-Ce nanosheets, increasing the diffusivity selectivity. Second, SCN- groups from ILs show excellent affinity to CO2, enhancing the solubility selectivity. Third, amine groups from ILs with abundant methylimidazole generate reversible reaction with CO2 to elevate reactivity selectivity. Consequently, the f-F-Ce-doped MMMs display excellent CO2 permeability and CO2/CH4 selectivity. In particular, the MMM incorporated with 8 wt % f-F-Ce displays a CO2 permeability of 1823 Barrer and a CO2/CH4 selectivity of 35, overcoming the Robeson upper bound line (2008).
Collapse
Affiliation(s)
- Qingping Xin
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Materials Science and Engineering, Tiangong University, Tianjin 300387, China
| | - Wei Shao
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Materials Science and Engineering, Tiangong University, Tianjin 300387, China
| | - Qiang Ma
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Materials Science and Engineering, Tiangong University, Tianjin 300387, China
| | - Xiaokun Ye
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Materials Science and Engineering, Tiangong University, Tianjin 300387, China
| | - Zhenxuan Huang
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Materials Science and Engineering, Tiangong University, Tianjin 300387, China
| | - Bangyao Li
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Materials Science and Engineering, Tiangong University, Tianjin 300387, China
| | - Shaofei Wang
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Materials Science and Engineering, Tiangong University, Tianjin 300387, China
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Hong Li
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Materials Science and Engineering, Tiangong University, Tianjin 300387, China
| | - Yuzhong Zhang
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Materials Science and Engineering, Tiangong University, Tianjin 300387, China
| |
Collapse
|
33
|
Tao X, Yuan X, Huang L, Shang S, Xu D. Fe-based metal-organic frameworks as heterogeneous catalysts for highly efficient degradation of wastewater in plasma/Fenton-like systems. RSC Adv 2020; 10:36363-36370. [PMID: 35517971 PMCID: PMC9056995 DOI: 10.1039/d0ra07402k] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Accepted: 09/14/2020] [Indexed: 01/23/2023] Open
Abstract
Fe-based metal organic frameworks (Fe-MOFs) were successfully synthesized with the dielectric barrier discharge (DBD) plasma method and FeSO4·7H2O as the Fe precursor. Fe-MOFs were used as Fenton-like catalysts in DBD plasma/Fenton-like technology to treat wastewater, which addressed the issues with iron solubility. Since the valence state of iron will affect the catalytic performance, the Fe precursor FeSO4·7H2O was added to regulate the valence state and adjust the catalytic performance by improving the availability of active sites. The influences of discharge voltage, catalyst addition amount, H2O2 addition amount and pH on the degradation efficiency of methyl orange (MO) were systematically examined. Through free radical capture experiments, the reaction mechanism of the plasma/Fenton-like catalytic degradation process was deduced primarily as the coordinated oxidation process of hydroxyl radicals (·OH), photo-generated holes (h+) and superoxide radicals (·O2 -). The reusability experiments proved that the catalyst was stable and reusable. The possible degradation pathways were proposed based on the identification of intermediate products generated in the degradation process by liquid chromatography-mass spectrometry (LC-MS) analyses.
Collapse
Affiliation(s)
- Xumei Tao
- State Key Laboratory Base for Eco-Chemical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology Qingdao 266042 Shandong China
| | - Xinjie Yuan
- State Key Laboratory Base for Eco-Chemical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology Qingdao 266042 Shandong China
| | - Liang Huang
- College of Electromechanical Engineering, Qingdao University of Science and Technology Qingdao 266042 Shandong China
| | - Shuyong Shang
- Department of Science, Technology and Discipline Construction, Chengdu Normal University Chengdu 611130 Sichuan China
| | - Dongyan Xu
- State Key Laboratory Base for Eco-Chemical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology Qingdao 266042 Shandong China
| |
Collapse
|
34
|
Magnetically Aligned and Enriched Pathways of Zeolitic Imidazolate Framework 8 in Matrimid Mixed Matrix Membranes for Enhanced CO 2 Permeability. MEMBRANES 2020; 10:membranes10070155. [PMID: 32709108 PMCID: PMC7408041 DOI: 10.3390/membranes10070155] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 07/14/2020] [Accepted: 07/15/2020] [Indexed: 11/22/2022]
Abstract
Metal-organic frameworks (MOFs) as additives in mixed matrix membranes (MMMs) for gas separation have gained significant attention over the past decades. Many design parameters have been investigated for MOF based MMMs, but the spatial distribution of the MOF throughout MMMs lacks investigation. Therefore, magnetically aligned and enriched pathways of zeolitic imidazolate framework 8 (ZIF−8) in Matrimid MMMs were synthesized and investigated by means of their N2 and CO2 permeability. Magnetic ZIF−8 (m–ZIF−8) was synthesized by incorporating Fe3O4 in the ZIF−8 structure. The presence of Fe3O4 in m–ZIF−8 showed a decrease in surface area and N2 and CO2 uptake, with respect to pure ZIF−8. Alignment of m–ZIF−8 in Matrimid showed the presence of enriched pathways of m–ZIF−8 through the MMMs. At 10 wt.% m–ZIF−8 incorporation, no effect of alignment was observed for the N2 and CO2 permeability, which was ascribed anon-ideal tortuous alignment. However, alignment of 20 wt.% m–ZIF−8 in Matrimid showed to increase the CO2 diffusivity and permeability (19%) at 7 bar, while no loss in ideal selectivity was observed, with respect to homogeneously dispersed m–ZIF−8 membranes. Thus, the alignment of MOF particles throughout the matrix was shown to enhance the CO2 permeability at a certain weight content of MOF.
Collapse
|
35
|
Qian Q, Asinger PA, Lee MJ, Han G, Mizrahi Rodriguez K, Lin S, Benedetti FM, Wu AX, Chi WS, Smith ZP. MOF-Based Membranes for Gas Separations. Chem Rev 2020; 120:8161-8266. [PMID: 32608973 DOI: 10.1021/acs.chemrev.0c00119] [Citation(s) in RCA: 553] [Impact Index Per Article: 110.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Metal-organic frameworks (MOFs) represent the largest known class of porous crystalline materials ever synthesized. Their narrow pore windows and nearly unlimited structural and chemical features have made these materials of significant interest for membrane-based gas separations. In this comprehensive review, we discuss opportunities and challenges related to the formation of pure MOF films and mixed-matrix membranes (MMMs). Common and emerging separation applications are identified, and membrane transport theory for MOFs is described and contextualized relative to the governing principles that describe transport in polymers. Additionally, cross-cutting research opportunities using advanced metrologies and computational techniques are reviewed. To quantify membrane performance, we introduce a simple membrane performance score that has been tabulated for all of the literature data compiled in this review. These data are reported on upper bound plots, revealing classes of MOF materials that consistently demonstrate promising separation performance. Recommendations are provided with the intent of identifying the most promising materials and directions for the field in terms of fundamental science and eventual deployment of MOF materials for commercial membrane-based gas separations.
Collapse
Affiliation(s)
- Qihui Qian
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Patrick A Asinger
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Moon Joo Lee
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Gang Han
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Katherine Mizrahi Rodriguez
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Sharon Lin
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Francesco M Benedetti
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Albert X Wu
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Won Seok Chi
- School of Polymer Science and Engineering, Chonnam National University, Buk-gu, Gwangju 61186, Korea
| | - Zachary P Smith
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
36
|
Zhang T, Wei JZ, Sun XJ, Zhao XJ, Tang HL, Yan H, Zhang FM. Continuous and Rapid Synthesis of UiO-67 by Electrochemical Methods for the Electrochemical Detection of Hydroquinone. Inorg Chem 2020; 59:8827-8835. [PMID: 32623890 DOI: 10.1021/acs.inorgchem.0c00580] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Continuous and rapid synthesis of UiO-67 under mild conditions has been achieved by electrochemical methods for the first time. In the reaction system, a zirconium sheet was utilized as electrodes and a metal source for the assembly of UiO-67. High-crystalline UiO-67 with a regular tetrahedral morphology of around 1 μm was obtained within 1.5 h under the optimized solvent composition, voltage, and temperature conditions. This electrochemical synthetic method of UiO-67 in our work overcomes the shortcomings of high temperature and pressure of a traditional solvothermal method, which proposes new ideas for the large-scale and rapid synthesis of UiO-67. The UiO-67 synthesized by an electrochemical method was prepared as a UiO-67-carbon paste electrode (CPE), which exhibited a linear response to hydroquinone (HQ) in the range of 5-300 μM with a detection limit of 3.6 × 10-9 M (S/N = 3), for the electrochemical detection of HQ. It was confirmed that UiO-67-CPE possessed excellent reusability and antiinterference ability for the detection of HQ, and its detection ability even did not change after standing for 3 months. We further tried to apply UiO-67-CPE to the practical determination of HQ in tap water and river water samples, and the results proved that the recovery rate is 97.9-104.7% in real samples.
Collapse
Affiliation(s)
- Ting Zhang
- Key Laboratory of Green Chemical Engineering and Technology of College of Heilongjiang Province, College of Chemical and Environmental Engineering, Harbin University of Science and Technology, Harbin 150040, P. R. China
| | - Jin-Zhi Wei
- Key Laboratory of Green Chemical Engineering and Technology of College of Heilongjiang Province, College of Chemical and Environmental Engineering, Harbin University of Science and Technology, Harbin 150040, P. R. China
| | - Xiao-Jun Sun
- Key Laboratory of Green Chemical Engineering and Technology of College of Heilongjiang Province, College of Chemical and Environmental Engineering, Harbin University of Science and Technology, Harbin 150040, P. R. China
| | - Xue-Jing Zhao
- Key Laboratory of Green Chemical Engineering and Technology of College of Heilongjiang Province, College of Chemical and Environmental Engineering, Harbin University of Science and Technology, Harbin 150040, P. R. China
| | - Hong-Liang Tang
- Key Laboratory of Green Chemical Engineering and Technology of College of Heilongjiang Province, College of Chemical and Environmental Engineering, Harbin University of Science and Technology, Harbin 150040, P. R. China
| | - Han Yan
- Key Laboratory of Green Chemical Engineering and Technology of College of Heilongjiang Province, College of Chemical and Environmental Engineering, Harbin University of Science and Technology, Harbin 150040, P. R. China
| | - Feng-Ming Zhang
- Key Laboratory of Green Chemical Engineering and Technology of College of Heilongjiang Province, College of Chemical and Environmental Engineering, Harbin University of Science and Technology, Harbin 150040, P. R. China
| |
Collapse
|
37
|
Wang D, Song S, Zhang W, He Z, Wang Y, Zheng Y, Yao D, Pan Y, Yang Z, Meng Z, Li Y. CO2 selective separation of Pebax-based mixed matrix membranes (MMMs) accelerated by silica nanoparticle organic hybrid materials (NOHMs). Sep Purif Technol 2020. [DOI: 10.1016/j.seppur.2020.116708] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
38
|
Fang M, Montoro C, Semsarilar M. Metal and Covalent Organic Frameworks for Membrane Applications. MEMBRANES 2020; 10:E107. [PMID: 32455983 PMCID: PMC7281687 DOI: 10.3390/membranes10050107] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 05/19/2020] [Indexed: 12/16/2022]
Abstract
Better and more efficient membranes are needed to face imminent and future scientific, technological and societal challenges. New materials endowed with enhanced properties are required for the preparation of such membranes. Metal and Covalent Organic Frameworks (MOFs and COFs) are a new class of crystalline porous materials with large surface area, tuneable pore size, structure, and functionality, making them a perfect candidate for membrane applications. In recent years an enormous number of articles have been published on the use of MOFs and COFs in preparation of membranes for various applications. This review gathers the work reported on the synthesis and preparation of membranes containing MOFs and COFs in the last 10 years. Here we give an overview on membranes and their use in separation technology, discussing the essential factors in their synthesis as well as their limitations. A full detailed summary of the preparation and characterization methods used for MOF and COF membranes is given. Finally, applications of these membranes in gas and liquid separation as well as fuel cells are discussed. This review is aimed at both experts in the field and newcomers, including students at both undergraduate and postgraduate levels, who would like to learn about preparation of membranes from crystalline porous materials.
Collapse
Affiliation(s)
| | | | - Mona Semsarilar
- Institut Européen des Membranes—IEM UMR 5635, Univ Montpellier, CNRS, ENSCM, 34095 Montpellier, France;
| |
Collapse
|
39
|
Ban Y, Cao N, Yang W. Metal-Organic Framework Membranes and Membrane Reactors: Versatile Separations and Intensified Processes. RESEARCH 2020; 2020:1583451. [PMID: 32510055 PMCID: PMC7240783 DOI: 10.34133/2020/1583451] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Accepted: 04/16/2020] [Indexed: 12/31/2022]
Abstract
Metal-organic frameworks are an emerging and fascinating category of porous solids that can be self-assembled with metal-based cations linked by organic molecules. The unique features of MOFs in porosity (or surface areas), together with their diversity for chemical components and architectures, make MOFs attractive candidates in many applications. MOF membranes represent a long-term endeavor to convert MOF crystals in the lab to potentially industry-available commodities, which, as a promising alternative to distillation, provide a bright future for energy-efficient separation technologies closely related with chemicals, the environment, and energy. The membrane reactor shows a typical intensified process strategy by combining the catalytic reaction with the membrane separation in one unit. This review highlights the recent process of MOF-based membranes and the importance of MOF-based membrane reactors in relative intensified chemical processes.
Collapse
Affiliation(s)
- Yujie Ban
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China
| | - Na Cao
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China.,University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100039, China
| | - Weishen Yang
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China
| |
Collapse
|
40
|
Effects of structural properties of fillers on performances of Matrimid® 5218 mixed matrix membranes. Sep Purif Technol 2020. [DOI: 10.1016/j.seppur.2019.116277] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
41
|
Knozowska K, Li G, Kujawski W, Kujawa J. Novel heterogeneous membranes for enhanced separation in organic-organic pervaporation. J Memb Sci 2020. [DOI: 10.1016/j.memsci.2020.117814] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
42
|
Liu B, Li D, Yao J, Sun H. Enhanced CO
2
selectivity of polyimide membranes through dispersion of polyethyleneimine decorated UiO‐66 particles. J Appl Polym Sci 2020. [DOI: 10.1002/app.49068] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Bing Liu
- School of EnvironmentHarbin Institute of Technology Harbin China
- State Key Laboratory of Urban Water Resource and EnvironmentHarbin Institute of Technology Harbin China
| | - Dan Li
- School of EnvironmentHarbin Institute of Technology Harbin China
- State Key Laboratory of Urban Water Resource and EnvironmentHarbin Institute of Technology Harbin China
| | - Jie Yao
- School of EnvironmentHarbin Institute of Technology Harbin China
- State Key Laboratory of Urban Water Resource and EnvironmentHarbin Institute of Technology Harbin China
- National Engineering Center of Urban Water Resources Harbin China
| | - Hao Sun
- School of EnvironmentHarbin Institute of Technology Harbin China
- State Key Laboratory of Urban Water Resource and EnvironmentHarbin Institute of Technology Harbin China
| |
Collapse
|
43
|
Preparation of thermally rearranged poly(benzoxazole-co-imide) membranes containing heteroaromatic moieties for CO2/CH4 separation. POLYMER 2019. [DOI: 10.1016/j.polymer.2019.121945] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
44
|
Thür R, Van Velthoven N, Lemmens V, Bastin M, Smolders S, De Vos D, Vankelecom IFJ. Modulator-Mediated Functionalization of MOF-808 as a Platform Tool to Create High-Performance Mixed-Matrix Membranes. ACS APPLIED MATERIALS & INTERFACES 2019; 11:44792-44801. [PMID: 31687797 DOI: 10.1021/acsami.9b19774] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Modulator-mediated functionalization (MoFu) is introduced as a new and versatile platform tool to improve the separation performance of metal-organic framework (MOF)-based membranes, exemplified here by the creation of mixed-matrix membranes (MMMs) with enhanced CO2 separation efficiency. The unique structure of MOF-808 allows incorporation of CO2-philic modulators in the MOF framework during a one-pot synthesis procedure in water, thus creating a straightforward way to functionalize both MOF and corresponding MMM. As a proof of concept, a series of fluorinated carboxylic acids [trifluoroacetic acid (TFA), pentafluoropropionic acid (PFPA), and heptafluorobutyric acid (HFBA)] and nonfluorinated alkyl carboxylic acids (acetic acid (AA), propionic acid (PA), and butyric acid (BA)) were used as a modulator during MOF-808 synthesis. Two of the best MMMs prepared with 30 wt % MOF-TFA (100% increase in CO2/CH4 separation factor, 350% increase in CO2 permeability) and 10 wt % MOF-PFPA (140% increase in CO2/CH4 separation factor, 100% increase in CO2 permeability) scored very close to or even crossed the 2008 and 2018 upper bound limits for CO2/CH4. Because of its facile functionalization (and its subsequent excellent performance), MOF-808 is proposed as an alternative for widely used UiO-66, which is, from a functionalization point-of-view and despite its widespread use, a rather limited MOF.
Collapse
Affiliation(s)
- Raymond Thür
- Centre for Membrane Separations, Adsorption, Catalysis and Spectroscopy for Sustainable Solutions (cMACS) , KU Leuven , Celestijnenlaan 200F , Box 2454, 3001 Heverlee , Vlaams-Brabant , Belgium
| | - Niels Van Velthoven
- Centre for Membrane Separations, Adsorption, Catalysis and Spectroscopy for Sustainable Solutions (cMACS) , KU Leuven , Celestijnenlaan 200F , Box 2454, 3001 Heverlee , Vlaams-Brabant , Belgium
| | - Vincent Lemmens
- Centre for Membrane Separations, Adsorption, Catalysis and Spectroscopy for Sustainable Solutions (cMACS) , KU Leuven , Celestijnenlaan 200F , Box 2454, 3001 Heverlee , Vlaams-Brabant , Belgium
| | - Maarten Bastin
- Centre for Membrane Separations, Adsorption, Catalysis and Spectroscopy for Sustainable Solutions (cMACS) , KU Leuven , Celestijnenlaan 200F , Box 2454, 3001 Heverlee , Vlaams-Brabant , Belgium
| | - Simon Smolders
- Centre for Membrane Separations, Adsorption, Catalysis and Spectroscopy for Sustainable Solutions (cMACS) , KU Leuven , Celestijnenlaan 200F , Box 2454, 3001 Heverlee , Vlaams-Brabant , Belgium
| | - Dirk De Vos
- Centre for Membrane Separations, Adsorption, Catalysis and Spectroscopy for Sustainable Solutions (cMACS) , KU Leuven , Celestijnenlaan 200F , Box 2454, 3001 Heverlee , Vlaams-Brabant , Belgium
| | - Ivo F J Vankelecom
- Centre for Membrane Separations, Adsorption, Catalysis and Spectroscopy for Sustainable Solutions (cMACS) , KU Leuven , Celestijnenlaan 200F , Box 2454, 3001 Heverlee , Vlaams-Brabant , Belgium
| |
Collapse
|
45
|
Sadeghi M, Isfahani AP, Shamsabadi AA, Favakeh S, Soroush M. Improved gas transport properties of polyurethane–urea membranes through incorporating a cadmium‐based metal organic framework. J Appl Polym Sci 2019. [DOI: 10.1002/app.48704] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Affiliation(s)
- Morteza Sadeghi
- Department of Chemical EngineeringIsfahan University of Technology Isfahan 84156‐83111 Iran
| | | | | | - Sahar Favakeh
- Department of Chemical EngineeringIsfahan University of Technology Isfahan 84156‐83111 Iran
| | - Masoud Soroush
- Department of Chemical and Biological EngineeringDrexel University Philadelphia USA
| |
Collapse
|
46
|
Abel AS, Yu Mitrofanov A, Yakushev AA, Zenkov IS, Morozkov GV, Averin AD, Beletskaya IP, Michalak J, Brandès S, Bessmertnykh‐Lemeune A. 1,10‐Phenanthroline Carboxylic Acids for Preparation of Functionalized Metal‐Organic Frameworks. ASIAN J ORG CHEM 2019. [DOI: 10.1002/ajoc.201900569] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- Anton S. Abel
- Department of ChemistryM.V. Lomonosov Moscow State University 1–3 Leninskie gory Moscow 119991 Russia
- ICMUB, UMR6302 CNRSUniversité Bourgogne Franche-Comté 9 avenue A. Savary 21078 Dijon France
| | - Alexander Yu Mitrofanov
- Department of ChemistryM.V. Lomonosov Moscow State University 1–3 Leninskie gory Moscow 119991 Russia
- ICMUB, UMR6302 CNRSUniversité Bourgogne Franche-Comté 9 avenue A. Savary 21078 Dijon France
| | - Aleksei A. Yakushev
- Department of ChemistryM.V. Lomonosov Moscow State University 1–3 Leninskie gory Moscow 119991 Russia
| | - Ilya S. Zenkov
- Department of ChemistryM.V. Lomonosov Moscow State University 1–3 Leninskie gory Moscow 119991 Russia
- ICMUB, UMR6302 CNRSUniversité Bourgogne Franche-Comté 9 avenue A. Savary 21078 Dijon France
| | - Gleb V. Morozkov
- Department of ChemistryM.V. Lomonosov Moscow State University 1–3 Leninskie gory Moscow 119991 Russia
| | - Alexei D. Averin
- Department of ChemistryM.V. Lomonosov Moscow State University 1–3 Leninskie gory Moscow 119991 Russia
- Russian Academy of SciencesFrumkin Institute of Physical Chemistry and Electrochemistry Leninsky Pr. 31 Moscow 119071 Russia
| | - Irina P. Beletskaya
- Department of ChemistryM.V. Lomonosov Moscow State University 1–3 Leninskie gory Moscow 119991 Russia
- Russian Academy of SciencesFrumkin Institute of Physical Chemistry and Electrochemistry Leninsky Pr. 31 Moscow 119071 Russia
| | - Julien Michalak
- ICMUB, UMR6302 CNRSUniversité Bourgogne Franche-Comté 9 avenue A. Savary 21078 Dijon France
| | - Stéphane Brandès
- ICMUB, UMR6302 CNRSUniversité Bourgogne Franche-Comté 9 avenue A. Savary 21078 Dijon France
| | | |
Collapse
|
47
|
Mixed-matrix membranes based on 6FDA-ODA polyimide and silicalite-1 with homogeneous spatial distribution of particles. POLYMER 2019. [DOI: 10.1016/j.polymer.2019.121576] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
48
|
Ma L, Svec F, Lv Y, Tan T. Engineering of the Filler/Polymer Interface in Metal–Organic Framework‐Based Mixed‐Matrix Membranes to Enhance Gas Separation. Chem Asian J 2019; 14:3502-3514. [DOI: 10.1002/asia.201900843] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Indexed: 12/27/2022]
Affiliation(s)
- Liang Ma
- College of Life Science and TechnologyBeijing University of Chemical Technology No 15th North Third Ring East Road, Chaoyang District Beijing 100029 China
- Beijing Advanced Innovation Center for Soft Matter Science and EngineeringBeijing University of Chemical Technology No 15th North Third Ring East Road, Chaoyang District Beijing 100029 China
| | - Frantisek Svec
- College of Life Science and TechnologyBeijing University of Chemical Technology No 15th North Third Ring East Road, Chaoyang District Beijing 100029 China
- Beijing Advanced Innovation Center for Soft Matter Science and EngineeringBeijing University of Chemical Technology No 15th North Third Ring East Road, Chaoyang District Beijing 100029 China
| | - Yongqin Lv
- College of Life Science and TechnologyBeijing University of Chemical Technology No 15th North Third Ring East Road, Chaoyang District Beijing 100029 China
| | - Tianwei Tan
- College of Life Science and TechnologyBeijing University of Chemical Technology No 15th North Third Ring East Road, Chaoyang District Beijing 100029 China
| |
Collapse
|
49
|
Li X, Hou J, Guo R, Wang Z, Zhang J. Constructing Unique Cross-Sectional Structured Mixed Matrix Membranes by Incorporating Ultrathin Microporous Nanosheets for Efficient CO 2 Separation. ACS APPLIED MATERIALS & INTERFACES 2019; 11:24618-24626. [PMID: 31257849 DOI: 10.1021/acsami.9b07815] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Ultrathin microporous nanosheets denoted as Zn-tetra-(4-carboxyphenyl)porphyrin (Zn-TCPP) were synthesized and incorporated into a Pebax MH 1657 (Pebax) polymer to fabricate mixed matrix membranes (MMMs) for efficient CO2 separation. The Zn-TCPP nanosheets with a microporous structure provide high-speed channels for fast CO2 transport and shorten the diffusion pathways, both contributing toward high CO2 permeability. Furthermore, scanning electron microscopy results indicate that the ultrathin Zn-TCPP nanosheets with an ultrahigh aspect ratio (>200) tend to arrange horizontally in the Pebax matrix. The obtained unique cross-sectional structure of the MMMs functions as a selective barrier, allowing repeated discrimination of gases due to the tortuous interlayer of horizontal nanosheets, thus improving the selectivity of the MMMs. In addition, the horizontally arranged microporous nanosheets were found to strongly interact with the membrane matrix and endowed the MMMs with excellent interfacial compatibility, which improved the CO2 permeability and eliminated unselective permeation pathways. Significantly, the optimized CO2 separation performance of the MMMs surpassed the 2008 Robeson's limit.
Collapse
Affiliation(s)
- Xueqin Li
- School of Chemistry and Chemical Engineering/Key Laboratory for Green Process of Chemical Engineering of Xinjiang Bingtuan , Shihezi University , Shihezi , Xinjiang 832003 , China
| | - Jinpeng Hou
- School of Chemistry and Chemical Engineering/Key Laboratory for Green Process of Chemical Engineering of Xinjiang Bingtuan , Shihezi University , Shihezi , Xinjiang 832003 , China
| | - Ruili Guo
- School of Chemistry and Chemical Engineering/Key Laboratory for Green Process of Chemical Engineering of Xinjiang Bingtuan , Shihezi University , Shihezi , Xinjiang 832003 , China
| | - Zhongming Wang
- School of Chemistry and Chemical Engineering/Key Laboratory for Green Process of Chemical Engineering of Xinjiang Bingtuan , Shihezi University , Shihezi , Xinjiang 832003 , China
| | - Jianshu Zhang
- School of Chemistry and Chemical Engineering/Key Laboratory for Green Process of Chemical Engineering of Xinjiang Bingtuan , Shihezi University , Shihezi , Xinjiang 832003 , China
| |
Collapse
|
50
|
Lin Y, Wu HC, Yasui T, Yoshioka T, Matsuyama H. Development of an HKUST-1 Nanofiller-Templated Poly(ether sulfone) Mixed Matrix Membrane for a Highly Efficient Ultrafiltration Process. ACS APPLIED MATERIALS & INTERFACES 2019; 11:18782-18796. [PMID: 31059228 DOI: 10.1021/acsami.9b04961] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Mixed-matrix membranes (MMMs) have been drawing increasing attention due to the high permeability and high rejection capabilities for highly efficient wastewater treatment applications. Nonetheless, improving the water permeance while maintaining the high rejection capability is still an ongoing challenge for the practically state-of-the-art MMMs. Herein, a new class of poly(ether sulfone) (PES) based MMM containing metal-organic framework (MOF) nanofillers of HKUST-1 and blending with poly(methyl methacrylate- co-methacrylic acid) (PMMA- co-MAA) copolymer, designated as HKUST-1@mPES MMM, were developed for the highly efficient ultrafiltration (UF) process. In this study, the nanosized HKUST-1 nanofillers were removed by water dissolution as sacrificial templating materials, so that the additional nanovoids were deliberately generated throughout the dense polymer matrix. The introduction of PMMA- co-MAA copolymer facilitated the even dispersion of HKUST-1 nanofillers in a polymer matrix, by constructing the bridge connection between inorganic nanofillers and organic matrix. The resultant HKUST-1@mPES MMM exhibited a high pure water permeability (PWP) up to 490 L·m-2·h-1·bar-1, substantially reaching nearly 3 times higher than that of the mPES membrane without HKUST-1 nanofillers loading and maintaining a relatively high BSA rejection rate of 96% without obvious deterioration. The newly developed HKUST-1@mPES MMM thereby exhibited a comparable separation efficiency compared to the cutting-edge UF membranes reported so far. Overall, the nanovoid-generated approach provides new insight into developing advanced MMMs used for highly efficient water treatment applications.
Collapse
Affiliation(s)
- Yuqing Lin
- Center for Membrane and Film Technology, Department of Chemical Science & Engineering , Kobe University , 1-1 Rokkodai , Nada, Kobe 657-8501 , Japan
| | - Hao-Chen Wu
- Center for Membrane and Film Technology, Department of Chemical Science & Engineering , Kobe University , 1-1 Rokkodai , Nada, Kobe 657-8501 , Japan
| | - Tomoki Yasui
- Center for Membrane and Film Technology, Department of Chemical Science & Engineering , Kobe University , 1-1 Rokkodai , Nada, Kobe 657-8501 , Japan
| | - Tomohisa Yoshioka
- Center for Membrane and Film Technology, Department of Chemical Science & Engineering , Kobe University , 1-1 Rokkodai , Nada, Kobe 657-8501 , Japan
| | - Hideto Matsuyama
- Center for Membrane and Film Technology, Department of Chemical Science & Engineering , Kobe University , 1-1 Rokkodai , Nada, Kobe 657-8501 , Japan
| |
Collapse
|