1
|
Gao Y, Wang G, Wang X, Dong X, Zhang X. Synchronously improved permeability, selectivity and fouling resistance of Fe-N-C functionalized ceramic catalytic membrane for effective water treatment: The critical role of Fe. JOURNAL OF HAZARDOUS MATERIALS 2024; 463:132888. [PMID: 37922578 DOI: 10.1016/j.jhazmat.2023.132888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 10/26/2023] [Accepted: 10/27/2023] [Indexed: 11/07/2023]
Abstract
Constructing catalytic membrane simultaneously displaying high permeability, selectivity and antifouling performance in water treatment remains challenging. Herein, the surface and pore channels of the ceramic membrane were co-functionalized with nitrogen doped carbon supported Fe catalyst (CN-F), and the Fe content was varied to investigate its effect on performance of CN-F coupled with peroxymonosulfate (PMS) activation (CN-F/PMS) for water treatment. Results confirmed the introduced Fe (in Fe-N coordination form) greatly enhanced the permeability, selectivity and fouling resistance of CN-F. Optimal CN-F3/PMS achieved 96.5% removal and 52.1% mineralization of sulfamethoxazole in short retention duration (2.7 min), whose performance was 5.4 and 6.7 times higher than that of nitrogen doped carbon functionalized ceramic catalytic membrane (CN/PMS) and CN-F3 filtration alone, respectively. CN-F3/PMS also efficiently inhibited fouling on both surface and pores with 2.8 and 2.4 times lower flux loss than that of CN/PMS and CN-F3 filtration alone, respectively. Moreover, CN-F3/PMS displayed superior performance in long-term treatment of real coking wastewater. The outstanding performance of CN-F was mainly attributed to the dual role of supported Fe, which served as hydrophilic site for enhanced water permeation and major active site for PMS adsorption and reduction into reactive species (mainly high-valent Fe(IV)=O species) towards pollutant elimination.
Collapse
Affiliation(s)
- Yi Gao
- School of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China
| | - Guanlong Wang
- School of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China.
| | - Xing Wang
- School of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China
| | - Xiaoli Dong
- School of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China
| | - Xiufang Zhang
- School of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China.
| |
Collapse
|
2
|
Zhang M, Xia Q, Zhao X, Guo J, Zeng L, Zhou Z. Concentration effects of calcium ion on polyacrylamide fouling of ion-exchange membrane in electrodialysis treatment of flue gas desulfurization wastewater. Sep Purif Technol 2023. [DOI: 10.1016/j.seppur.2022.122383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
3
|
Pan Z, Zeng B, Yu G, Lin H, Hu L, Teng J, Zhang H, Yang L. Molecular insights into impacts of EDTMPA on membrane fouling caused by transparent exopolymer particles (TEP). THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 853:158650. [PMID: 36089022 DOI: 10.1016/j.scitotenv.2022.158650] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 09/06/2022] [Accepted: 09/06/2022] [Indexed: 06/15/2023]
Abstract
While ethylenediamine tetramethylenephosphonic acid (EDTMPA) has been emerged as a stronger chelating agent than ethylene diamine tetraacetic acid (EDTA) for fouling mitigation, and transparent exopolymer particles (TEP) is a major foulant in membrane-based water treatment process, effects of EDTMPA on TEP fouling and the underlying mechanism have been not yet studied. In this study, Flory-Huggins lattice theory was combined with density functional theory (DFT) technology to explore this subject at molecular level. Filtration experiments showed a unimodal pattern of specific filtration resistance (SFR) of TEP sample with Ca2+ concentration in range of 0-3 mM. For the TEP sample with the peak SFR value at 1.5 mM Ca2+, continuous addition of EDTMPA (from 0 to 100 mg·L-1) resulted in a sustained decrease in SFR. Energy dispersive spectroscopy (EDS) mapping characterization showed the continuing decline of calcium content in the TEP layer with increase of EDTMPA addition, indicating that EDTMPA successfully captured Ca2+ from alginate‑calcium ligation (TEP), and then disintegrated the TEP structure. DFT simulation showed that Ca2+ preferentially coordinated with the terminal carboxyl groups of alginate chains to form a coordination configuration that is conducive to stretch the three-dimensional polymer network. Such a network corresponded to an extremely high SFR according to Flory-Huggins theory. EDTMPA addition caused disintegration of the coordination configuration of Ca2+ binding to terminal carboxyl groups, which further resulted in collapse and flocculation of TEP gel network structure, thus leading to a continuous SFR decrease. This work provided deep thermodynamic insights into effects of EDTMPA on TEP-associated fouling at molecular level, facilitating to better understanding and mitigation of membrane fouling.
Collapse
Affiliation(s)
- Zhenxiang Pan
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China.
| | - Bizhen Zeng
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Genying Yu
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China.
| | - Hongjun Lin
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China.
| | - Lijiang Hu
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Jiaheng Teng
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China; Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education, MOE), School of Environmental Science and Technology, Dalian University of Technology, Linggong Road 2, Dalian 116024, China
| | - Hanmin Zhang
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education, MOE), School of Environmental Science and Technology, Dalian University of Technology, Linggong Road 2, Dalian 116024, China
| | - Lining Yang
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China.
| |
Collapse
|
4
|
Nayak V, Mannekote Shivanna J, Ramu S, Radoor S, Balakrishna RG. Efficacy of Electrospun Nanofiber Membranes on Fouling Mitigation: A Review. ACS OMEGA 2022; 7:43346-43363. [PMID: 36506161 PMCID: PMC9730468 DOI: 10.1021/acsomega.2c02081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 09/06/2022] [Indexed: 06/17/2023]
Abstract
Despite the advantages of high contaminant removal, operational flexibility, and technical advancements offered, the undesirable fouling property of membranes limits their durability, thus posing restrictions on their usage. An enormous struggle is underway to conquer this major challenge. Most of the earlier reviews include the basic concepts of fouling and antifouling, with respect to particular separation processes such as ultrafiltration, nanofiltration, reverse osmosis and membrane bioreactors, graphene-based membranes, zwitterionic membranes, and so on. As per our knowledge, the importance of nanofiber membranes in challenging the fouling process has not been included in any record to date. Nanofibers with the ability to be embedded in any medium with a high surface to volume ratio play a key role in mitigating the fouling of membranes, and it is important for these studies to be critically analyzed and reported. Our Review hence intends to focus on nanofiber membranes developed with enhanced antifouling and biofouling properties with a brief introduction on fabrication processes and surface and chemical modifications. A summary on surface modifications of preformed nanofibers is given along with different nanofiller combinations used and blend fabrication with efficacy in wastewater treatment and antifouling abilities. In addition, future prospects and advancements are discussed.
Collapse
Affiliation(s)
- Vignesh Nayak
- Institute
of Environmental and Chemical Engineering, Faculty of Chemical Technology, University of Pardubice, Studentská 573, Pardubice-532 10, Czech Republic
| | - Jyothi Mannekote Shivanna
- Department
of Chemistry, AMC Engineering College, Bannerughatta Road, Bengaluru 260083, Karnataka, India
| | - Shwetharani Ramu
- Centre
for Nano and Material Sciences, Jain University, Jain Global Campus, Kanakapura, Bangalore 562112, Karnataka, India
| | - Sabarish Radoor
- Department
of Mechanical and Process Engineering, The Sirindhorn International
Thai-German Graduate School of Engineering (TGGS), King Mongkut’s University of Technology North Bangkok, Bangkok 10800, Thailand
| | - R. Geetha Balakrishna
- Centre
for Nano and Material Sciences, Jain University, Jain Global Campus, Kanakapura, Bangalore 562112, Karnataka, India
| |
Collapse
|
5
|
Pan Z, Zeng B, Yu G, Teng J, Zhang H, Shen L, Yang L, Lin H. Mechanistic insights into Ca-alginate gel-associated membrane fouling affected by ethylene diamine tetraacetic acid (EDTA). THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 842:156912. [PMID: 35753486 DOI: 10.1016/j.scitotenv.2022.156912] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 06/16/2022] [Accepted: 06/19/2022] [Indexed: 06/15/2023]
Abstract
While transparent exopolymer particles (TEP) is a major foulant, and ethylene diamine tetraacetic acid (EDTA) is a strong chelating agent frequently used for fouling mitigation in membrane-based water treatment processes, little has been known about TEP-associated membrane fouling affected by EDTA. This work was performed to investigate roles of EDTA addition in TEP (Ca-alginate gel was used as a TEP model) associated fouling. It was interestingly found that, TEP had rather high specific filtration resistance (SFR) of 2.49 × 1015 m-1·kg-1, and SFR of TEP solution firstly decreased and then increased rapidly with EDTA concentration increase (0-1 mM). A series of characterizations suggested that EDTA took roles in SFR of TEP solution by means of changing TEP microstructure. The rather high SFR of TEP layer can be attributed to the big chemical potential gap during filtration described by the extended Flory-Huggins lattice theory. Initial EDTA addition disintegrated TEP structure by EDTA chelating calcium in TEP, inducing reduced SFR. Continuous EDTA addition decreased solution pH, resulting into no effective chelating and accumulation of EDTA on membrane surface, increasing SFR. It was suggested that factors increasing homogeneity of TEP gel will increase SFR, and vice versa. This study revealed the thermodynamic mechanism of TEP fouling behaviors affected by EDTA, and also demonstrated the importance of EDTA dosage and pH adjustment for TEP-associated fouling control.
Collapse
Affiliation(s)
- Zhenxiang Pan
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China.
| | - Bizhen Zeng
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Genying Yu
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China.
| | - Jiaheng Teng
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education, MOE), School of Environmental Science and Technology, Dalian University of Technology, Linggong Road 2, Dalian 116024, China
| | - Hanmin Zhang
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education, MOE), School of Environmental Science and Technology, Dalian University of Technology, Linggong Road 2, Dalian 116024, China
| | - Liguo Shen
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China.
| | - Lining Yang
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China.
| | - Hongjun Lin
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China.
| |
Collapse
|
6
|
Xu Y, Zhu Y, Chen Z, Zhu J, Chen G. A Comprehensive Review on Forward Osmosis Water Treatment: Recent Advances and Prospects of Membranes and Draw Solutes. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19138215. [PMID: 35805879 PMCID: PMC9266909 DOI: 10.3390/ijerph19138215] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 06/25/2022] [Accepted: 07/02/2022] [Indexed: 02/06/2023]
Abstract
Forward osmosis (FO) is an evolving membrane separation technology for water treatment and reclamation. However, FO water treatment technology is limited by factors such as concentration polarization, membrane fouling, and reverse solute flux. Therefore, it is of a great importance to prepare an efficient high-density porous membrane and to select an appropriate draw solute to reduce concentration polarization, membrane fouling, and reverse solute flux. This review aims to present a thorough evaluation of the advancement of different draw solutes and membranes with their effects on FO performance. NaCl is still widely used in a large number of studies, and several general draw solutes, such as organic-based and inorganic-based, are selected based on their osmotic pressure and water solubility. The selection criteria for reusable solutes, such as heat-recovered gaseous draw, magnetic field-recovered MNPs, and electrically or thermally-responsive hydrogel are primarily based on their industrial efficiency and energy requirements. CA membranes are resistant to chlorine degradation and are hydrophilic, while TFC/TFN exhibit a high inhibition of bio-adhesion and hydrolysis. AQPs are emerging membranes, due to proteins with complete retention capacity. Moreover, the development of the hybrid system combining FO with other energy or water treatment technologies is crucial to the sustainability of FO.
Collapse
|
7
|
Nawaz MS, Son HS, Jin Y, Kim Y, Soukane S, Al-Hajji MA, Abu-Ghdaib M, Ghaffour N. Investigation of flux stability and fouling mechanism during simultaneous treatment of different produced water streams using forward osmosis and membrane distillation. WATER RESEARCH 2021; 198:117157. [PMID: 33933919 DOI: 10.1016/j.watres.2021.117157] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 03/11/2021] [Accepted: 04/12/2021] [Indexed: 06/12/2023]
Abstract
Forward osmosis-membrane distillation (FO-MD) hybrids were recently found suitable for produced water treatment. Exclusion of synthetic chemical draw solutions, typically used for FO, can reduce FO-MD operational costs and ease its onsite application. This study experimentally validates a novel concept for the simultaneous treatment of different produced water streams available at the same industrial site using an FO-MD hybrid system. The water oil separator outlet (WO) stream was selected as FO draw solution and it generated average fluxes ranging between 8.30 LMH and 26.78 LMH with four different feed streams. FO fluxes were found to be governed by the complex composition of the feed streams. On the other hand, with WO stream as MD feed, an average flux of 14.41 LMH was achieved. Calcium ions were found as a main reason for MD flux decline in the form of CaSO4 scaling and stimulating the interaction between the membrane and humic acid molecules to form scale layer causing reduction in heat transfer and decline in MD flux (6%). Emulsified oil solution was responsible for partial pore clogging resulting in further 2% flux decline. Ethylenediaminetetraaceticacid (EDTA) was able to mask a portion of calcium ions and resulted in a complete recovery of the original MD flux. Under hybrid FO-MD experiments MD fluxes between 5.62 LMH and 11.12 LMH were achieved. Therefore, the novel concept is validated to produce fairly stable FO and MD fluxes, with few streams, without severe fouling and producing excellent product water quality.
Collapse
Affiliation(s)
- Muhammad Saqib Nawaz
- King Abdullah University of Science and Technology (KAUST), Water Desalination and Reuse Center (WDRC), Division of Biological and Environmental Science and Engineering (BESE), Thuwal 23955-6900, Saudi Arabia
| | - Hyuk Soo Son
- King Abdullah University of Science and Technology (KAUST), Water Desalination and Reuse Center (WDRC), Division of Biological and Environmental Science and Engineering (BESE), Thuwal 23955-6900, Saudi Arabia
| | - Yong Jin
- King Abdullah University of Science and Technology (KAUST), Water Desalination and Reuse Center (WDRC), Division of Biological and Environmental Science and Engineering (BESE), Thuwal 23955-6900, Saudi Arabia
| | - Youngjin Kim
- Department of Environmental Engineering, Sejong Campus, Korea University, 2511, Sejong-ro, Jochiwon-eup, Sejong-si, Republic of Korea
| | - Sofiane Soukane
- King Abdullah University of Science and Technology (KAUST), Water Desalination and Reuse Center (WDRC), Division of Biological and Environmental Science and Engineering (BESE), Thuwal 23955-6900, Saudi Arabia
| | - Mohammed Ali Al-Hajji
- Energy Systems Division, Process & Control Systems Department (P&CSD), Saudi Aramco, Dhahran, Saudi Arabia
| | - Muhannad Abu-Ghdaib
- Energy Systems Division, Process & Control Systems Department (P&CSD), Saudi Aramco, Dhahran, Saudi Arabia
| | - Noreddine Ghaffour
- King Abdullah University of Science and Technology (KAUST), Water Desalination and Reuse Center (WDRC), Division of Biological and Environmental Science and Engineering (BESE), Thuwal 23955-6900, Saudi Arabia.
| |
Collapse
|
8
|
Yi X, Zhang M, Song W, Wang X. Effect of Initial Water Flux on the Performance of Anaerobic Membrane Bioreactor: Constant Flux Mode versus Varying Flux Mode. MEMBRANES 2021; 11:membranes11030203. [PMID: 33805677 PMCID: PMC7999970 DOI: 10.3390/membranes11030203] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 03/02/2021] [Accepted: 03/09/2021] [Indexed: 11/16/2022]
Abstract
Anaerobic membrane bioreactors (AnMBRs) have aroused growing interest in wastewater treatment and energy recovery. However, serious membrane fouling remains a critical hindrance to AnMBRs. Here, a novel membrane fouling mitigation via optimizing initial water flux is proposed, and its feasibility was evaluated by comparing the membrane performance in AnMBRs between constant flux and varying flux modes. Results indicated that, compared with the constant flux mode, varying flux mode significantly prolonged the membrane operating time by mitigating membrane fouling. Through the analyses of fouled membranes under two operating modes, the mechanism of membrane fouling mitigation was revealed as follows: A low water flux was applied in stage 1 which slowed down the interaction between foulants and membrane surface, especially reduced the deposition of proteins on the membrane surface and formed a thin and loose fouling layer. Correspondingly, the interaction between foulants was weakened in the following stage 2 with a high water flux and, subsequently, the foulants absorbed on the membrane surface was further reduced. In addition, flux operating mode had no impact on the contaminant removal in an AnMBR. This study provides a new way of improving membrane performance in AnMBRs via a varying flux operating mode.
Collapse
|
9
|
Lu Y, Jia J, Miao H, Ruan W, Wang X. Performance Improvement and Biofouling Mitigation in Osmotic Microbial Fuel Cells via In Situ Formation of Silver Nanoparticles on Forward Osmosis Membrane. MEMBRANES 2020; 10:membranes10060122. [PMID: 32560068 PMCID: PMC7344936 DOI: 10.3390/membranes10060122] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 06/11/2020] [Accepted: 06/14/2020] [Indexed: 11/16/2022]
Abstract
An osmotic microbial fuel cell (OsMFC) using a forward osmosis (FO) membrane to replace the proton exchange membrane in a typical MFC achieves superior electricity production and better effluent water quality during municipal wastewater treatment. However, inevitable FO membrane fouling, especially biofouling, has a significantly adverse impact on water flux and thus hinders the stable operation of the OsMFC. Here, we proposed a method for biofouling mitigation of the FO membrane and further improvement in current generation of the OsMFC by applying a silver nanoparticle (AgNP) modified FO membrane. The characteristic tests revealed that the AgNP modified thin film composite (TFC) polyamide FO membrane showed advanced hydrophilicity, more negative zeta potential and better antibacterial property. The biofouling of the FO membrane in OsMFC was effectively alleviated by using the AgNP modified membrane. This phenomenon could be attributed to the changes of TFC–FO membrane properties and the antibacterial property of AgNPs on the membrane surface. An increased hydrophilicity and a more negative zeta potential of the modified membrane enhanced the repulsion between foulants and membrane surface. In addition, AgNPs directly disturbed the functions of microorganisms deposited on the membrane surface. Owing to the biofouling mitigation of the AgNP modified membrane, the water flux and electricity generation of OsMFC were correspondingly improved.
Collapse
Affiliation(s)
- Yuqin Lu
- Jiangsu Key Laboratory of Anaerobic Biotechnology, School of Environmental and Civil Engineering, Jiangnan University, Wuxi 214122, China; (Y.L.); (H.M.); (W.R.)
| | - Jia Jia
- Zhejiang Province Environmental Engineering Technology Appraisal Center, Hangzhou 310012, China;
| | - Hengfeng Miao
- Jiangsu Key Laboratory of Anaerobic Biotechnology, School of Environmental and Civil Engineering, Jiangnan University, Wuxi 214122, China; (Y.L.); (H.M.); (W.R.)
| | - Wenquan Ruan
- Jiangsu Key Laboratory of Anaerobic Biotechnology, School of Environmental and Civil Engineering, Jiangnan University, Wuxi 214122, China; (Y.L.); (H.M.); (W.R.)
| | - Xinhua Wang
- Jiangsu Key Laboratory of Anaerobic Biotechnology, School of Environmental and Civil Engineering, Jiangnan University, Wuxi 214122, China; (Y.L.); (H.M.); (W.R.)
- Correspondence: ; Tel.: +86-510-8532-6516
| |
Collapse
|
10
|
Liang S, Cao S, Liu C, Zeb S, Cui Y, Sun G. Heavy metal adsorption using structurally preorganized adsorbent. RSC Adv 2020; 10:7259-7264. [PMID: 35493876 PMCID: PMC9049853 DOI: 10.1039/d0ra00125b] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Accepted: 02/10/2020] [Indexed: 11/21/2022] Open
Abstract
The adsorbent had two types of functional groups and six binding sites in one coordination unit. The presence of the amide group shows good anti-interference to alkali metals and alkali soil metals.
Collapse
Affiliation(s)
- Shuai Liang
- School of Chemistry and Chemical Engineering
- University of Jinan
- Jinan
- P. R. China
| | - Shengguang Cao
- School of Chemistry and Chemical Engineering
- University of Jinan
- Jinan
- P. R. China
| | - Changrong Liu
- School of Chemistry and Chemical Engineering
- University of Jinan
- Jinan
- P. R. China
| | - Shah Zeb
- School of Chemistry and Chemical Engineering
- University of Jinan
- Jinan
- P. R. China
| | - Yu Cui
- School of Chemistry and Chemical Engineering
- University of Jinan
- Jinan
- P. R. China
| | - Guoxin Sun
- School of Chemistry and Chemical Engineering
- University of Jinan
- Jinan
- P. R. China
- Institute for Smart Materials & Engineering
| |
Collapse
|