1
|
Piotrowska J, Jordan C, Stagel K, Annerl M, Willner J, Limbeck A, Harasek M, Bica-Schröder K. Acid-functionalized PVA composite membranes for pervaporation-assisted esterification. REACT CHEM ENG 2025; 10:360-370. [PMID: 39618552 PMCID: PMC11600398 DOI: 10.1039/d4re00388h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Accepted: 11/04/2024] [Indexed: 01/30/2025]
Abstract
Composite flat-sheet membranes functionalized with imidazolium-based ionic liquids (ILs) grafted to poly(vinyl alcohol)/glutaraldehyde as a catalytic layer were developed to enhance the esterification between n-butanol and acetic acid. The functionalized membranes were produced via dip-coating commercial pervaporation membranes, and two distinct Brønsted-acidic ILs with an imidazolium-based cation and different (hydrogen sulfate [HSO4]- or bromide [Br]-) anions were compared. Compact, 12 μm-thick, defect-free catalytic layers were observed on top of the pervaporation membrane supports, and the determined penetration depth of the ILs confirmed their presence in the upper part of the coating. While both ILs could significantly promote the esterification of n-butanol and acetic acid, the [HSO4]- anion catalyzed the formation of butyl acetate more effectively than [Br]--based species, resulting in yields of up to 50% over 15 h. Furthermore, the coated membranes exhibited enhanced water separation factors compared to the unfunctionalized one owing to the reduced swelling of the coated membranes accompanied with their diminished wettability.
Collapse
Affiliation(s)
- Julia Piotrowska
- Institute for Applied Synthetic Chemistry, TU Wien Getreidemarkt 9/E163 Austria
| | - Christian Jordan
- Environmental and Bioscience Engineering, Institute of Chemical, TU Wien Getreidemarkt 9/E166 Austria
| | - Kristof Stagel
- Institute for Applied Synthetic Chemistry, TU Wien Getreidemarkt 9/E163 Austria
| | - Marco Annerl
- Institute of Chemical Technologies and Analytics, TU Wien Getreidemarkt 9/E164 Austria
| | - Jakob Willner
- Institute of Chemical Technologies and Analytics, TU Wien Getreidemarkt 9/E164 Austria
| | - Andreas Limbeck
- Institute of Chemical Technologies and Analytics, TU Wien Getreidemarkt 9/E164 Austria
| | - Michael Harasek
- Environmental and Bioscience Engineering, Institute of Chemical, TU Wien Getreidemarkt 9/E166 Austria
| | | |
Collapse
|
2
|
Kuzminova A, Dmitrenko M, Stepanova A, Karyakina A, Selyutin A, Su R, Penkova A. Novel Mixed-Matrix Pervaporation Membrane Based on Polyether Block Amide Modified with Ho-Based Metal-Organic Framework. Polymers (Basel) 2024; 16:3245. [PMID: 39683990 DOI: 10.3390/polym16233245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 11/18/2024] [Accepted: 11/20/2024] [Indexed: 12/18/2024] Open
Abstract
Segmented polymers, such as polyether block amide (PEBA), exhibit unique properties due to the combination of different segments. PEBA consists of soft polyester and rigid polyamide blocks, enabling its use in various industrial applications, including membrane technologies. In this study, PEBA membranes modified with a holmium-based metal-organic framework (Ho-1,3,5-H3btc) were developed for enhanced pervaporation separation of water/isopropanol and water/phenol mixtures. The effect of 1-7 wt.% Ho-1,3,5-H3btc content variation and the selection of a porous substrate (commercial from fluoroplast F42L (MFFC) and developed membranes from polyvinylidene fluoride without (PVDF) and with a non-woven polyester support (PVDF-s)) on dense and/or supported membrane properties, respectively, was investigated. The dense and supported PEBA/Ho-1,3,5-H3btc membranes were studied by use of Fourier transform infrared spectroscopy, scanning electron and atomic force microscopies, swelling measurements, and pervaporation experiments. The supported membrane from PEBA with 5 wt.% Ho-1,3,5-H3btc applied onto the PVDF-s substrate exhibited optimal pervaporation performance: a 1040 g/(m2h) permeation flux and a 5.2 separation factor in water/phenol (1 wt.%) mixture separation at 50 °C due to optimal values of roughness, swelling degree, and selective layer thickness. This finding highlights the potential of incorporating Ho-1,3,5-H3btc into PEBA for developing high-performance pervaporation membranes.
Collapse
Affiliation(s)
- Anna Kuzminova
- St. Petersburg State University, 7/9 Universitetskaya Nab., St. Petersburg 199034, Russia
| | - Mariia Dmitrenko
- St. Petersburg State University, 7/9 Universitetskaya Nab., St. Petersburg 199034, Russia
| | - Anastasia Stepanova
- St. Petersburg State University, 7/9 Universitetskaya Nab., St. Petersburg 199034, Russia
| | - Anna Karyakina
- St. Petersburg State University, 7/9 Universitetskaya Nab., St. Petersburg 199034, Russia
| | - Artem Selyutin
- St. Petersburg State University, 7/9 Universitetskaya Nab., St. Petersburg 199034, Russia
| | - Rongxin Su
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Anastasia Penkova
- St. Petersburg State University, 7/9 Universitetskaya Nab., St. Petersburg 199034, Russia
| |
Collapse
|
3
|
Baskaran D, Dhamodharan D, Behera US, Byun HS. A comprehensive review and perspective research in technology integration for the treatment of gaseous volatile organic compounds. ENVIRONMENTAL RESEARCH 2024; 251:118472. [PMID: 38452912 DOI: 10.1016/j.envres.2024.118472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 02/04/2024] [Accepted: 02/10/2024] [Indexed: 03/09/2024]
Abstract
Volatile organic compounds (VOCs) are harmful pollutants emitted from industrial processes. They pose a risk to human health and ecosystems, even at low concentrations. Controlling VOCs is crucial for good air quality. This review aims to provide a comprehensive understanding of the various methods used for controlling VOC abatement. The advancement of mono-functional treatment techniques, including recovery such as absorption, adsorption, condensation, and membrane separation, and destruction-based methods such as natural degradation methods, advanced oxidation processes, and reduction methods were discussed. Among these methods, advanced oxidation processes are considered the most effective for removing toxic VOCs, despite some drawbacks such as costly chemicals, rigorous reaction conditions, and the formation of secondary chemicals. Standalone technologies are generally not sufficient and do not perform satisfactorily for the removal of hazardous air pollutants due to the generation of innocuous end products. However, every integration technique complements superiority and overcomes the challenges of standalone technologies. For instance, by using catalytic oxidation, catalytic ozonation, non-thermal plasma, and photocatalysis pretreatments, the amount of bioaerosols released from the bioreactor can be significantly reduced, leading to effective conversion rates for non-polar compounds, and opening new perspectives towards promising techniques with countless benefits. Interestingly, the three-stage processes have shown efficient decomposition performance for polar VOCs, excellent recoverability for nonpolar VOCs, and promising potential applications in atmospheric purification. Furthermore, the review also reports on the evolution of mathematical and artificial neural network modeling for VOC removal performance. The article critically analyzes the synergistic effects and advantages of integration. The authors hope that this article will be helpful in deciding on the appropriate strategy for controlling interested VOCs.
Collapse
Affiliation(s)
- Divya Baskaran
- Department of Chemical and Biomolecular Engineering, Chonnam National University, Yeosu, Jeonnam 59626, South Korea; Department of Biomaterials, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Chennai-600077, India
| | - Duraisami Dhamodharan
- Interdisciplinary Research Centre for Refining and Advanced Chemicals, King Fahd, University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia
| | - Uma Sankar Behera
- Department of Chemical and Biomolecular Engineering, Chonnam National University, Yeosu, Jeonnam 59626, South Korea
| | - Hun-Soo Byun
- Department of Chemical and Biomolecular Engineering, Chonnam National University, Yeosu, Jeonnam 59626, South Korea.
| |
Collapse
|
4
|
Gupta I, Gupta O. Recent Advancements in the Recovery and Reuse of Organic Solvents Using Novel Nanomaterial-Based Membranes for Renewable Energy Applications. MEMBRANES 2023; 13:membranes13010108. [PMID: 36676915 PMCID: PMC9862370 DOI: 10.3390/membranes13010108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 01/09/2023] [Accepted: 01/10/2023] [Indexed: 05/12/2023]
Abstract
The energy crisis in the world is increasing rapidly owing to the shortage of fossil fuel reserves. Climate change and an increase in global warming necessitates a change in focus from petroleum-based fuels to renewable fuels such as biofuels. The remodeling of existing separation processes using various nanomaterials is of a growing interest to industrial separation methods. Recently, the design of membrane technologies has been the most focused research area concerning fermentation broth to enhance performance efficiency, while recovering those byproducts to be used as value added fuels. Specifically, the use of novel nano material membranes, which brings about a selective permeation of the byproducts, such as organic solvent, from the fermentation broth, positively affects the fermentation kinetics by eliminating the issue of product inhibition. In this review, which and how membrane-based technologies using novel materials can improve the separation performance of organic solvents is considered. In particular, technical approaches suggested in previous studies are discussed with the goal of emphasizing benefits and problems faced in order to direct research towards an optimized membrane separation performance for renewable fuel production on a commercial scale.
Collapse
Affiliation(s)
- Indrani Gupta
- Department of Chemistry and Environmental Science, New Jersey Institute of Technology, Newark, NJ 07102, USA
| | - Oindrila Gupta
- Vertex Pharmaceuticals Inc., Boston, MA 02210, USA
- Correspondence: ; Tel.: +1-201-467-1138
| |
Collapse
|
5
|
Fabrication of polydimethylsiloxane mixed matrix membranes for recovery of ethylene glycol butyl ether from water by pervaporation. J Memb Sci 2023. [DOI: 10.1016/j.memsci.2022.121138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
6
|
Yee CY, Lim LG, Lock SSM, Jusoh N, Yiin CL, Chin BLF, Chan YH, Loy ACM, Mubashir M. A systematic review of the molecular simulation of hybrid membranes for performance enhancements and contaminant removals. CHEMOSPHERE 2022; 307:135844. [PMID: 35952794 DOI: 10.1016/j.chemosphere.2022.135844] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Revised: 06/24/2022] [Accepted: 07/22/2022] [Indexed: 06/15/2023]
Abstract
Number of research on molecular simulation and design has emerged recently but there is currently a lack of review to present these studies in an organized manner to highlight the advances and feasibility. This paper aims to review the development, structural, physical properties and separation performance of hybrid membranes using molecular simulation approach. The hybrid membranes under review include ionic liquid membrane, mixed matrix membrane, and functionalized hybrid membrane for understanding of the transport mechanism of molecules through the different structures. The understanding of molecular interactions, and alteration of pore sizes and transport channels at atomistic level post incorporation of different components in hybrid membranes posing impact to the selective transport of desired molecules are also covered. Incorporation of molecular simulation of hybrid membrane in related fields such as carbon dioxide (CO2) removal, wastewater treatment, and desalination are also reviewed. Despite the limitations of current molecular simulation methodologies, i.e., not being able to simulate the membrane operation at the actual macroscale in processing plants, it is still able to demonstrate promising results in capturing molecule behaviours of penetrants and membranes at full atomic details with acceptable separation performance accuracy. From the review, it was found that the best performing ionic liquid membrane, mixed matrix membrane and functionalized hybrid membrane can enhance the performance of pristine membrane by 4 folds, 2.9 folds and 3.3 folds, respectively. The future prospects of molecular simulation in hybrid membranes are also presented. This review could provide understanding to the current advancement of molecular simulation approach in hybrid membranes separation. This could also provide a guideline to apply molecular simulation in the related sectors.
Collapse
Affiliation(s)
- Cia Yin Yee
- CO(2) Research Center (CO2RES), Department of Chemical Engineering, Universiti Teknologi PETRONAS, 32610, Seri Iskandar, Perak, Malaysia
| | - Lam Ghai Lim
- School of Engineering, Monash University Malaysia, 47500, Bandar Sunway, Selangor, Malaysia
| | - Serene Sow Mun Lock
- CO(2) Research Center (CO2RES), Department of Chemical Engineering, Universiti Teknologi PETRONAS, 32610, Seri Iskandar, Perak, Malaysia.
| | - Norwahyu Jusoh
- CO(2) Research Center (CO2RES), Department of Chemical Engineering, Universiti Teknologi PETRONAS, 32610, Seri Iskandar, Perak, Malaysia
| | - Chung Loong Yiin
- Department of Chemical Engineering and Energy Sustainability, Faculty of Engineering, Universiti Malaysia Sarawak (UNIMAS), Kota Samarahan, 94300, Malaysia; Institute of Sustainable and Renewable Energy (ISuRE), Universiti Malaysia Sarawak (UNIMAS), 94300, Kota Samarahan, Sarawak, Malaysia
| | - Bridgid Lai Fui Chin
- Department of Chemical and Energy Engineering, Faculty of Engineering and Science, Curtin University Malaysia, CDT 250, 98009, Miri Sarawak, Malaysia; Energy and Environment Research Cluster, Faculty of Engineering and Science, Curtin University Malaysia, CDT 250, 98009, Miri Sarawak, Malaysia
| | - Yi Herng Chan
- PETRONAS Research Sdn. Bhd. (PRSB), Lot 3288 & 3289, Off Jalan Ayer Itam, Kawasan Institusi Bangi, 43000, Kajang, Selangor, Malaysia
| | - Adrian Chun Minh Loy
- Department of Chemical Engineering, Monash University, Clayton, VIC, 3800, Australia
| | - Muhammad Mubashir
- Physical Science and Engineering Division, Advanced Membranes and Porous Materials Center, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| |
Collapse
|
7
|
Arregoitia-Sarabia C, González-Revuelta D, Fallanza M, Ortiz A, Gorri D. PEBA/PDMS Composite Multilayer Hollow Fiber Membranes for the Selective Separation of Butanol by Pervaporation. MEMBRANES 2022; 12:membranes12101007. [PMID: 36295765 PMCID: PMC9610642 DOI: 10.3390/membranes12101007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 10/06/2022] [Accepted: 10/11/2022] [Indexed: 06/02/2023]
Abstract
The growing interest in the production of biofuels has motivated numerous studies on separation techniques that allow the separation/concentration of organics produced by fermentation, improving productivity and performance. In this work, the preparation and characterization of new butanol-selective membranes was reported. The prepared membranes had a hollow fiber configuration and consisted of two dense selective layers: a first layer of PEBA and a second (outer) layer of PDMS. The membranes were tested to evaluate their separation performance in the selective removal of organics from a synthetic ABE solution. Membranes with various thicknesses were prepared in order to evaluate the effect of the PDMS protective layer on permeant fluxes and membrane selectivity. The mass transport phenomena in the pervaporation process were characterized using a resistances-in-series model. The experimental results showed that PEBA as the material of the dense separating layer is the most favorable in terms of selectivity towards butanol with respect to the other components of the feed stream. The addition of a protective layer of PDMS allows the sealing of possible pinholes; however, its thickness should be kept as small as possible since permeation fluxes decrease with increasing thickness of PDMS and this material also has greater selectivity towards acetone compared to other feed components.
Collapse
|
8
|
Si Z, Wu H, Qin P, Van der Bruggen B. Polydimethylsiloxane based membranes for biofuels pervaporation. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121612] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
9
|
Li Y, Li SH, Xu LH, Mao H, Zhang AS, Zhao ZP. Highly selective PDMS membranes embedded with ILs-decorated halloysite nanotubes for ethyl acetate pervaporation separation. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
10
|
Sikander AB, Anjum T, Khan AL, Gilani MA, Raja AA, Yasin M. Exploring the potential of highly selective deep eutectic solvents (DES) based membranes for dehydration of butanol via pervaporation. CHEMOSPHERE 2022; 305:135480. [PMID: 35760127 DOI: 10.1016/j.chemosphere.2022.135480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 06/06/2022] [Accepted: 06/21/2022] [Indexed: 06/15/2023]
Abstract
N-butanol has unique physicochemical and combustion properties, similar to gasoline, which makes it an environmentally friendly alternative to conventional fuels. To improve the efficiency, the dehydration of butanol is necessary. This paper aims to investigate the performance of Deep Eutectic Solvents (DESs) based membranes for the dehydration of n-butanol by the pervaporation process. Three DES with different combinations of hydrogen bond donors and acceptors, i.e., DL-menthol: Lauric acid (DES), DL-menthol-Palmitic acid (DES), and [TETA] Cl: Thymol (DES), were used. We hypothesized that (i) incorporation of hydrophobic DES would increase the hydrophobicity of the membranes; (ii) specific functional groups (phenolic group, amine group) in DESs would enhance the butanol-philic character of membranes, and (iii) hydrophobic DESs would increase the butanol separation efficiency and permeability of membranes. FTIR analysis and physicochemical parameters of the resultant liquid mixture validated the DESs' production. The DESs were then filled into the permeable support, resulting in supported liquid membranes (SLMs). An additional layer of polydimethylsiloxane (PDMS) was coated directly on the DES-PSf layer to prevent leaching out of DES. A feed containing a 6 wt % aqueous solution of butanol under varying temperatures was studied. The results showed that among all membranes, [TETA] Cl: Thymol DES-based membrane showed the highest sorption of 36% at room temperature. The introduction of DES in membranes resulted in a remarkable increase in the separation factor while sustaining a reasonable flux. Among all the membranes, the DL-menthol: Lauric acid (DES) based membrane exhibited the highest separation factor of 57 with a total flux of 0.11 kg/m2. h. Significantly high butanol-water separation was attributed to the low viscosity and high butanol solubility of the chosen DES, which makes it a suitable substitute to conventional ILs.
Collapse
Affiliation(s)
- Abu Bakar Sikander
- Department of Chemical Engineering, COMSATS University Islamabad, Lahore Campus, Pakistan
| | - Tanzila Anjum
- Department of Chemical Engineering, COMSATS University Islamabad, Lahore Campus, Pakistan
| | - Asim Laeeq Khan
- Department of Chemical Engineering, COMSATS University Islamabad, Lahore Campus, Pakistan.
| | - Mazhar Amjad Gilani
- Department of Chemistry, COMSATS University Islamabad, Lahore Campus, Pakistan
| | - Arsalan Ahmad Raja
- Department of Chemical Engineering, College of Engineering, University of Hafr Al Batin, Al Jamiah, 39524, Saudi Arabia
| | - Muhammad Yasin
- Department of Chemical Engineering, COMSATS University Islamabad, Lahore Campus, Pakistan.
| |
Collapse
|
11
|
Zhang X, Liu F, Xu L, Xu Z, Shen C, Zhang G, Meng Q, Gao C. Heterostructured ZIF-8/lamellar talc composites incorporated polydimethylsiloxane membrane with enhanced separation performance for butanol recovery. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.120433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
12
|
Review of alternative technologies for acetone-butanol-ethanol separation: Principles, state-of-the-art, and development trends. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121244] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
13
|
Yan F, Guo Y, Wang Z, Zhao L, Zhang X. Efficient separation of CO2/CH4 by ionic liquids confined in graphene oxide: A molecular dynamics simulation. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.120736] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
14
|
Lakshmy KS, Lal D, Nair A, Babu A, Das H, Govind N, Dmitrenko M, Kuzminova A, Korniak A, Penkova A, Tharayil A, Thomas S. Pervaporation as a Successful Tool in the Treatment of Industrial Liquid Mixtures. Polymers (Basel) 2022; 14:polym14081604. [PMID: 35458354 PMCID: PMC9029804 DOI: 10.3390/polym14081604] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 04/02/2022] [Accepted: 04/08/2022] [Indexed: 02/01/2023] Open
Abstract
Pervaporation is one of the most active topics in membrane research, and it has time and again proven to be an essential component for chemical separation. It has been employed in the removal of impurities from raw materials, separation of products and by-products after reaction, and separation of pollutants from water. Given the global problem of water pollution, this approach is efficient in removing hazardous substances from water bodies. Conventional processes are based on thermodynamic equilibria involving a phase transition such as distillation and liquid-liquid extraction. These techniques have a relatively low efficacy and nowadays they are not recommended because it is not sustainable in terms of energy consumption and/or waste generation. Pervaporation emerged in the 1980s and is now becoming a popular membrane separation technology because of its intrinsic features such as low energy requirements, cheap separation costs, and good quality product output. The focus of this review is on current developments in pervaporation, mass transport in membranes, material selection, fabrication and characterization techniques, and applications of various membranes in the separation of chemicals from water.
Collapse
Affiliation(s)
- Kadavil Subhash Lakshmy
- School of Energy Materials, Mahatma Gandhi University, Kottayam 686560, Kerala, India; (K.S.L.); (D.L.); (A.N.); (A.B.); (H.D.); (N.G.); (S.T.)
| | - Devika Lal
- School of Energy Materials, Mahatma Gandhi University, Kottayam 686560, Kerala, India; (K.S.L.); (D.L.); (A.N.); (A.B.); (H.D.); (N.G.); (S.T.)
| | - Anandu Nair
- School of Energy Materials, Mahatma Gandhi University, Kottayam 686560, Kerala, India; (K.S.L.); (D.L.); (A.N.); (A.B.); (H.D.); (N.G.); (S.T.)
| | - Allan Babu
- School of Energy Materials, Mahatma Gandhi University, Kottayam 686560, Kerala, India; (K.S.L.); (D.L.); (A.N.); (A.B.); (H.D.); (N.G.); (S.T.)
| | - Haritha Das
- School of Energy Materials, Mahatma Gandhi University, Kottayam 686560, Kerala, India; (K.S.L.); (D.L.); (A.N.); (A.B.); (H.D.); (N.G.); (S.T.)
| | - Neethu Govind
- School of Energy Materials, Mahatma Gandhi University, Kottayam 686560, Kerala, India; (K.S.L.); (D.L.); (A.N.); (A.B.); (H.D.); (N.G.); (S.T.)
| | - Mariia Dmitrenko
- St. Petersburg State University, 7/9 Universitetskaya nab., 199034 St. Petersburg, Russia; (M.D.); (A.K.); (A.K.)
| | - Anna Kuzminova
- St. Petersburg State University, 7/9 Universitetskaya nab., 199034 St. Petersburg, Russia; (M.D.); (A.K.); (A.K.)
| | - Aleksandra Korniak
- St. Petersburg State University, 7/9 Universitetskaya nab., 199034 St. Petersburg, Russia; (M.D.); (A.K.); (A.K.)
| | - Anastasia Penkova
- St. Petersburg State University, 7/9 Universitetskaya nab., 199034 St. Petersburg, Russia; (M.D.); (A.K.); (A.K.)
- Correspondence: (A.P.); (A.T.)
| | - Abhimanyu Tharayil
- School of Energy Materials, Mahatma Gandhi University, Kottayam 686560, Kerala, India; (K.S.L.); (D.L.); (A.N.); (A.B.); (H.D.); (N.G.); (S.T.)
- Correspondence: (A.P.); (A.T.)
| | - Sabu Thomas
- School of Energy Materials, Mahatma Gandhi University, Kottayam 686560, Kerala, India; (K.S.L.); (D.L.); (A.N.); (A.B.); (H.D.); (N.G.); (S.T.)
| |
Collapse
|
15
|
Hydroxyl-functionalized ultra-thin graphitic-carbon-nitrite nanosheets-accommodated polyvinyl alcohol membrane for pervaporation of isopropanol/water mixture. J Taiwan Inst Chem Eng 2022. [DOI: 10.1016/j.jtice.2021.10.026] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
16
|
Catalytically active membranes for esterification: A review. Chin J Chem Eng 2022. [DOI: 10.1016/j.cjche.2022.03.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
17
|
Zhan X, Zhao X, Gao Z, Ge R, Lu J, Wang L, Li J. Breakthroughs on tailoring membrane materials for ethanol recovery by pervaporation. Chin J Chem Eng 2021. [DOI: 10.1016/j.cjche.2021.12.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
18
|
He Y, Guo Y, Yan F, Yu T, Liu L, Zhang X, Zheng T. Density functional theory study of adsorption of ionic liquids on graphene oxide surface. Chem Eng Sci 2021. [DOI: 10.1016/j.ces.2021.116946] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
19
|
Rhyu SY, Kang SW. Accelerated CO2 transport by synergy effect of ionic liquid and Zn particles. J IND ENG CHEM 2021. [DOI: 10.1016/j.jiec.2021.07.034] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
20
|
The fabrication, characterization, and pervaporation performance of poly(ether-block-amide) membranes blended with 4-(trifluoromethyl)-N(pyridine-2-yl)benzamide and 4-(dimethylamino)-N(pyridine-2-yl)benzamide fillers. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2021.118707] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
21
|
Kojabad ME, Babaluo A, Tavakoli A. A novel semi-mobile carrier facilitated transport membrane containing aniline/poly (ether-block-amide) for CO2/N2 separation: Molecular simulation and experimental study. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2021.118494] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
22
|
Liu C, Xue T, Yang Y, Ouyang J, Chen H, Yang S, Li G, Cai D, Si Z, Li S, Qin P. Effect of crosslinker 3-methacryloxypropylmethyldimethoxysilane on UV-crosslinked PDMS-PTFPMS block copolymer membranes for ethanol pervaporation. Chem Eng Res Des 2021. [DOI: 10.1016/j.cherd.2021.01.023] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
23
|
Pardo F, Gutiérrez-Hernández SV, Hermida-Merino C, Araújo JMM, Piñeiro MM, Pereiro AB, Zarca G, Urtiaga A. Integration of Stable Ionic Liquid-Based Nanofluids into Polymer Membranes. Part II: Gas Separation Properties toward Fluorinated Greenhouse Gases. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:582. [PMID: 33652731 PMCID: PMC7996786 DOI: 10.3390/nano11030582] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 01/13/2021] [Accepted: 02/23/2021] [Indexed: 11/17/2022]
Abstract
Membrane technology can play a very influential role in the separation of the constituents of HFC refrigerant gas mixtures, which usually exhibit azeotropic or near-azeotropic behavior, with the goal of promoting the reuse of value-added compounds in the manufacture of new low-global warming potential (GWP) refrigerant mixtures that abide by the current F-gases regulations. In this context, the selective recovery of difluorometane (R32, GWP = 677) from the commercial blend R410A (GWP = 1924), an equimass mixture of R32 and pentafluoroethane (R125, GWP = 3170), is sought. To that end, this work explores for the first time the separation performance of novel mixed-matrix membranes (MMMs) functionalized with ioNanofluids (IoNFs) consisting in a stable suspension of exfoliated graphene nanoplatelets (xGnP) into a fluorinated ionic liquid (FIL), 1-ethyl-3-methylpyridinium perfluorobutanesulfonate ([C2C1py][C4F9SO3]). The results show that the presence of IoNF in the MMMs significantly enhances gas permeation, yet at the expense of slightly decreasing the selectivity of the base polymer. The best results were obtained with the MMM containing 40 wt% IoNF, which led to an improved permeability of the gas of interest (PR32 = 496 barrer) with respect to that of the neat polymer (PR32= 279 barrer) with a mixed-gas separation factor of 3.0 at the highest feed R410A pressure tested. Overall, the newly fabricated IoNF-MMMs allowed the separation of the near-azeotropic R410A mixture to recover the low-GWP R32 gas, which is of great interest for the circular economy of the refrigeration sector.
Collapse
Affiliation(s)
- Fernando Pardo
- Department of Chemical and Biomolecular Engineering, Universidad de Cantabria, 39005 Santander, Spain; (F.P.); (S.V.G.-H.); (G.Z.)
| | - Sergio V. Gutiérrez-Hernández
- Department of Chemical and Biomolecular Engineering, Universidad de Cantabria, 39005 Santander, Spain; (F.P.); (S.V.G.-H.); (G.Z.)
| | - Carolina Hermida-Merino
- Centro de Investigaciones Biomédicas (CINBIO), Departamento de Física Aplicada, Universidade de Vigo, 36310 Vigo, Spain; (C.H.-M.); (M.M.P.)
| | - João M. M. Araújo
- LAQV, REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal; (J.M.M.A.); (A.B.P.)
| | - Manuel M. Piñeiro
- Centro de Investigaciones Biomédicas (CINBIO), Departamento de Física Aplicada, Universidade de Vigo, 36310 Vigo, Spain; (C.H.-M.); (M.M.P.)
| | - Ana B. Pereiro
- LAQV, REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal; (J.M.M.A.); (A.B.P.)
| | - Gabriel Zarca
- Department of Chemical and Biomolecular Engineering, Universidad de Cantabria, 39005 Santander, Spain; (F.P.); (S.V.G.-H.); (G.Z.)
| | - Ane Urtiaga
- Department of Chemical and Biomolecular Engineering, Universidad de Cantabria, 39005 Santander, Spain; (F.P.); (S.V.G.-H.); (G.Z.)
| |
Collapse
|
24
|
Fang LJ, Chen JH, Wang JM, Lin WW, Lin XG, Lin QJ, He Y. Hydrophobic Two-Dimensional MoS 2 Nanosheets Embedded in a Polyether Copolymer Block Amide (PEBA) Membrane for Recovering Pyridine from a Dilute Solution. ACS OMEGA 2021; 6:2675-2685. [PMID: 33553885 PMCID: PMC7860105 DOI: 10.1021/acsomega.0c04852] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Accepted: 12/29/2020] [Indexed: 05/24/2023]
Abstract
A two-dimensional molybdenum disulfide (MoS2) nanosheet, as a new type of inorganic material with high hydrophobicity and excellent physicochemical stability, holds great application potential in the preparation of a high separation performance organic-inorganic hybrid membrane. In this work, high hydrophobic MoS2 was embedded in hydrophobic polyether copolymer block amide (PEBA) to prepare PEBA/MoS2 organic-inorganic hybrid membranes. The structure, morphology, and hydrophobicity of the hybrid membrane were characterized by scanning electron microscopy, thermogravimetric analysis, contact angle goniometry, X-ray diffraction, infrared spectroscopy analysis, and atomic force microscopy. The effect of embedding of MoS2 on the swelling degree and pervaporation separation performance of the PEBA/MoS2 hybrid membrane was studied with a 1.0 wt % pyridine dilute solution. The results indicated that with increasing the MoS2 content, the separation factor of PEBA/MoS2 increased first and then decreased, while it showed a downward trend in the permeation flux. When the MoS2 content in the PEBA/MoS2 hybrid membrane was 10.0 wt %, the permeation flux was 83.4 g m-2 h-1 (decreased by 21.5% compared with the pure PEBA membrane), and the separation factor reached a maximum value of 11.11 (increased by 37.6% compared with the pure PEBA membrane). Meanwhile, the effects of feed temperature on the pervaporation separation performance of PEBA/MoS2 hybrid membranes were also studied. In addition, as the PEBA/MoS2 hybrid membrane has excellent thermal stability, it is expected to be a promising material for recovering pyridine from wastewater.
Collapse
Affiliation(s)
- Li Jun Fang
- College of Chemistry,
Chemical Engineering and Environment, Minnan
Normal University, Zhangzhou 363000, China
| | - Jian Hua Chen
- College of Chemistry,
Chemical Engineering and Environment, Minnan
Normal University, Zhangzhou 363000, China
- Fujian
Province University Key Laboratory of Modern Analytical Science and
Separation Technology, Minnan Normal University, Zhangzhou 363000, China
| | - Jing Mei Wang
- College of Chemistry,
Chemical Engineering and Environment, Minnan
Normal University, Zhangzhou 363000, China
| | - Wei Wei Lin
- College of Chemistry,
Chemical Engineering and Environment, Minnan
Normal University, Zhangzhou 363000, China
| | - Xiao Gen Lin
- College of Chemistry,
Chemical Engineering and Environment, Minnan
Normal University, Zhangzhou 363000, China
| | - Qiao Jing Lin
- College of Chemistry,
Chemical Engineering and Environment, Minnan
Normal University, Zhangzhou 363000, China
| | - YaSan He
- College of Chemistry,
Chemical Engineering and Environment, Minnan
Normal University, Zhangzhou 363000, China
| |
Collapse
|
25
|
Khan R, Ul Haq I, Mao H, Zhang AS, Xu LH, Zhen HG, Zhao ZP. Enhancing the pervaporation performance of PEBA/PVDF membrane by incorporating MAF-6 for the separation of phenol from its aqueous solution. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2020.117804] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
26
|
Coordinate covalent grafted ILs-modified MIL-101/PEBA membrane for pervaporation: Adsorption simulation and separation characteristics. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2020.118807] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
27
|
Prihatiningtyas I, Hartanto Y, Van der Bruggen B. Ultra-high flux alkali-treated cellulose triacetate/cellulose nanocrystal nanocomposite membrane for pervaporation desalination. Chem Eng Sci 2021. [DOI: 10.1016/j.ces.2020.116276] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
28
|
Zheng D, Hua D, Hong Y, Ibrahim AR, Yao A, Pan J, Zhan G. Functions of Ionic Liquids in Preparing Membranes for Liquid Separations: A Review. MEMBRANES 2020; 10:E395. [PMID: 33291472 PMCID: PMC7762167 DOI: 10.3390/membranes10120395] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 11/28/2020] [Accepted: 11/29/2020] [Indexed: 11/17/2022]
Abstract
Membranes are widely used for liquid separations such as removing solute components from solvents or liquid/liquid separations. Due to negligible vapor pressure, adjustable physical properties, and thermal stability, the application of ionic liquids (ILs) has been extended to fabricating a myriad of membranes for liquid separations. A comprehensive overview of the recent developments in ILs in fabricating membranes for liquid separations is highlighted in this review article. Four major functions of ILs are discussed in detail, including their usage as (i) raw membrane materials, (ii) physical additives, (iii) chemical modifiers, and (iv) solvents. Meanwhile, the applications of IL assisted membranes are discussed, highlighting the issues, challenges, and future perspectives of these IL assisted membranes in liquid separations.
Collapse
Affiliation(s)
- Dayuan Zheng
- Integrated Nanocatalysts Institute (INCI), College of Chemical Engineering, Huaqiao University, 668 Jimei Avenue, Xiamen 361021, Fujian, China; (D.Z.); (Y.H.); (A.Y.); (J.P.)
| | - Dan Hua
- Integrated Nanocatalysts Institute (INCI), College of Chemical Engineering, Huaqiao University, 668 Jimei Avenue, Xiamen 361021, Fujian, China; (D.Z.); (Y.H.); (A.Y.); (J.P.)
| | - Yiping Hong
- Integrated Nanocatalysts Institute (INCI), College of Chemical Engineering, Huaqiao University, 668 Jimei Avenue, Xiamen 361021, Fujian, China; (D.Z.); (Y.H.); (A.Y.); (J.P.)
| | - Abdul-Rauf Ibrahim
- Department of Mechanical Engineering, Faculty of Engineering and Built Environment, Tamale Technical University, Education Ridge Avenue, Sagnarigu District, Tamale, Ghana;
| | - Ayan Yao
- Integrated Nanocatalysts Institute (INCI), College of Chemical Engineering, Huaqiao University, 668 Jimei Avenue, Xiamen 361021, Fujian, China; (D.Z.); (Y.H.); (A.Y.); (J.P.)
| | - Junyang Pan
- Integrated Nanocatalysts Institute (INCI), College of Chemical Engineering, Huaqiao University, 668 Jimei Avenue, Xiamen 361021, Fujian, China; (D.Z.); (Y.H.); (A.Y.); (J.P.)
| | - Guowu Zhan
- Integrated Nanocatalysts Institute (INCI), College of Chemical Engineering, Huaqiao University, 668 Jimei Avenue, Xiamen 361021, Fujian, China; (D.Z.); (Y.H.); (A.Y.); (J.P.)
| |
Collapse
|
29
|
Seyyed Shahabi S, Azizi N, Vatanpour V. Tuning thin-film composite reverse osmosis membranes using deep eutectic solvents and ionic liquids toward enhanced water permeation. J Memb Sci 2020. [DOI: 10.1016/j.memsci.2020.118267] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
30
|
Swelling mechanism of PEBA-2533 membrane for pervaporation separation of high boiling point organic compounds: Experiment and molecular dynamics simulation. Sep Purif Technol 2020. [DOI: 10.1016/j.seppur.2020.116851] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
31
|
|
32
|
Improved CO2 separation performance and interfacial affinity of mixed matrix membrane by incorporating UiO-66-PEI@[bmim][Tf2N] particles. Sep Purif Technol 2020. [DOI: 10.1016/j.seppur.2020.116519] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
33
|
Yousef S, Sarwar Z, Šereika J, Striūgas N, Krugly E, Danilovas PP, Martuzevicius D. A New Industrial Technology for Mass Production of Graphene/PEBA Membranes for CO 2/CH 4 Selectivity with High Dispersion, Thermal and Mechanical Performance. Polymers (Basel) 2020; 12:E831. [PMID: 32260569 PMCID: PMC7240517 DOI: 10.3390/polym12040831] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 03/31/2020] [Accepted: 04/02/2020] [Indexed: 11/16/2022] Open
Abstract
Polyether block amide (PEBA) nanocomposite membranes, including Graphene (GA)/PEBA membranes are considered to be a promising emerging technology for removing CO2 from natural gas and biogas. However, poor dispersion of GA in the produced membranes at industrial scale still forms the main barrier to commercialize. Within this frame, this research aims to develop a new industrial approach to produce GA/PEBA granules that could be used as a feedstock material for mass production of GA/PEBA membranes. The developed approach consists of three sequential phases. The first stage was concentrated on production of GA/PEBA granules using extrusion process (at 170-210 °C, depending on GA concentration) in the presence of Paraffin Liquid (PL) as an adhesive layer (between GA and PEBA) and assisted melting of PEBA. The second phase was devoted to production of GA/PEBA membranes using a solution casting method. The last phase was focused on evaluation of CO2/CH4 selectivity of the fabricated membranes at low and high temperatures (25 and 55 °C) at a constant feeding pressure (2 bar) using a test rig built especially for that purpose. The granules and membranes were prepared with different concentrations of GA in the range 0.05 to 0.5 wt.% and constant amount of PL (2 wt.%). Also, the morphology, physical, chemical, thermal, and mechanical behaviors of the synthesized membranes were analyzed with the help of SEM, TEM, XRD, FTIR, TGA-DTG, and universal testing machine. The results showed that incorporation of GA with PEBA using the developed approach resulted in significant improvements in dispersion, thermal, and mechanical properties (higher elasticity increased by ~10%). Also, ideal CO2/CH4 selectivity was improved by 29% at 25 °C and 32% at 55 °C.
Collapse
Affiliation(s)
- Samy Yousef
- Department of Production Engineering, Faculty of Mechanical Engineering and Design, Kaunas University of Technology, LT-51424 Kaunas, Lithuania
- Department of Materials Science, South Ural State University, Lenin Prospect 76, 454080 Chelyabinsk, Russia
| | - Zahid Sarwar
- Faculty of Chemical Technology, Kaunas University of Technology, LT-50254 Kaunas, Lithuania; (Z.S.); (E.K.); (P.P.D.); (D.M.)
| | - Justas Šereika
- Lithuanian Energy Institute, Laboratory of Heat Equipment Research and Testing, Breslaujos 3, LT-44403 Kaunas, Lithuania;
| | - Nerijus Striūgas
- Lithuanian Energy Institute, Laboratory of Combustion Processes, Breslaujos 3, LT-44403 Kaunas, Lithuania;
| | - Edvinas Krugly
- Faculty of Chemical Technology, Kaunas University of Technology, LT-50254 Kaunas, Lithuania; (Z.S.); (E.K.); (P.P.D.); (D.M.)
| | - Paulius Pavelas Danilovas
- Faculty of Chemical Technology, Kaunas University of Technology, LT-50254 Kaunas, Lithuania; (Z.S.); (E.K.); (P.P.D.); (D.M.)
| | - Dainius Martuzevicius
- Faculty of Chemical Technology, Kaunas University of Technology, LT-50254 Kaunas, Lithuania; (Z.S.); (E.K.); (P.P.D.); (D.M.)
| |
Collapse
|
34
|
Li S, Huang L, Ke C, Pang Z, Liu L. Pathway dissection, regulation, engineering and application: lessons learned from biobutanol production by solventogenic clostridia. BIOTECHNOLOGY FOR BIOFUELS 2020; 13:39. [PMID: 32165923 PMCID: PMC7060580 DOI: 10.1186/s13068-020-01674-3] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Accepted: 02/04/2020] [Indexed: 06/01/2023]
Abstract
The global energy crisis and limited supply of petroleum fuels have rekindled the interest in utilizing a sustainable biomass to produce biofuel. Butanol, an advanced biofuel, is a superior renewable resource as it has a high energy content and is less hygroscopic than other candidates. At present, the biobutanol route, employing acetone-butanol-ethanol (ABE) fermentation in Clostridium species, is not economically competitive due to the high cost of feedstocks, low butanol titer, and product inhibition. Based on an analysis of the physiological characteristics of solventogenic clostridia, current advances that enhance ABE fermentation from strain improvement to product separation were systematically reviewed, focusing on: (1) elucidating the metabolic pathway and regulation mechanism of butanol synthesis; (2) enhancing cellular performance and robustness through metabolic engineering, and (3) optimizing the process of ABE fermentation. Finally, perspectives on engineering and exploiting clostridia as cell factories to efficiently produce various chemicals and materials are also discussed.
Collapse
Affiliation(s)
- Shubo Li
- College of Light Industry and Food Engineering, Guangxi University, Nanning, 530004 China
| | - Li Huang
- College of Light Industry and Food Engineering, Guangxi University, Nanning, 530004 China
| | - Chengzhu Ke
- College of Light Industry and Food Engineering, Guangxi University, Nanning, 530004 China
| | - Zongwen Pang
- College of Life Science and Technology, Guangxi University, Nanning, 530005 China
| | - Liming Liu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122 China
| |
Collapse
|
35
|
Li W, Li J, Wang N, Li X, Zhang Y, Ye Q, Ji S, An QF. Recovery of bio-butanol from aqueous solution with ZIF-8 modified graphene oxide composite membrane. J Memb Sci 2020. [DOI: 10.1016/j.memsci.2019.117671] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
36
|
Lee JY, Park H, Lee JS, Yoon S, Lee JH. Biphenyl-based covalent triazine framework-incorporated polydimethylsiloxane membranes with high pervaporation performance for n-butanol recovery. J Memb Sci 2020. [DOI: 10.1016/j.memsci.2019.117654] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
37
|
Gupta S, Thorat GB, Murthy ZVP. Mixed Matrix PVA-GO-TiO2 Membranes for the Dehydration of Isopropyl Alcohol by Pervaporation. Macromol Res 2020. [DOI: 10.1007/s13233-020-8070-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|