1
|
Zhang J, Zhang X, Shen Y, Fu B, Wu Y, Kang J, Chen S, Wang G, Zhang H, Yin H, Zhao H. Joule-Heated Interfacial Catalysis for Advanced Electrified Esterification with High Conversion and Energy Efficiency. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2413949. [PMID: 39588892 DOI: 10.1002/adma.202413949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 11/02/2024] [Indexed: 11/27/2024]
Abstract
Esterification reactions are crucial in industries such as chemicals, fragrances, and pharmaceuticals but often face limitations due to high reversibility and low reactivity, leading to restricted yields. In this work, an electrified esterification pathway utilizing a Joule-heated interfacial catalysis (JIC) system is proposed, where a hydrophilic, sulfonic acid-functionalized covalent organic framework grown on carbon felt (COF─SO3H@CF) acts as the interfacial catalyst, and the carbon felt serves as the electric heat source. This approach achieves an acetic acid conversion of 80.5% at a heating power density of 0.49 W cm-3, without additional reagents by vaporizing reaction products, surpassing the theoretical equilibrium limit of 62.5% by 1.29 times. Comprehensive analysis indicates that the intimate contact between the electric heat source and the COF─SO3H catalyst enables efficient, localized Joule heating directly at catalytic sites, minimizing thermal losses and allowing precise control over reaction interfaces. This finding demonstrates that this JIC system not only enhances esterification efficiency but may also offer a sustainable, energy-efficient pathway for high-yield chemical processes.
Collapse
Affiliation(s)
- Jifang Zhang
- Key Laboratory of Materials Physics, Centre for Environmental and Energy Nanomaterials, Anhui Key Laboratory of Nanomaterials and Nanotechnology, CAS Center for Excellence in Nanoscience, Institute of Solid State Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, 230031, China
- University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Xinyuan Zhang
- Key Laboratory of Materials Physics, Centre for Environmental and Energy Nanomaterials, Anhui Key Laboratory of Nanomaterials and Nanotechnology, CAS Center for Excellence in Nanoscience, Institute of Solid State Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, 230031, China
| | - Yue Shen
- Key Laboratory of Materials Physics, Centre for Environmental and Energy Nanomaterials, Anhui Key Laboratory of Nanomaterials and Nanotechnology, CAS Center for Excellence in Nanoscience, Institute of Solid State Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, 230031, China
- University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Bo Fu
- Centre for Catalysis and Clean Energy, School of Environment and Science, Griffith University Gold Coast Campus, Queensland, 4222, Australia
| | - Yijin Wu
- Key Laboratory of Materials Physics, Centre for Environmental and Energy Nanomaterials, Anhui Key Laboratory of Nanomaterials and Nanotechnology, CAS Center for Excellence in Nanoscience, Institute of Solid State Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, 230031, China
- College of Chemistry and Material Science, Hengyang Normal University Hengyang, Hunan, 421001, China
| | - Jian Kang
- Key Laboratory of Materials Physics, Centre for Environmental and Energy Nanomaterials, Anhui Key Laboratory of Nanomaterials and Nanotechnology, CAS Center for Excellence in Nanoscience, Institute of Solid State Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, 230031, China
- Centre for Catalysis and Clean Energy, School of Environment and Science, Griffith University Gold Coast Campus, Queensland, 4222, Australia
| | - Shan Chen
- Institutes of Physical Science and Information Technology, Anhui University, Hefei, Anhui, 230039, China
| | - Guozhong Wang
- Key Laboratory of Materials Physics, Centre for Environmental and Energy Nanomaterials, Anhui Key Laboratory of Nanomaterials and Nanotechnology, CAS Center for Excellence in Nanoscience, Institute of Solid State Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, 230031, China
- University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Haimin Zhang
- Key Laboratory of Materials Physics, Centre for Environmental and Energy Nanomaterials, Anhui Key Laboratory of Nanomaterials and Nanotechnology, CAS Center for Excellence in Nanoscience, Institute of Solid State Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, 230031, China
- University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Huajie Yin
- Key Laboratory of Materials Physics, Centre for Environmental and Energy Nanomaterials, Anhui Key Laboratory of Nanomaterials and Nanotechnology, CAS Center for Excellence in Nanoscience, Institute of Solid State Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, 230031, China
- University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Huijun Zhao
- Centre for Catalysis and Clean Energy, School of Environment and Science, Griffith University Gold Coast Campus, Queensland, 4222, Australia
| |
Collapse
|
3
|
Han J, Liang Y, He C, Tong Y, Li W. Porous PVA- g-SPA/PVA-SA Catalytic Composite Membrane via Lyophilization for Esterification Enhancement. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:2660-2667. [PMID: 35175780 DOI: 10.1021/acs.langmuir.1c03381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
A catalytic composite membrane was developed for the enhancement of esterification by lyophilization for the first time. The catalytic composite membrane was composed of a poly(vinyl alcohol) (PVA)-sodium alginate (SA) separation layer and a spongy porous catalytic layer cross-linked by PVA and 4-sulfophthalic acid (SPA). Fourier transform infrared (FTIR) spectroscopy and X-ray photoelectron spectroscopy (XPS) results indicated the successful synthesis of the catalytic composite membrane. The membrane properties were evaluated by ethanol dehydration and esterification. The conversion rate of acetic acid reached 95.9% after 12 h. Compared with batch reactions, the conversion rate increased by 24.4%. After five cycles, the membrane still maintained outstanding catalytic activity. The resistance of mass transfer was analyzed, and the results showed that the porous structure reduced the catalytic layer resistance to total resistance from 70.27 to 32.88%. The composite membrane with a spongy porous catalytic layer exhibited superior dehydration and catalytic performance.
Collapse
Affiliation(s)
- Jie Han
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Yao Liang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Chengxiu He
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Yujia Tong
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Weixing Li
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 211816, China
| |
Collapse
|
7
|
Wang T, Shi J, Liang Y, Han J, Tong Y, Li W. Novel SPVA/g-C 3N 4-SA/PAN Pervaporation Membranes with Porous Catalytic Layers for Esterification Enhancement. Ind Eng Chem Res 2021. [DOI: 10.1021/acs.iecr.1c00451] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Taishan Wang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Jiayun Shi
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Yao Liang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Jie Han
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Yujia Tong
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Weixing Li
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 211816, China
| |
Collapse
|