1
|
Miwa T, Nagatsuma S, Hirakata Y, Nagai M, Ikarashi T, Takimoto Y, Watari T, Yamaguchi T, Hatamoto M. Combination of a membrane bioreactor with a rotating biological contactor holding several diverse metazoans can reduce excess sludge with fouling mitigation. WATER RESEARCH 2024; 266:122352. [PMID: 39243462 DOI: 10.1016/j.watres.2024.122352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 08/25/2024] [Accepted: 08/26/2024] [Indexed: 09/09/2024]
Abstract
In a membrane bioreactor (MBR) system, in situ sludge reduction techniques induce membrane fouling. To address this challenge, we incorporated a rotating mesh carrier, which can adsorb organic matter and provide a habitat for metazoans, into the anoxic tank of a conventional anoxic/oxic-MBR (A/O-MBR) system, termed rotating biological contactor-MBR (RBC-MBR), and evaluated treatment performance. Over 151 days, lab-scale RBC-MBR and A/O-MBR were used to treat municipal sewage. Both reactors showed similar COD and NH4+ removal rates. However, RBC-MBR reduced excess sludge by approximately 45 % compared with A/O-MBR. Microscopic observation and 18S rRNA gene-based microbial analysis revealed the persistence of microfauna and metazoans (oligochaetes, nematodes, and rotifers) in RBC, which are typically absent in activated sludge. Additionally, the metazoan's population in the RBC-MBR membrane tank was two-fold that of A/O-MBR, indicating enhanced sludge reduction through predation. Despite these reductions, the increase in transmembrane pressure was similar between RBC-MBR and A/O-MBR, suggesting that sludge holding by RBC mesh media degrade fouling substances, such as proteins and polysaccharides and improves sludge filterability, resulting in membrane fouling mitigation. Microbial communities in both reactors were similar, indicating that the installation of RBC did not alter the microbial community of sludge. Network analysis suggested potential symbiotic or prey-predator relationships between bacteria and metazoans. This study reveals that RBC-MBR effectively reduced the excess sludge while mitigating membrane fouling, highlighting one of the promising technology for applying metazoan predation into MBR.
Collapse
Affiliation(s)
- Toru Miwa
- Department of Science of Technology Innovation, Nagaoka University of Technology, 1603-1 Kamitomioka, Nagaoka, 940-2188, Japan; Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology, Central 6, 1-1-1 Higashi, Tsukuba, Ibaraki, 305-8566, Japan
| | - Shimon Nagatsuma
- Department of Science of Technology Innovation, Nagaoka University of Technology, 1603-1 Kamitomioka, Nagaoka, 940-2188, Japan
| | - Yuga Hirakata
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology, Central 6, 1-1-1 Higashi, Tsukuba, Ibaraki, 305-8566, Japan
| | - Mami Nagai
- Department of Science of Technology Innovation, Nagaoka University of Technology, 1603-1 Kamitomioka, Nagaoka, 940-2188, Japan; National Institute of Technology, Oita College, Department of Civil and Environmental Engineering, 1666 Maki, Oita, 870-0152, Japan
| | - Tomoya Ikarashi
- Department of Civil and Environmental Engineering, Nagaoka University of Technology, 1603-1 Kamitomioka, Nagaoka, 940-2188, Japan
| | - Yuya Takimoto
- Department of Mechanical Engineering, Nagaoka University of Technology, 1603-1 Kamitomioka, Nagaoka, 940-2188, Japan
| | - Takahiro Watari
- Department of Civil and Environmental Engineering, Nagaoka University of Technology, 1603-1 Kamitomioka, Nagaoka, 940-2188, Japan
| | - Takashi Yamaguchi
- Department of Science of Technology Innovation, Nagaoka University of Technology, 1603-1 Kamitomioka, Nagaoka, 940-2188, Japan; Department of Civil and Environmental Engineering, Nagaoka University of Technology, 1603-1 Kamitomioka, Nagaoka, 940-2188, Japan
| | - Masashi Hatamoto
- Department of Civil and Environmental Engineering, Nagaoka University of Technology, 1603-1 Kamitomioka, Nagaoka, 940-2188, Japan.
| |
Collapse
|
2
|
Kong Z, Wang Z, Lu X, Song Y, Yuan Z, Hu S. Significant in situ sludge yield reduction in an acidic activated sludge system. WATER RESEARCH 2024; 261:122042. [PMID: 38986284 DOI: 10.1016/j.watres.2024.122042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 07/01/2024] [Accepted: 07/02/2024] [Indexed: 07/12/2024]
Abstract
Minimizing sludge generation in activated sludge systems is critical to reducing the operational cost of wastewater treatment plants (WWTPs), particularly for small plants where bioenergy is not recovered. This study introduces a novel acidic activated sludge technology for in situ sludge yield reduction, leveraging acid-tolerant ammonia-oxidizing bacteria (Candidatus Nitrosoglobus). The observed sludge yield (Yobs) was calculated based on the cumulative sludge generation and COD removal during 400 d long-term operation. The acidic process achieved a low Yobs of 0.106 ± 0.004 gMLSS/gCOD at pH 4.6 to 4.8 and in situ free nitrous acid (FNA) of 1 to 3 mg/L, reducing sludge production by 58 % compared to the conventional neutral-pH system (Yobs of 0.250 ± 0.003 gMLSS/gCOD). The acidic system also maintained effective sludge settling and organic matter removal over long-term operation. Mechanism studies revealed that the acidic sludge displayed higher endogenous respiration, sludge hydrolysis rates, and higher soluble microbial products and loosely-bounded extracellular polymer substances, compared to the neutral sludge. It also selectively enriched several hydrolytic genera (e.g., Chryseobacterium, Acidovorax, and Ottowia). Those results indicate that the acidic pH and in situ FNA enhanced sludge disintegration, hydrolysis, and cryptic growth. Besides, a lower intracellular ATP content was observed for acidic sludge than neutral sludge, suggesting potential decoupling of catabolism and anabolism in the acidic sludge. These findings collectively demonstrate that the acidic activated sludge technology could significantly reduce sludge yield, contributing to more cost- and space-effective wastewater management.
Collapse
Affiliation(s)
- Zheng Kong
- Australian Centre for Water and Environmental Biotechnology, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Zhiyao Wang
- Australian Centre for Water and Environmental Biotechnology, The University of Queensland, St Lucia, QLD 4072, Australia.
| | - Xi Lu
- Australian Centre for Water and Environmental Biotechnology, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Yunqian Song
- Australian Centre for Water and Environmental Biotechnology, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Zhiguo Yuan
- School of Energy and Environment, City University of Hong Kong, Kowloon, Hong Kong 999077, PR China
| | - Shihu Hu
- Australian Centre for Water and Environmental Biotechnology, The University of Queensland, St Lucia, QLD 4072, Australia
| |
Collapse
|
3
|
Ning X, Hu J, Yue J, Tang T, Zhang B. Microbial community structure of an anaerobic side-stream coupled anoxic-aerobic membrane bioreactor (AOMBR-ASSR) for an in-situ sludge reduction process. Bioprocess Biosyst Eng 2024; 47:1027-1037. [PMID: 38777954 DOI: 10.1007/s00449-024-03019-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 04/10/2024] [Indexed: 05/25/2024]
Abstract
With the anoxic-aerobic membrane bioreactor (AO-MBR, CP) as a reference, high-throughput sequencing technology was used to reveal the characteristics of the microbial community structure in the anaerobic side-stream anoxic-aerobic membrane bioreactor sludge reduction process (AOMBR-ASSR, SRP). After the stable operation of two processes for 120 days, the average removal efficiencies of TN and TP in the effluent of SRP were increased by 5.6% and 29.8%, respectively. The observed sludge yields (Yobs) of the two processes were 0.14 and 0.17 gMLSS/(gCOD), respectively, and the sludge reduction rate of the SRP was 19.5%. Compared to the CP, the microbial richness and diversity index of SRP increased significantly. Chloroflexi, which is responsible for the degradation of organic substances under an anaerobic condition, seemed to be reduced in the SRP. Meanwhile, other phyla that involved in the nitrogen cycle, such as Nitrospirae and Planctomycetes, were found to be more abundant in the SRP than in the CP. A total of 21 identified classes were observed, and primarily hydrolyzed fermented bacteria (Sphingobacteriia, Betaproteobacteria, Actinobacteria and Deltaproteobacteria) and slow-growing microorganisms (Bacilli) were accumulated in the SRP. At the genus level, the inserted anaerobic side-stream reactor favored the hydrolyzed bacteria (Saprospiraceae, Rhodobacter and Candidatus_Competibacter), fermented bacteria (Lactococcus and Trichococcus), and slow-growing microorganisms (Dechloromonas and Haliangium), which play a crucial role in the sludge reduction. Furthermore, the enrichment of bacterial species related to nitrogen (Nitrospir and Azospira) provided the potential for nitrogen removal, while the anaerobic environment of the side-stream reactor promoted the enrichment of phosphorus-accumulating organisms.
Collapse
Affiliation(s)
- Xinqiang Ning
- College of Bioengineering, Sichuan University of Science & Engineering, Yibin, 644000, China
| | - Jialun Hu
- College of Bioengineering, Sichuan University of Science & Engineering, Yibin, 644000, China
| | - Jiao Yue
- School of Food and Biotechnology, Xihua University, Chengdu, 610039, China
- Environmental Water Construction Co. Ltd., Chengdu Environment Group, Chengdu, 610000, China
| | - Tang Tang
- College of Bioengineering, Sichuan University of Science & Engineering, Yibin, 644000, China
| | - Bin Zhang
- School of Food and Biotechnology, Xihua University, Chengdu, 610039, China.
| |
Collapse
|
4
|
Zhao F, Zhou Z, Du P, Li X, Lu Q. Reduction of fouling of gravity-driven membrane by combined treatment of persulphate/nanoscale zero-valent iron/ultraviolet and dynamic dual coagulant flocs layer. ENVIRONMENTAL TECHNOLOGY 2024; 45:3405-3417. [PMID: 37226802 DOI: 10.1080/09593330.2023.2215939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Accepted: 03/17/2023] [Indexed: 05/26/2023]
Abstract
In this study, persulphate and nanoscale zero-valent iron were activated by ultraviolet irradiation (PS/nZVI/UV), followed by formation of dynamic flocs with AlCl3-TiCl4 coagulant directly injected into a gravity-driven membrane (GDM) tank. Membrane fouling caused by typical organic matter fractions including humic acid (HA), HA together with bovine serum albumin (HA-BSA), HA combined with polysaccharide (HA-SA) and the HA-BSA-SA mixture at pH of 6.0, 7.5 and 9.0 were evaluated by specific flux and fouling resistance distribution. The results showed that GDM pre-layered with AlCl3-TiCl4 flocs exhibited the maximum specific flux, followed by AlCl3 and TiCl4. Pre-oxidation with 0.5 mM PS and 0.1 g nZVI under UV radiation for 20 min was beneficial to degrade HA and SA fraction with molecular weight >100 kDa and <30 kDa, and BSA fraction with <30 kDa. The presence of BSA attributed mostly to irreversible fouling, SA together with BAS could exacerbate irreversible fouling, while HA caused the least fouling. The irreversible resistance of a PS/nZVI/UV-GDM system was 62.79%, 27.27%, 58.03% and 49.68% lower than that of control GDM in the treatment of HA, HA-BSA, HA-SA and HA-BSA-SA, respectively. The PS/nZVI/UV-GDM system could achieve the highest foulants removal efficiency at pH of 6.0. Morphological observations confirmed the differences in biofouling layers in different water types. Over 30-day operation, the bacterial genera on the biofouling layer could affect the organic removals, while the type of organic matter that was present influenced the relative abundance of bacterial genera.
Collapse
Affiliation(s)
- Fuwang Zhao
- School of Energy and Environment, Zhong Yuan University of Technology, Zhengzhou, People's Republic of China
| | - Zhiwei Zhou
- College of Architecture & Civil Engineering, Faculty of Urban Construction, Beijing University of Technology, Beijing, People's Republic of China
| | - Peng Du
- College of Architecture & Civil Engineering, Faculty of Urban Construction, Beijing University of Technology, Beijing, People's Republic of China
- China Academy of Building Research, Institute of Building Fire Research, Beijing, People's Republic of China
| | - Xing Li
- College of Architecture & Civil Engineering, Faculty of Urban Construction, Beijing University of Technology, Beijing, People's Republic of China
| | - Qingxuan Lu
- School of Energy and Environment, Zhong Yuan University of Technology, Zhengzhou, People's Republic of China
| |
Collapse
|
5
|
Zhang J, Dong Y, Wang Q, Xu D, Lv L, Zhang G, Ren Z. Effects of lysed sludge reflux point on ultrasound lysis-cryptic growth in anaerobic/aerobic (A/O) wastewater treatment: Sludge reduction, microbial community, and metabolism. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 347:119111. [PMID: 37774664 DOI: 10.1016/j.jenvman.2023.119111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 08/18/2023] [Accepted: 09/01/2023] [Indexed: 10/01/2023]
Abstract
Ultrasonication allows sludge reduction to be performed in situ during wastewater treatment, and the reflux point of the lysed sludge affects this performance. This study investigated the effects of reflux point (anaerobic stage, carbon/nitrogen (C/N) lowest stage, and aerobic stage) on sludge lysis-cryptic growth in an anaerobic/aerobic reactor and variations in the sludge and microbial community. The best reflux point occurred at the lowest C/N ratio stage, and a 50.96% reduction in excess sludge was achieved. The reflux of the lysed sludge to the aerobic stage reduced nitrogen and phosphorus removal. The reflux of the lysed sludge decreased the average sludge size, reaching 29.2 μm when reflux to the aerobic stage. Scanning electron microscopy showed that the sludge surface was unaffected by the reflux point. The Fourier-transform infrared spectrometry and X-ray photoelectron spectroscopy results showed that the most prominent variation in the intensity of the sludge functional groups occurred when the reflux was at the lowest C/N stage. The amount of extracellular polymeric substances decreased the most during reflux to the anaerobic stage. The sludge microbial communities varied with the reflux point, and the dominant phyla during reflux to the anaerobic, lowest C/N, and aerobic stages were Bacteroidetes, Firmicutes, and Bacteroidetes, respectively. Furthermore, the reflux point did not alter the metabolic pathway of sludge microorganisms but increased the number of enzymes in metabolic pathways.
Collapse
Affiliation(s)
- Jie Zhang
- School of Energy & Environmental Engineering, Tianjin Key Laboratory of Clean Energy and Pollution Control, Hebei University of Technology, Tianjin, 300401, China
| | - Yilin Dong
- School of Energy & Environmental Engineering, Tianjin Key Laboratory of Clean Energy and Pollution Control, Hebei University of Technology, Tianjin, 300401, China
| | - Qiuwen Wang
- School of Energy & Environmental Engineering, Tianjin Key Laboratory of Clean Energy and Pollution Control, Hebei University of Technology, Tianjin, 300401, China
| | - Dongyu Xu
- School of Energy & Environmental Engineering, Tianjin Key Laboratory of Clean Energy and Pollution Control, Hebei University of Technology, Tianjin, 300401, China
| | - Longyi Lv
- School of Energy & Environmental Engineering, Tianjin Key Laboratory of Clean Energy and Pollution Control, Hebei University of Technology, Tianjin, 300401, China
| | - Guangming Zhang
- School of Energy & Environmental Engineering, Tianjin Key Laboratory of Clean Energy and Pollution Control, Hebei University of Technology, Tianjin, 300401, China.
| | - Zhijun Ren
- School of Energy & Environmental Engineering, Tianjin Key Laboratory of Clean Energy and Pollution Control, Hebei University of Technology, Tianjin, 300401, China.
| |
Collapse
|
6
|
You X, Shen L, Zhao Y, Zhao DL, Teng J, Lin H, Li R, Xu Y, Zhang M. Quantifying interfacial interactions for improved membrane antifouling: A novel approach using triangulation and surface element integration method. J Colloid Interface Sci 2023; 650:775-783. [PMID: 37441970 DOI: 10.1016/j.jcis.2023.06.117] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 05/28/2023] [Accepted: 06/17/2023] [Indexed: 07/15/2023]
Abstract
To gain a thorough understanding of interfacial behaviors such as adhesion and flocculation controlling membrane fouling, it is necessary to simulate the actual membrane surface morphology and quantify interfacial interactions. In this work, a new method integrating the rough membrane morphology reconstruction technology (atomic force microscopy (AFM) combining with triangulation technique), the surface element integration (SEI) method, the extended Derjaguin-Landau-Verwey-Overbeek (XDLVO) theory, the compound Simpson's approach, and the computer programming was proposed. This new method can exactly mimic the real membrane surface in terms of roughness and shape, breaking the limitation of previous fractal theory and Gaussian method where the simulated membrane surface is only statistically similar to the real rough surface, thus achieving a precise description of the interfacial interactions between sludge foulants and the real membrane surface. This method was then applied to assess the antifouling propensity of a polyvinylidene fluoride (PVDF) membrane modified with Ni-ZnO particles (NZPs). The simulated results showed that the interfacial interactions between sludge foulants in a membrane bioreactor (MBR) and the modified PVDF-NZPs membrane transformed from an attractive force to a repulsive force. The phenomenon confirmed the significant antifouling propensity of the PVDF-NZPs membrane, which is highly consistent with the experimental findings and the interfacial interactions described in previous literature, suggesting the high feasibility and reliability of the proposed method. Meanwhile, the original programming code of the quantification was also developed, which further facilitates the widespread use of this method and enhances the value of this work.
Collapse
Affiliation(s)
- Xiujia You
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China.
| | - Liguo Shen
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China.
| | - Ying Zhao
- Teachers' Colleges, Beijing Union University, 5 Waiguanxiejie Street, Chaoyang District, Beijing 100011, China.
| | - Die Ling Zhao
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China.
| | - Jiaheng Teng
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China.
| | - Hongjun Lin
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China.
| | - Renjie Li
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China.
| | - Yanchao Xu
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China.
| | - Meijia Zhang
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China.
| |
Collapse
|
7
|
Yang B, Liang W, Bin L, Chen W, Chen X, Li P, Wen S, Huang S, Tang B. Insights into the life-cycle of aerobic granular sludge in a continuous flow membrane bioreactor by tracing its heterogeneous properties at different stages. WATER RESEARCH 2023; 243:120419. [PMID: 37536250 DOI: 10.1016/j.watres.2023.120419] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 07/24/2023] [Accepted: 07/25/2023] [Indexed: 08/05/2023]
Abstract
This work gave insights into the life-cycle of aerobic granular sludge (AGS) by tracing its heterogeneity in the basic properties at different stages in a closed system (a continuous flow membrane bioreactor, MBR), including physical and chemical characteristics and microbial communities. The results indicate that the entire life-cycle consists of the following four stages, namely, the initial, growing, mature and cleaved stages, where multiple AGS properties synergistically affect the rheological properties of the AGS over its life-cycle. The storage modulus (G') of AGS reached its maximum value at the mature stage, whose value was significantly and positively correlated with the protein (PN) in extracellular polymeric substances (EPS) and granule size, specifically the peak area of granule size distribution, but this value was strongly and negatively correlated with the roughness. The AGS at the mature stage would be more vulnerable to be destroyed than that at other stages under the condition of higher shear strain, such as γ = 50%, which was associated with larger granule size and fewer polysaccharide (PS)-related functional groups (especially in the soluble microbial products (SMPs) in the outermost layer of AGS), and the decrease in PS was correlated with a higher relative abundance of Chloroflexi. Additionally, the value of shear strain that AGS was subjected to had a good linear correlation (R2=0.993) with the Young's modulus, which indicated the ability of AGS to resist deformation improved with increasing values of shear strain.
Collapse
Affiliation(s)
- Biao Yang
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou, 510006, PR China
| | - Weifeng Liang
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou, 510006, PR China
| | - Liying Bin
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou, 510006, PR China
| | - Weirui Chen
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou, 510006, PR China
| | - Xinyi Chen
- Guangdong Guangshen Environmental Protection Technology Co., Ltd., Guangzhou, 510006, PR China
| | - Ping Li
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou, 510006, PR China
| | - Shanglong Wen
- Guangdong Guangshen Environmental Protection Technology Co., Ltd., Guangzhou, 510006, PR China
| | - Shaosong Huang
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou, 510006, PR China
| | - Bing Tang
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou, 510006, PR China.
| |
Collapse
|
8
|
Peng F, Zhang Z, Sun M, Shao Y, Feng Y. Evaluating performance of nano-Fe 3O 4 modified granular activated carbon assisted wastewater treatment in anaerobic fluidized membrane bioreactor. BIORESOURCE TECHNOLOGY 2023; 374:128737. [PMID: 36781146 DOI: 10.1016/j.biortech.2023.128737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Revised: 02/08/2023] [Accepted: 02/09/2023] [Indexed: 06/18/2023]
Abstract
Magnetic granular activated carbon (MGAC), a nano-Fe3O4 modified granular activated carbon, was used as the carrier in an anaerobic fluidized-bed membrane bioreactor (AFMBR) to promote domestic wastewater treatment efficiency and alleviate membrane biofouling. Chemical oxygen demand (COD) removal reached 89 ± 2.6% with the effluent concentration of 20 ± 3.9 mg/L in the MGAC-AFMBR, while it was 28 ± 5.2 mg/L in AFMBR at hydraulic retention time (HRT) of 4 h. Total nitrogen (TN) removal was also enhanced by 4.0% with MGAC. An increased proportion of Chloroflexi and Bacteroidetes in the sludge may be responsible for improved treatment performance. MGAC reduced the protein and polysaccharide content in extracellular polymeric substances (EPS) by 9.8% and 8.1%, respectively. Besides, Bacteroidetes and Proteobacteria abundance decreased by 4.0% and 16.6% in the membrane cake layer with MGAC addition. Therefore, the high-quality effluent and low membrane biofouling of AFMBR was sustained by MGAC.
Collapse
Affiliation(s)
- Fangyue Peng
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, No73, Huanghe Road, Nangang District, Harbin 150090, China
| | - Zhaohan Zhang
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, No73, Huanghe Road, Nangang District, Harbin 150090, China
| | - Muchen Sun
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, No73, Huanghe Road, Nangang District, Harbin 150090, China
| | - Yuqiang Shao
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, No73, Huanghe Road, Nangang District, Harbin 150090, China
| | - Yujie Feng
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, No73, Huanghe Road, Nangang District, Harbin 150090, China.
| |
Collapse
|
9
|
Huang R, Pan H, Zheng X, Fan C, Si W, Bao D, Gao S, Tian J. Effect of Membrane Pore Size on Membrane Fouling of Corundum Ceramic Membrane in MBR. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:4558. [PMID: 36901568 PMCID: PMC10001914 DOI: 10.3390/ijerph20054558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 03/01/2023] [Accepted: 03/02/2023] [Indexed: 06/18/2023]
Abstract
Ceramic membrane has emerged as a promising material to address the membrane fouling issue in membrane bioreactors (MBR). In order to optimize the structural property of ceramic membrane, four corundum ceramic membranes with the mean pore size of 0.50, 0.63, 0.80, and 1.02 μm were prepared, which were designated as C5, C7, C13, and C20, respectively. Long-term MBR experiments showed that the C7 membrane with medium pore size experienced the lowest trans-membrane pressure development rate. Both the decrease and increase of membrane pore size would lead to more severe membrane fouling in the MBR. It was also interesting that with the increase of membrane pore size, the relative proportion of cake layer resistance in total fouling resistance was gradually increased. The content of dissolved organic foulants (i.e., protein, polysaccharide and DOC) on the surface of C7 was quantified as the lowest among the different ceramic membranes. Microbial community analysis also revealed the C7 had a lower relative abundance of membrane fouling associated bacteria in its cake layer. The results clearly demonstrated that ceramic membrane fouling in MBR could be effectively alleviated through optimizing the membrane pore size, which was a key structural factor for preparation of ceramic membrane.
Collapse
Affiliation(s)
- Rui Huang
- School of Civil and Transportation Engineering, Hebei University of Technology, Tianjin 300401, China
- Guangdong GDH Water Co., Ltd., Shenzhen 518021, China
- School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Hui Pan
- School of Civil and Transportation Engineering, Hebei University of Technology, Tianjin 300401, China
| | - Xing Zheng
- State Key Laboratory of Eco-Hydraulics in Northwest Arid Region, Xi’an University of Technology, Xi’an 710048, China
| | - Chao Fan
- School of Civil and Transportation Engineering, Hebei University of Technology, Tianjin 300401, China
| | - Wenyan Si
- School of Civil and Transportation Engineering, Hebei University of Technology, Tianjin 300401, China
| | - Dongguan Bao
- Shanghai Hanyuan Engineering & Technology Co., Ltd., Shanghai 201400, China
| | - Shanshan Gao
- School of Civil and Transportation Engineering, Hebei University of Technology, Tianjin 300401, China
- Guangdong GDH Water Co., Ltd., Shenzhen 518021, China
| | - Jiayu Tian
- School of Civil and Transportation Engineering, Hebei University of Technology, Tianjin 300401, China
- School of Environment, Harbin Institute of Technology, Harbin 150090, China
| |
Collapse
|
10
|
Xiao K, Wang K, Yu S, Yuan Y, Qin Y, An Y, Zhao X, Zhou Z. Membrane fouling behavior in membrane bioreactors for nitrogen-deficient wastewater pretreated by ammonium ion exchange. J Memb Sci 2023. [DOI: 10.1016/j.memsci.2022.121087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
11
|
Wu B, Ren Q, Xia L, Liu Y, Cui X, Dai A, Wei T, Zhou Y. pH-dependent microbial niches succession and antibiotic resistance genes distribution in an oxygen-based membrane biofilm reactor treating greywater. ENVIRONMENTAL RESEARCH 2023; 216:114725. [PMID: 36343711 DOI: 10.1016/j.envres.2022.114725] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 10/18/2022] [Accepted: 11/01/2022] [Indexed: 06/16/2023]
Abstract
System pH is found to crucially affect biofilm growth and microorganisms' activity in the biofilm-based wastewater treatment system. This study investigated the pH-dependent pollutants removal, microbial niches succession and antibiotic resistance genes (ARGs) accumulation in an oxygen-based membrane biofilm reactor treating greywater. Results indicated that neutral conditions achieved the highest biofilm concentration and living cells, which enabled the highest pollutants removal rates; multifarious functional groups in biofilm enabled pollutants adsorption, which favored its continuous bio-removal. Microbial communities under acidic condition (pH = 5.0) were significantly different with that under other conditions (p < 0.05). The neutral and alkaline niches (pH = 7.0 and 9.0) were predominant by organics biodegradation and nitrogen reduction bacteria (e.g. Sphingobacteriales, Pseudomonas, Flavobacterium and Phenylobacterium), but which were significantly dropped under acidic conditions, leading to the declined reactor performance. ARGs in biofilm (predominant by korB, intI-1, sul1 and sul2) were much higher than that in the cell-free liquid and the target ARGs accumulation (korB, intI-1, blaCTX-M, qnrS) had nearly linear positive relationships (R2 > 0.95, P < 0.01) with biofilm-attached linear alkylbenzene sulfonate (LAS). LAS stimulate ARGs proliferation in functional microorganisms (korB, sul-1 and intI-1 were significantly associated with related microbial genus) and biofilm played a key role in ARGs dissemination. The relatively low ARGs in both biofilm and effluent under neutral conditions suggested that pH controlling can be an effective strategy to inhibit ARGs dissemination and proliferation in the system.
Collapse
Affiliation(s)
- Beibei Wu
- College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, China
| | - Qingqing Ren
- College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, China
| | - Libo Xia
- College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, China
| | - Ying Liu
- College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, China
| | - Xiaocai Cui
- College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, China
| | - Anqi Dai
- College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, China
| | - Ting Wei
- College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yun Zhou
- College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, China.
| |
Collapse
|
12
|
Yuan C, Sun F, Zhang J, Feng L, Tu H, Li A. Low-temperature-resistance granulation of activated sludge and the microbial responses to the granular structural stabilization. CHEMOSPHERE 2023; 311:137146. [PMID: 36347348 DOI: 10.1016/j.chemosphere.2022.137146] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 10/14/2022] [Accepted: 11/03/2022] [Indexed: 06/16/2023]
Abstract
Completely loss of granular structural stability and reliable start-up of aerobic granular sludge (AGS) system are considered as the biggest challenges for its engineering application under seasonal temperature variation, especially extremely low temperatures. In this study, two identical sequencing batch reactors (SBR) were successfully start-up at 10 °C (R1) and 25 °C (R2), respectively, and then operated under a strategy of stepwise change of temperatures to investigate the stability of the granular sludge by examining its microbial characteristics, bis (3'-5')-cyclic dimeric guanosine monophosphate (c-di-GMP), extracellular polymeric substance (EPS) and sludge physiochemical properties. The results showed that AGS formed under the low temperature preferentially secrete EPS and c-di-GMP for stable granulation and improvement of its resistance to temperature changes. Meanwhile, R1 successfully obtained aerobic granulation with high biomass concentration and superior settleability, as well as high pollutant removal performance. In comparison, R2 took a longer time for granulation and was subjected to serious disintegration of AGS. The matrix structure partially formed by filamentous bacteria during the start-up stage in R1 was one of major reasons for its own superiority beyond R2 in granulation. Slow-growing organisms such as autotrophic nitrifying and Anammox bacteria, phosphorus accumulation organisms, EPS-producing genera, and c-di-GMP pathway-dependent genera, were exclusively enriched in the R1 and resulted in higher pollutants removal efficiencies and stable structure, whereas Sphaerotilus dominated in R2 that related closely with its unstable performance. Therefore, the strategy based on the stepwise change of temperatures from extremely low temperatures may be one feasible way for the sustainable application of AGS system, which is of significance to address the challenging problems of AGS applications.
Collapse
Affiliation(s)
- Chunyan Yuan
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, People's Republic of China; Harbin Institute of Technology (Shenzhen), Shenzhen Key Laboratory of Water Resource Utilization and Environmental Pollution Control, Shenzhen, 518055, People's Republic of China
| | - Feiyun Sun
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, People's Republic of China; Harbin Institute of Technology (Shenzhen), Shenzhen Key Laboratory of Water Resource Utilization and Environmental Pollution Control, Shenzhen, 518055, People's Republic of China.
| | - Jianjun Zhang
- Shenzhen Municipal Design & Research Institute Co. Ltd., People's Republic of China
| | - Liang Feng
- Harbin Institute of Technology (Shenzhen), Shenzhen Key Laboratory of Water Resource Utilization and Environmental Pollution Control, Shenzhen, 518055, People's Republic of China
| | - Honghua Tu
- Harbin Institute of Technology (Shenzhen), Shenzhen Key Laboratory of Water Resource Utilization and Environmental Pollution Control, Shenzhen, 518055, People's Republic of China
| | - Ang Li
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, People's Republic of China.
| |
Collapse
|
13
|
Shao Y, Zhou Z, Zuo Y, Jiang J, Wang L, Sun Y, He J, Qiu J, An Y, Jiang LM. Sludge decay kinetics and metagenomic analysis uncover discrepant metabolic mechanisms in two different sludge in situ reduction systems. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 851:158346. [PMID: 36041603 DOI: 10.1016/j.scitotenv.2022.158346] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 08/14/2022] [Accepted: 08/23/2022] [Indexed: 06/15/2023]
Abstract
A comparative study was conducted between an anaerobic side-stream reactor (ASSR) process and a sludge process reduction (SPR) activated sludge (SPRAS) process for uncovering crucial metabolic mechanisms governing sludge reduction. Both of two processes were efficient in removing pollutants, while the SPRAS (62.3 %) obtained much higher sludge reduction than the ASSR (27.9 %). The highest rate coefficients of sludge decay, heterotroph lysis and particles hydrolysis were 0.106, 0.219 and 0.054 d-1 in the SPR module, followed by ASSR with coefficients of 0.060, 0.135 and 0.047 d-1. The SPR module achieved an 81.9 % higher sludge decay mass with a 32.8 % smaller volume than the ASSR module. The SPR module preferentially enriched hydrolytic/fermentative and slow-growing bacteria. Metagenomic analysis revealed that SPR strengthened the key hydrolases and L-lactate dehydrogenase in the glycolysis pathways and weakened the citrate cycle, inducing metabolic uncoupling due to the reduced biosynthesis of ATP. Inserting ASSR only altered the ATP biosynthesis pathway, but maintenance metabolism was dominant for sludge reduction, with a long sludge retention time prolonging the food chain for predation.
Collapse
Affiliation(s)
- Yanjun Shao
- Shanghai Engineering Research Center of Energy - Saving in Heat Exchange Systems, College of Environmental and Chemical Engineering, Shanghai University of Electric Power, Shanghai 200090, China
| | - Zhen Zhou
- Shanghai Engineering Research Center of Energy - Saving in Heat Exchange Systems, College of Environmental and Chemical Engineering, Shanghai University of Electric Power, Shanghai 200090, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China.
| | - Yi Zuo
- Shanghai Engineering Research Center of Energy - Saving in Heat Exchange Systems, College of Environmental and Chemical Engineering, Shanghai University of Electric Power, Shanghai 200090, China
| | - Jie Jiang
- Shanghai Engineering Research Center of Energy - Saving in Heat Exchange Systems, College of Environmental and Chemical Engineering, Shanghai University of Electric Power, Shanghai 200090, China
| | - Lihua Wang
- Shanghai Chengtou Wastewater Treatment Co., Ltd, Shanghai 201203, China
| | - Yiyue Sun
- Shanghai Engineering Research Center of Energy - Saving in Heat Exchange Systems, College of Environmental and Chemical Engineering, Shanghai University of Electric Power, Shanghai 200090, China
| | - Junli He
- Shanghai Engineering Research Center of Energy - Saving in Heat Exchange Systems, College of Environmental and Chemical Engineering, Shanghai University of Electric Power, Shanghai 200090, China
| | - Ji Qiu
- Shanghai Engineering Research Center of Energy - Saving in Heat Exchange Systems, College of Environmental and Chemical Engineering, Shanghai University of Electric Power, Shanghai 200090, China
| | - Ying An
- Shanghai Engineering Research Center of Energy - Saving in Heat Exchange Systems, College of Environmental and Chemical Engineering, Shanghai University of Electric Power, Shanghai 200090, China
| | - Lu-Man Jiang
- Shanghai Engineering Research Center of Energy - Saving in Heat Exchange Systems, College of Environmental and Chemical Engineering, Shanghai University of Electric Power, Shanghai 200090, China
| |
Collapse
|
14
|
Zhou L, Zhao B, Lin Y, Shao Z, Zeng R, Shen Y, Zhang W, Jian Y, Zhuang WQ. Identification of dissimilatory nitrate reduction to ammonium (DNRA) and denitrification in the dynamic cake layer of a full-scale anoixc dynamic membrane bioreactor for treating hotel laundry wastewater. CHEMOSPHERE 2022; 307:136078. [PMID: 35985382 DOI: 10.1016/j.chemosphere.2022.136078] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 08/02/2022] [Accepted: 08/13/2022] [Indexed: 06/15/2023]
Abstract
Identification of dissimilatory nitrate reduction to ammonium (DNRA) and denitrification in the dynamic cake layer of a full-scale anoixc dynamic membrane bioreactor (AnDMBR) for treating hotel laundry wastewater was studied. A series of experiments were conducted to understand the contributions of DNRA and canonical denitrification activities in the dynamic cake layer of the AnDMBR. The dynamic cake layer developed included two phases - a steady transmembrane pressure (TMP) increase at 0.24 kPa/day followed by a sharp TMP jump at 1.26 kPa/day four to five days after the AnDMBR start-up. The nitrogen mass balance results showed that canonical denitrification was predominant during the development of the dynamic cake layer. However, DNRA activity and accumulation of bacteria equipped with a complete DNRA pathway showed a positive correlation to the development of the dynamic cake layer. Our metagenomic analysis identified an approximately 18% of the dynamic cake layer bacterial community has a complete DNRA pathway. Pannonibacter (1%), Thauera (0.8%) and Pseudomonas (3%) contained all genes encoding for funcional enzymes of both DNRA (nitrate reductase and DNRA nitrite reductase) and denitrification (nitrate reductase, nitrous oxide reductase and nitric oxide reductase). No other metagenome-assembled genomes (MAGs) possessed a complete cononical denitrification pathway, indicating food-chain-like interactions of denitrifiers in the dynamic cake layer. We found that COD loading rate could be used to control DNRA and canonical denitrification activities during the dynamic cake layer formation.
Collapse
Affiliation(s)
- Lijie Zhou
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518060, China.
| | - Bikai Zhao
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Yuanzhong Lin
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Zhiyuan Shao
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Rongjie Zeng
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Yichang Shen
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Wenyu Zhang
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Yixin Jian
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Wei-Qin Zhuang
- Department of Civil and Environmental Engineering, The University of Auckland, Auckland, 1142, New Zealand
| |
Collapse
|
15
|
Shi Y, Wang Z, Du X, Gong B, Lu Y, Li L, Ling G. Membrane Fouling Diagnosis of Membrane Components Based on MOJS-ADBN. MEMBRANES 2022; 12:843. [PMID: 36135861 PMCID: PMC9505124 DOI: 10.3390/membranes12090843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 08/13/2022] [Accepted: 08/26/2022] [Indexed: 06/16/2023]
Abstract
Given the strong nonlinearity and large time-varying characteristics of membrane component fouling in the membrane water treatment process, a membrane component-membrane fouling diagnosis method based on the multi-objective jellyfish search adaptive deep belief network (MOJS-ADBN) is proposed. Firstly, the adaptive learning rate is introduced into the unsupervised pre-training phase of DBN to improve the convergence speed of the network. Secondly, the MOJS method is used to replace the gradient-based layer-by-layer weight fine-tuning method in traditional DBN to improve the ability of network feature extraction. At the same time, the convergence of the MOJS-ADBN learning process is proven by constructing the Lyapunov function. Finally, MOJS-ADBN is used in the membrane packaging diagnosis to verify the performance of the model diagnosis. The experimental results show that MOJS-ADBN has a fast convergence speed and a high diagnostic accuracy, and can provide a theoretical basis for membrane fouling diagnosis in the actual operation of membrane water treatment.
Collapse
Affiliation(s)
- Yaoke Shi
- College of Electrical and Information Engineering, Lanzhou University of Technology, Lanzhou 730050, China
| | - Zhiwen Wang
- College of Electrical and Information Engineering, Lanzhou University of Technology, Lanzhou 730050, China
- Key Laboratory of Gansu Advanced Control for Industrial Processes, Lanzhou University of Technology, Lanzhou 730050, China
- National Demonstration Center for Experimental Electrical and Control Engineering Education, Lanzhou University of Technology, Lanzhou 730050, China
| | - Xianjun Du
- College of Electrical and Information Engineering, Lanzhou University of Technology, Lanzhou 730050, China
- Key Laboratory of Gansu Advanced Control for Industrial Processes, Lanzhou University of Technology, Lanzhou 730050, China
- National Demonstration Center for Experimental Electrical and Control Engineering Education, Lanzhou University of Technology, Lanzhou 730050, China
| | - Bin Gong
- College of Electrical and Information Engineering, Lanzhou University of Technology, Lanzhou 730050, China
| | - Yanrong Lu
- College of Electrical and Information Engineering, Lanzhou University of Technology, Lanzhou 730050, China
- Key Laboratory of Gansu Advanced Control for Industrial Processes, Lanzhou University of Technology, Lanzhou 730050, China
- National Demonstration Center for Experimental Electrical and Control Engineering Education, Lanzhou University of Technology, Lanzhou 730050, China
| | - Long Li
- College of Electrical and Information Engineering, Lanzhou University of Technology, Lanzhou 730050, China
- GS-Unis Intelligent Transportation System & Control Technology Co., Ltd., Lanzhou 730050, China
| | - Guobi Ling
- College of Electrical and Information Engineering, Lanzhou University of Technology, Lanzhou 730050, China
| |
Collapse
|
16
|
Deng L, Guo W, Ngo HH, Zhang X, Chen C, Chen Z, Cheng D, Ni SQ, Wang Q. Recent advances in attached growth membrane bioreactor systems for wastewater treatment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 808:152123. [PMID: 34864031 DOI: 10.1016/j.scitotenv.2021.152123] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Revised: 11/28/2021] [Accepted: 11/28/2021] [Indexed: 06/13/2023]
Abstract
To tackle membrane fouling and limited removals of pollutants (nutrients and emerging pollutants) that hinder the wide applications of membrane bioreactor (MBR), attached growth MBR (AGMBR) combining MBR and attached growth process has been developed. This review comprehensively presents the up-to-date developments of media used in both aerobic and anaerobic AGMBRs for treating wastewaters containing conventional and emerging pollutants. It also elaborates the properties of different media, characteristics of attached biomass, and their contributions to AGMBR performance. Conventional media, such as biological activated carbon and polymeric carriers, induce formation of aerobic, anoxic and/or anaerobic microenvironment, increase specific surface area or porous space for biomass retention, improve microbial activities, and enrich diverse microorganisms, thereby enhancing pollutants removal. Meanwhile, new media (i.e. biochar, bioaugmented carriers with selected strain/mixed cultures) do not only eliminate conventional pollutants (i.e. high concentration of nitrogen, etc.), but also effectively remove emerging pollutants (i.e. micropollutants, nonylphenol, adsorbable organic halogens, etc.) by forming thick and dense biofilm, creating anoxic/anaerobic microenvironments inside the media, enriching special functional microorganisms and increasing activity of microorganisms. Additionally, media can improve sludge characteristics (i.e. less extracellular polymeric substances and soluble microbial products, larger floc size, better sludge settleability, etc.), alleviating membrane fouling. Future studies need to focus on the development and applications of more new functional media in removing wider spectrum of emerging pollutants and enhancing biogas generation, as well as scale-up of lab-scale AGMBRs to pilot or full-scale AGMBRs.
Collapse
Affiliation(s)
- Lijuan Deng
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, NSW 2007, Australia
| | - Wenshan Guo
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, NSW 2007, Australia; Joint Research Centre for Protective Infrastructure Technology and Environmental Green Bioprocess, University of Technology Sydney and Tianjin Chengjian University,.
| | - Huu Hao Ngo
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, NSW 2007, Australia; Joint Research Centre for Protective Infrastructure Technology and Environmental Green Bioprocess, University of Technology Sydney and Tianjin Chengjian University,.
| | - Xinbo Zhang
- Joint Research Centre for Protective Infrastructure Technology and Environmental Green Bioprocess, University of Technology Sydney and Tianjin Chengjian University,; Tianjin Key Laboratory of Aquatic Science and Technology, Tianjin Chengjian University, Jinjing Road 26, Tianjin 300384, China
| | - Cheng Chen
- Infinite Water Holdings Pty Ltd., Unit 17/809 Botany Road, Rosebery, Sydney, NSW 2018, Australia
| | - Zhuo Chen
- Environmental Simulation and Pollution Control State Key Joint Laboratory, State Environmental Protection Key Laboratory of Microorganism Application and Risk Control, School of Environment, Tsinghua University, Beijing, 100084, China
| | - Dongle Cheng
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, NSW 2007, Australia
| | - Shou-Qing Ni
- Shandong Provincial Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China
| | - Quan Wang
- Department of Environment Science & Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| |
Collapse
|
17
|
Wang M, An Y, Huang J, Sun X, Yang A, Zhou Z. Elucidating the intensifying effect of introducing influent to an anaerobic side-stream reactor on sludge reduction of the coupled membrane bioreactors. BIORESOURCE TECHNOLOGY 2021; 342:125931. [PMID: 34560436 DOI: 10.1016/j.biortech.2021.125931] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 09/07/2021] [Accepted: 09/08/2021] [Indexed: 06/13/2023]
Abstract
Three anoxic/oxic membrane bioreactors (AO-MBRs) coupled with the anaerobic side-stream reactor (ASSR) with different influent flow distribution ratios (IFDRs) were assessed to elucidate how IFDR in the ASSR affected pollutants removal, sludge reduction, membrane fouling, and potential co-occurrence network of microorganisms. When the IFDR in the ASSR was increased from 0% (ASSR0-MBR), to 25% (ASSR25-MBR) and 75% (ASSR75-MBR), chemical oxygen demand removal was enhanced and nutrient removal was comparable. Compared to ASSR0-MBR, ASSR25- and ASSR75-MBR further improved the sludge reduction by 7.6% and 10.9%, respectively. ASSR25-MBR followed cake-complete model due to the weak membrane surface scouring and high concentration of extracellular polymeric substances, while ASSR0- and ASSR75-MBR fitted cake-standard model. The increased IFDR in the ASSR boosted the relative abundance of hydrolytic and slow-growing bacteria. The co-occurrence networks of sludge reduction, nutrient removal and membrane fouling propensity indicated that the symbiotic relationships were dominant.
Collapse
Affiliation(s)
- Mengyu Wang
- Shanghai Engineering Research Center of Energy - Saving in Heat Exchange Systems, College of Environmental and Chemical Engineering, Shanghai University of Electric Power, Shanghai 200090, China
| | - Ying An
- Shanghai Engineering Research Center of Energy - Saving in Heat Exchange Systems, College of Environmental and Chemical Engineering, Shanghai University of Electric Power, Shanghai 200090, China.
| | - Jing Huang
- Shanghai Engineering Research Center of Energy - Saving in Heat Exchange Systems, College of Environmental and Chemical Engineering, Shanghai University of Electric Power, Shanghai 200090, China
| | - Xiao Sun
- Shanghai Fudan Water Engineering Technology Co., Ltd, Shanghai 200433, China
| | - Aming Yang
- Shanghai Fudan Water Engineering Technology Co., Ltd, Shanghai 200433, China
| | - Zhen Zhou
- Shanghai Engineering Research Center of Energy - Saving in Heat Exchange Systems, College of Environmental and Chemical Engineering, Shanghai University of Electric Power, Shanghai 200090, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| |
Collapse
|
18
|
Zainuddin NI, Bilad MR, Marbelia L, Budhijanto W, Arahman N, Fahrina A, Shamsuddin N, Zaki ZI, El-Bahy ZM, Nandiyanto ABD, Gunawan P. Sequencing Batch Integrated Fixed-Film Activated Sludge Membrane Process for Treatment of Tapioca Processing Wastewater. MEMBRANES 2021; 11:membranes11110875. [PMID: 34832104 PMCID: PMC8617780 DOI: 10.3390/membranes11110875] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 11/10/2021] [Accepted: 11/11/2021] [Indexed: 11/16/2022]
Abstract
Tapioca processing industries are very popular in the rural community to produce a variety of foods as the end products. Due to their small scales and scattered locations, they require robust modular systems to operate at low capacity with minimum supervision. This study explores the application of a novel sequencing batch-integrated fixed-film activated sludge membrane (SB-IFASM) process to treat tapioca processing wastewater for reuse purposes. The SB-IFASM employed a gravity-driven system and utilizes biofilm to enhance biodegradation without requiring membrane cleaning. The SB-IFASM utilizes the biofilm as a secondary biodegradation stage to enhance the permeate quality applicable for reuse. A lab-scale SB-IFASM was developed, preliminarily assessed, and used to treat synthetic tapioca processing industry wastewater. The results of short-term filtration tests showed the significant impact of hydrostatic pressure on membrane compaction and instant cake layer formation. Increasing the pressure from 2.2 to 10 kPa lowered the permeability of clean water and activated sludge from 720 to 425 and from 110 to 50 L/m2·h bar, respectively. The unsteady-state operation of the SB-IFASM showed the prominent role of the bio-cake in removing the organics reaching the permeate quality suitable for reuse. High COD removals of 63-98% demonstrated the prominence contribution of the biofilm in enhancing biological performance and ultimate COD removals of >93% make it very attractive for application in small-scale tapioca processing industries. However, the biological ecosystem was unstable, as shown by foaming that deteriorated permeability and was detrimental to the organic removal. Further developments are still required, particularly to address the biological stability and low permeability.
Collapse
Affiliation(s)
- Nur Izzati Zainuddin
- Department of Chemical Engineering, Universiti Teknologi PETRONAS, Seri Iskandar 32610, Malaysia;
| | - Muhammad Roil Bilad
- Faculty of Integrated Technologies, Universiti Brunei Darussalam, Bandar Seri Begawan BE1410, Brunei;
- Correspondence: (M.R.B.); (N.A.)
| | - Lisendra Marbelia
- Department of Chemical Engineering, Faculty of Engineering, Universitas Gadjah Mada, Jalan Grafika 2, Yogyakarta 55281, Indonesia; (L.M.); (W.B.)
| | - Wiratni Budhijanto
- Department of Chemical Engineering, Faculty of Engineering, Universitas Gadjah Mada, Jalan Grafika 2, Yogyakarta 55281, Indonesia; (L.M.); (W.B.)
| | - Nasrul Arahman
- Department of Chemical Engineering, Universitas Syiah Kuala, Banda Aceh 23111, Indonesia;
- Magister Program of Environmental Management, Universitas Syiah Kuala, Banda Aceh 23111, Indonesia
- Correspondence: (M.R.B.); (N.A.)
| | - Afrilia Fahrina
- Department of Chemical Engineering, Universitas Syiah Kuala, Banda Aceh 23111, Indonesia;
| | - Norazanita Shamsuddin
- Faculty of Integrated Technologies, Universiti Brunei Darussalam, Bandar Seri Begawan BE1410, Brunei;
| | - Zaki Ismail Zaki
- Department of Chemistry, College of Science, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia;
| | - Zeinhom M. El-Bahy
- Department of Chemistry, Faculty of Science, Al-Azhar University, Nasr City, Cairo 11884, Egypt;
| | | | - Poernomo Gunawan
- School of Chemical & Biomedical Engineering, Nanyang Technological University, Singapore 639798, Singapore;
| |
Collapse
|
19
|
Shao Y, Zhou Z, Jiang J, Jiang LM, Huang J, Zuo Y, Ren Y, Zhao X. Membrane fouling in anoxic/oxic membrane reactors coupled with carrier-enhanced anaerobic side-stream reactor: Effects of anaerobic hydraulic retention time and mechanism insights. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2021.119657] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
20
|
Asif MB, Ren B, Li C, He K, Zhang X, Zhang Z. Understanding the role of in-situ ozonation in Fe(II)-dosed membrane bioreactor (MBR) for membrane fouling mitigation. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2021.119400] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
21
|
Cheng C, Geng J, Hu H, Shi Y, Gao R, Wang X, Ren H. In-situ sludge reduction performance and mechanism in an anoxic/aerobic process coupled with alternating aerobic/anaerobic side-stream reactor. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 777:145856. [PMID: 33677286 DOI: 10.1016/j.scitotenv.2021.145856] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 02/10/2021] [Accepted: 02/10/2021] [Indexed: 06/12/2023]
Abstract
Activated sludge process with anaerobic side-stream reactors (SR) in the sludge recirculation can achieve in-situ sludge reduction, but sludge reduction efficiency is limited with the low hydraulic retention time (HRT) of SR. An anoxic/aerobic (AO) process, AO coupled with anaerobic SR and AO coupled with alternating aerobic/anaerobic side-stream reactor (AO-OASR) were operated to investigate enhancing effects of alternative aerobic and anaerobic condition (AltOA) in SR on sludge reduction and pollutants removal performance. The AltOA was firstly proposed into SR with a low HRT during the long-term continuous operation. The results showed that AO-OASR presented a lower effluent COD concentration (29.6%) with no adverse effect on nitrogen removal, compared to AO, owing to the intensified refractory carbon reuse in the mainstream aerobic tank. The sludge yield in AO-OASR (0.240 g SS/g COD) was 39.7% lower than that in AO. The OASR accelerated sludge lysis and particle organic matter hydrolysis due to the weakened network strength of flocs, leading to an enhanced increase (17.3 mg/L) of dissolved organic matter (DOM), especially for the fraction of molecular weight (MW) < 25 kDa. The OASR reduced the adenosine triphosphate (ATP) content for heterotrophic anabolism in the mainstream reactor by 42.9%, compared to the ASR. MW < 25 kDa of DOM caused the disturbance of oxidative phosphorylation with a decreasing ATP synthase activity under high-level electronic transport system, leading to ATP dissipation. The cooperation interaction of predator (norank_Chitinophagales), hydrolytic/fermentative bacteria (unclassified_Bacteroidia and Delftia), and slow grower (Trichococcus) played a key role in improving the sludge reduction and carbon reuse in AO-OASR. The results provided an efficient and cost-saving technology for sludge reduction with modified SR under low HRT, which is meaningful to overcome the present bottleneck of deficient reduction efficiency for application in wastewater treatment plants.
Collapse
Affiliation(s)
- Cheng Cheng
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, Jiangsu, PR China
| | - Jinju Geng
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, Jiangsu, PR China; Yixing Environmental Protection Research Institute, Nanjing University, Nanjing 214200, Jiangsu, China
| | - Haidong Hu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, Jiangsu, PR China
| | - Yihan Shi
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, Jiangsu, PR China
| | - Rongwei Gao
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, Jiangsu, PR China
| | - Xu Wang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, Jiangsu, PR China
| | - Hongqiang Ren
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, Jiangsu, PR China; Yixing Environmental Protection Research Institute, Nanjing University, Nanjing 214200, Jiangsu, China.
| |
Collapse
|
22
|
Cui Y, Gao H, Yu R, Gao L, Zhan M. Biological-based control strategies for MBR membrane biofouling: a review. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2021; 83:2597-2614. [PMID: 34115616 DOI: 10.2166/wst.2021.168] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Membrane bioreactor (MBR) technology has been paid extensive attention for wastewater treatment because of its advantages of high effluent quality and minimized occupation space and sludge production. However, the membrane fouling is always an inevitable problem, which causes high operation and maintenance costs and prevents the wide use of MBR technology. The membrane biofouling is the most complicated and has relatively slow progress among all types of fouling. In recent years, many membrane biofouling control methods have been developed. Different from the physical or chemical methods, the biological-based strategies are not only more effective for membrane biofouling control, but also milder and more environment-friendly and, therefore, have been increasingly employed. This paper mainly focuses on the mechanism, unique advantages and development of biological-based control strategies for MBR membrane biofouling such as quorum quenching, uncoupling, flocculants and so on. The paper summarizes the up-to-date development of membrane biofouling control strategies, emphasizes the advantages and promising potential of biological-based ones, and points out the direction for future studies.
Collapse
Affiliation(s)
- Yin Cui
- Department of Environmental Science and Engineering, School of Energy and Environment, Wuxi Engineering Research Center of Taihu Lake Water Environment, Southeast University, Nanjing, Jiangsu 210096, China and Key Laboratory of Environmental Medicine Engineering, Ministry of Education, Southeast University, Nanjing, Jiangsu 210009, China E-mail:
| | - Huan Gao
- Department of Environmental Science and Engineering, School of Energy and Environment, Wuxi Engineering Research Center of Taihu Lake Water Environment, Southeast University, Nanjing, Jiangsu 210096, China and Key Laboratory of Environmental Medicine Engineering, Ministry of Education, Southeast University, Nanjing, Jiangsu 210009, China E-mail:
| | - Ran Yu
- Department of Environmental Science and Engineering, School of Energy and Environment, Wuxi Engineering Research Center of Taihu Lake Water Environment, Southeast University, Nanjing, Jiangsu 210096, China and Key Laboratory of Environmental Medicine Engineering, Ministry of Education, Southeast University, Nanjing, Jiangsu 210009, China E-mail:
| | - Lei Gao
- Department of Environmental Science and Engineering, School of Energy and Environment, Wuxi Engineering Research Center of Taihu Lake Water Environment, Southeast University, Nanjing, Jiangsu 210096, China and Key Laboratory of Environmental Medicine Engineering, Ministry of Education, Southeast University, Nanjing, Jiangsu 210009, China E-mail:
| | - Manjun Zhan
- Nanjing Research Institute of Environmental Protection, Nanjing Environmental Protection Bureau, Nanjing, Jiangsu 210013, China
| |
Collapse
|
23
|
Zhao X, Jiang J, Zhou Z, Zheng Y, Shao Y, Zuo Y, Ren Y, An Y. Responses of microbial structures, functions and metabolic pathways for nitrogen removal to different hydraulic retention times in anaerobic side-stream reactor coupled membrane bioreactors. BIORESOURCE TECHNOLOGY 2021; 329:124903. [PMID: 33662853 DOI: 10.1016/j.biortech.2021.124903] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 02/20/2021] [Accepted: 02/20/2021] [Indexed: 06/12/2023]
Abstract
Synchronous sludge reduction and nitrogen removal have attracted increasing attention, while the underlying mechanisms of diverse nitrogen metabolism within the complicated processes remain unclear. Four anoxic/oxic membrane bioreactors, three of which were upgraded by anaerobic side-stream reactors (ASSR) and carriers (APSSR-MBRs), were operated to determine effects of hydraulic retention time of ASSRs. APSSR-MBRs achieved more significant nitrogen removal and higher nitrate uptake rate because of more denitrifying bacteria and the supernumerary release of secondary substrates. Ammonia uptake rate showed the diverse Nitrospira preceded over anaerobic decay and sulfide inhibition in the ASSR, and made the reactor exhibit higher nitrification capacity. Metagenomic analysis indicated that APSSR-MBRs showed higher abundances of genes related to nitrogen consumption processes, and higher abundances on the carriers, confirming their pivotal roles in nitrogen metabolism. This study provided novel perspectives to build a bridge between process model and nitrogen metabolism in the sludge reduction system..
Collapse
Affiliation(s)
- Xiaodan Zhao
- Shanghai Engineering Research Center of Energy - Saving in Heat Exchange Systems, Shanghai University of Electric Power, Shanghai 200090, China
| | - Jie Jiang
- Shanghai Engineering Research Center of Energy - Saving in Heat Exchange Systems, Shanghai University of Electric Power, Shanghai 200090, China
| | - Zhen Zhou
- Shanghai Engineering Research Center of Energy - Saving in Heat Exchange Systems, Shanghai University of Electric Power, Shanghai 200090, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, China.
| | - Yue Zheng
- Shanghai Engineering Research Center of Energy - Saving in Heat Exchange Systems, Shanghai University of Electric Power, Shanghai 200090, China
| | - Yanjun Shao
- Shanghai Engineering Research Center of Energy - Saving in Heat Exchange Systems, Shanghai University of Electric Power, Shanghai 200090, China
| | - Yi Zuo
- Shanghai Engineering Research Center of Energy - Saving in Heat Exchange Systems, Shanghai University of Electric Power, Shanghai 200090, China
| | - Yuqing Ren
- Shanghai Engineering Research Center of Energy - Saving in Heat Exchange Systems, Shanghai University of Electric Power, Shanghai 200090, China
| | - Ying An
- Shanghai Engineering Research Center of Energy - Saving in Heat Exchange Systems, Shanghai University of Electric Power, Shanghai 200090, China
| |
Collapse
|
24
|
Wang K, Zhou Z, Yu S, Qiang J, Yuan Y, Qin Y, Xiao K, Zhao X, Wu Z. Compact wastewater treatment process based on abiotic nitrogen management achieved high-rate and facile pollutants removal. BIORESOURCE TECHNOLOGY 2021; 330:124991. [PMID: 33743281 DOI: 10.1016/j.biortech.2021.124991] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 03/08/2021] [Accepted: 03/09/2021] [Indexed: 06/12/2023]
Abstract
Chemically enhanced primary treatment (CEPT), ammonium ion exchange and regeneration (AIR) and membrane bioreactor (MBR) were coupled as CAIRM to treat domestic wastewater compactly and efficiently. CAIRM achieved efficient removal of chemical oxygen demand, ammonia nitrogen, total nitrogen (TN) and total phosphorus with total hydraulic retention time of 4.6 h, and obtained 2.3 ± 0.9 mg/L TN in the effluent. CEPT removed phosphate and impurities and prevented AIR from pollution. AIR maintained excellent nitrogen removal with a slight decrease in the exchange capacity of ion exchangers. MBR polished the effluent from AIR, and the larger particle size and better dewaterability of sludge mitigated the membrane fouling. Many heterotrophic genera, such as Rhodobacter and Defluviimonas, were enriched in the oligotrophic MBR. This study demonstrates the viability and stability of CAIRM in efficient wastewater treatment, which will address critical challenges in insufficient nitrogen removal and high land occupancy of current processes.
Collapse
Affiliation(s)
- Kaichong Wang
- Shanghai Engineering Research Center of Energy - Saving in Heat Exchange Systems, College of Environmental and Chemical Engineering, Shanghai University of Electric Power, Shanghai 200090, China
| | - Zhen Zhou
- Shanghai Engineering Research Center of Energy - Saving in Heat Exchange Systems, College of Environmental and Chemical Engineering, Shanghai University of Electric Power, Shanghai 200090, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China.
| | - Siqi Yu
- Shanghai Engineering Research Center of Energy - Saving in Heat Exchange Systems, College of Environmental and Chemical Engineering, Shanghai University of Electric Power, Shanghai 200090, China
| | - Jiaxin Qiang
- Shanghai Engineering Research Center of Energy - Saving in Heat Exchange Systems, College of Environmental and Chemical Engineering, Shanghai University of Electric Power, Shanghai 200090, China
| | - Yao Yuan
- Shanghai Engineering Research Center of Energy - Saving in Heat Exchange Systems, College of Environmental and Chemical Engineering, Shanghai University of Electric Power, Shanghai 200090, China
| | - Yangjie Qin
- Shanghai Engineering Research Center of Energy - Saving in Heat Exchange Systems, College of Environmental and Chemical Engineering, Shanghai University of Electric Power, Shanghai 200090, China
| | - Kaiqi Xiao
- Shanghai Engineering Research Center of Energy - Saving in Heat Exchange Systems, College of Environmental and Chemical Engineering, Shanghai University of Electric Power, Shanghai 200090, China
| | - Xiaodan Zhao
- Shanghai Engineering Research Center of Energy - Saving in Heat Exchange Systems, College of Environmental and Chemical Engineering, Shanghai University of Electric Power, Shanghai 200090, China
| | - Zhichao Wu
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China; State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| |
Collapse
|
25
|
Fida Z, Price WE, Pramanik BK, Dhar BR, Kumar M, Jiang G, Hai FI. Reduction of excess sludge production by membrane bioreactor coupled with anoxic side-stream reactors. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 281:111919. [PMID: 33418384 DOI: 10.1016/j.jenvman.2020.111919] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Revised: 12/14/2020] [Accepted: 12/27/2020] [Indexed: 06/12/2023]
Abstract
While cleaning wastewater, biological wastewater treatment processes such as membrane bioreactors (MBR) produce a significant amount of sludge that requires costly management. In the oxic-settling-anoxic (OSA) process, sludge is retained for a temporary period in side-stream reactors with low oxygen and substrate, and then it is recirculated to the main reactor. In this way, excess sludge production is reduced. We studied the influence of the rate of sludge exchange between MBR and side-stream anoxic reactors on sludge yield reduction within MBR. Two MBRs, namely, MBROSA and MBRcontrol, each coupled with separate external anoxic side-stream reactors, were run in parallel for 350 days. Unlike MBRcontrol, MBROSA had sludge exchange with the external reactors connected to it. During the investigation over a sludge interchange rate (SIR) range of 0-22%, an SIR of 11% achieved the highest sludge reduction (58%). Greater volatile solids destruction i.e., bacterial cell lysis and extracellular polymeric substance (EPS) destruction occurred at the SIR of 11%, which helped to achieve the highest sludge reduction. The enhanced volatile solids destruction was evident by the release of nutrients in the external anoxic reactors. It was confirmed that the sludge yield reduction was achieved without compromising the wastewater treatment quality, sludge settleability and hydraulic performance of the membrane in MBR.
Collapse
Affiliation(s)
- Zulqarnain Fida
- Strategic Water Infrastructure Laboratory, School of Civil, Mining and Environmental Engineering, University of Wollongong, Wollongong, NSW, 2522, Australia
| | - William E Price
- Strategic Water Infrastructure Laboratory, School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW, 2522, Australia
| | | | - Bipro Ranjan Dhar
- Department of Civil and Environmental Engineering, University of Alberta, 9211-116, Street NW, Edmonton, AB T6G 1H9, Canada
| | - Manish Kumar
- Discipline of Earth Sciences, Indian Institute of Technology Gandhinagar, Gujarat, 382355, India
| | - Guangming Jiang
- School of Civil, Mining and Environmental Engineering, University of Wollongong, Wollongong, NSW, 2522, Australia
| | - Faisal I Hai
- Strategic Water Infrastructure Laboratory, School of Civil, Mining and Environmental Engineering, University of Wollongong, Wollongong, NSW, 2522, Australia.
| |
Collapse
|
26
|
Asif MB, Li C, Ren B, Maqbool T, Zhang X, Zhang Z. Elucidating the impacts of intermittent in-situ ozonation in a ceramic membrane bioreactor: Micropollutant removal, microbial community evolution and fouling mechanisms. JOURNAL OF HAZARDOUS MATERIALS 2021; 402:123730. [PMID: 33254762 DOI: 10.1016/j.jhazmat.2020.123730] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 07/29/2020] [Accepted: 08/12/2020] [Indexed: 06/12/2023]
Abstract
In this study, impacts of in-situ ozonation applied directly in the membrane tank of a ceramic MBR (Oz-MBR) were assessed to elucidate its implications on micropollutant removal, microbial taxa and membrane fouling. The basic effluent quality (i.e., bulk organics and nutrients) of the MBR without and with in-situ ozonation was comparable. Importantly, pollutant-specific (10-26%) improvement in micropollutant removal was achieved by the Oz-MBR, which could be attributed to the increase in the abundance of microbial taxa responsible for the removal of structurally complex pollutants and/or ozone-assisted oxidation. In-situ ozonation affected the abundance of denitrifying bacteria and functional genes but total nitrogen removal by the Oz-MBR was comparable to that achieved by the control (C)-MBR. Improved mixed liquor properties, and the reduced accumulation of foulants on the membrane surface resulted in membrane fouling alleviation (53%) in the Oz-MBR. In addition, fouling models evaluated for the first time in the case of Oz-MBR indicated that the cake-complete model was suitable to explain membrane fouling mechanism. This comprehensive study demonstrates the performance of MBR coupled with in-situ ozonation, and the obtained results would serve as a useful reference for its implementation at pilot- and/or full-scale.
Collapse
Affiliation(s)
- Muhammad Bilal Asif
- Institute of Environmental Engineering & Nano-Technology, Tsinghua-Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, Guangdong, China; Guangdong Provincial Engineering Research Center for Urban Water Recycling and Environmental Safety, Tsinghua-Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, Guangdong, China; School of Environment, Tsinghua University, Beijing, 100084, China
| | - Chengyue Li
- Institute of Environmental Engineering & Nano-Technology, Tsinghua-Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, Guangdong, China; Guangdong Provincial Engineering Research Center for Urban Water Recycling and Environmental Safety, Tsinghua-Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, Guangdong, China; School of Environment, Tsinghua University, Beijing, 100084, China
| | - Baoyu Ren
- Institute of Environmental Engineering & Nano-Technology, Tsinghua-Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, Guangdong, China; Guangdong Provincial Engineering Research Center for Urban Water Recycling and Environmental Safety, Tsinghua-Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, Guangdong, China; School of Environment, Tsinghua University, Beijing, 100084, China
| | - Tahir Maqbool
- Institute of Environmental Engineering & Nano-Technology, Tsinghua-Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, Guangdong, China; Guangdong Provincial Engineering Research Center for Urban Water Recycling and Environmental Safety, Tsinghua-Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, Guangdong, China; School of Environment, Tsinghua University, Beijing, 100084, China
| | - Xihui Zhang
- Institute of Environmental Engineering & Nano-Technology, Tsinghua-Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, Guangdong, China; Guangdong Provincial Engineering Research Center for Urban Water Recycling and Environmental Safety, Tsinghua-Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, Guangdong, China; School of Environment, Tsinghua University, Beijing, 100084, China
| | - Zhenghua Zhang
- Institute of Environmental Engineering & Nano-Technology, Tsinghua-Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, Guangdong, China; Guangdong Provincial Engineering Research Center for Urban Water Recycling and Environmental Safety, Tsinghua-Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, Guangdong, China; School of Environment, Tsinghua University, Beijing, 100084, China.
| |
Collapse
|
27
|
Wang K, Zhou Z, Zheng Y, Jiang J, Huang J, Qiang J, An Y, Jiang L, Jiang LM, Wang Z. Understanding mechanisms of sludge in situ reduction in anaerobic side-stream reactor coupled membrane bioreactors packed with carriers at different filling fractions. BIORESOURCE TECHNOLOGY 2020; 316:123925. [PMID: 32758921 DOI: 10.1016/j.biortech.2020.123925] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Revised: 07/20/2020] [Accepted: 07/24/2020] [Indexed: 06/11/2023]
Abstract
An anoxic/oxic membrane bioreactor (AO) and three pilot-scale anaerobic side stream reactors (ASSR) coupled MBRs (ASSR-MBRs), packed with 0%, 25% and 50% carriers in ASSRs, were continuously operated to study the mechanisms for sludge reduction. Four systems showed efficient COD and NH4+-N removal, while packing carriers significantly enhanced nitrogen removal. 25% filling fraction (AP25) achieved the highest sludge reduction efficiency of 50.5% compared to 0% (21.7%) and 50% (39.7%). Compared to ASSR-MBR, carriers enhanced the release of dissolved organic matters, and accelerated the secretion of enzyme for cell lysis and hydrolysis. In AP25, the presence of carriers prompted the formation of environment propitious to sludge reduction in bulk sludge. AP25 tended to enrich hydrolytic, fermentative and denitrifying bacteria to accelerate hydrolysis process, while excessive carriers had negative effect on biomass stability and movement of carriers.
Collapse
Affiliation(s)
- Kaichong Wang
- Shanghai Engineering Research Center of Energy - Saving in Heat Exchange Systems, Shanghai University of Electric Power, Shanghai 200090, China
| | - Zhen Zhou
- Shanghai Engineering Research Center of Energy - Saving in Heat Exchange Systems, Shanghai University of Electric Power, Shanghai 200090, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China.
| | - Yue Zheng
- Shanghai Engineering Research Center of Energy - Saving in Heat Exchange Systems, Shanghai University of Electric Power, Shanghai 200090, China
| | - Jie Jiang
- Shanghai Engineering Research Center of Energy - Saving in Heat Exchange Systems, Shanghai University of Electric Power, Shanghai 200090, China
| | - Jing Huang
- Shanghai Engineering Research Center of Energy - Saving in Heat Exchange Systems, Shanghai University of Electric Power, Shanghai 200090, China
| | - Jiaxin Qiang
- Shanghai Engineering Research Center of Energy - Saving in Heat Exchange Systems, Shanghai University of Electric Power, Shanghai 200090, China
| | - Ying An
- Shanghai Engineering Research Center of Energy - Saving in Heat Exchange Systems, Shanghai University of Electric Power, Shanghai 200090, China
| | - Lingyan Jiang
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Chengtou Wastewater Treatment Co., Ltd, Shanghai 201203, China
| | - Lu-Man Jiang
- Shanghai Engineering Research Center of Energy - Saving in Heat Exchange Systems, Shanghai University of Electric Power, Shanghai 200090, China
| | - Zhiwei Wang
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| |
Collapse
|
28
|
Arabi S, Pellegrin ML, Aguinaldo J, Sadler ME, McCandless R, Sadreddini S, Wong J, Burbano MS, Koduri S, Abella K, Moskal J, Alimoradi S, Azimi Y, Dow A, Tootchi L, Kinser K, Kaushik V, Saldanha V. Membrane processes. WATER ENVIRONMENT RESEARCH : A RESEARCH PUBLICATION OF THE WATER ENVIRONMENT FEDERATION 2020; 92:1447-1498. [PMID: 32602987 DOI: 10.1002/wer.1385] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 06/20/2020] [Indexed: 06/11/2023]
Abstract
This literature review provides a review for publications in 2018 and 2019 and includes information membrane processes findings for municipal and industrial applications. This review is a subsection of the annual Water Environment Federation literature review for Treatment Systems section. The following topics are covered in this literature review: industrial wastewater and membrane. Bioreactor (MBR) configuration, membrane fouling, design, reuse, nutrient removal, operation, anaerobic membrane systems, microconstituents removal, membrane technology advances, and modeling. Other sub-sections of the Treatment Systems section that might relate to this literature review include the following: Biological Fixed-Film Systems, Activated Sludge, and Other Aerobic Suspended Culture Processes, Anaerobic Processes, and Water Reclamation and Reuse. This publication might also have related information on membrane processes: Industrial Wastes, Hazardous Wastes, and Fate and Effects of Pollutants.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Joseph Wong
- Brown and Caldwell, Walnut Creek, California, USA
| | | | | | | | - Jeff Moskal
- Suez Water Technologies & Solutions, Oakville, ON, Canada
| | | | | | - Andrew Dow
- Donohue and Associates, Chicago, Illinois, USA
| | | | | | | | | |
Collapse
|
29
|
Pang C, Ren X, Zhang X, Hu Z, Wang W. Influence of immersion depth of membrane on filtration performance of anaerobic membrane bioreactor. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:29433-29440. [PMID: 32436092 DOI: 10.1007/s11356-020-09213-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2020] [Accepted: 05/06/2020] [Indexed: 06/11/2023]
Abstract
Membrane fouling is still the main obstacle that hinders the development and implementation of anaerobic membrane bioreactor (AnMBR). In conventional upflow anaerobic reactors, sludge at different height usually presents certain differences in characteristics in terms of particle size, etc. The immersion depth of membrane modules in anaerobic reactors can also influence the fouling of membrane. Thus, it is of great interest to investigate the fouling mechanism with the membrane installed at different heights in reactors. The filtration performance and sludge properties were investigated at different heights of AnMBR. The fouling of membrane in the middle position was severer than that in the top and bottom positions. The total resistance of membrane in the top, middle, and bottom positions was 27.31 × 1011 m-1, 34.67 × 1011 m-1, and 25.29 × 1011 m-1, respectively. By comparing the characteristics and structure of bulk sludge and cake layer at three heights, the bulk sludge in the middle position presented higher content of soluble microbial products (SMP) and finer flocs, and the cake layer was also denser. The results obtained in this study indicated that small size of sludge flocs as well as adhesion of SMP might be the major factors governing membrane fouling at different height in the AnMBR.
Collapse
Affiliation(s)
- Chao Pang
- Department of Municipal Engineering, School of Civil Engineering, Hefei University of Technology, Hefei, 230009, China
- Anhui Provincial Engineering Laboratory for Rural Water Environment and Resources, Hefei, 230009, China
| | - Xuesong Ren
- Department of Municipal Engineering, School of Civil Engineering, Hefei University of Technology, Hefei, 230009, China
- Anhui Provincial Engineering Laboratory for Rural Water Environment and Resources, Hefei, 230009, China
| | - Xuedong Zhang
- Department of Water Management, Section Sanitary Engineering, Delft University of Technology, 2628 CN, Delft, The Netherlands
- Veolia Water Technologies Techno Center Netherlands B.V, Tanthofdreef 21, 2623 EW, Delft, The Netherlands
| | - Zhenhu Hu
- Department of Municipal Engineering, School of Civil Engineering, Hefei University of Technology, Hefei, 230009, China
- Anhui Provincial Engineering Laboratory for Rural Water Environment and Resources, Hefei, 230009, China
| | - Wei Wang
- Department of Municipal Engineering, School of Civil Engineering, Hefei University of Technology, Hefei, 230009, China.
- Anhui Provincial Engineering Laboratory for Rural Water Environment and Resources, Hefei, 230009, China.
| |
Collapse
|
30
|
Zheng Y, Zhou Z, Jiang L, Huang J, Jiang J, Chen Y, Shao Y, Yu S, Wang K, Huang J, Wang Z. Evaluating influence of filling fraction of carriers packed in anaerobic side-stream reactors on membrane fouling and microbial community of the coupled membrane bioreactors. JOURNAL OF HAZARDOUS MATERIALS 2020; 388:122030. [PMID: 31954301 DOI: 10.1016/j.jhazmat.2020.122030] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 12/29/2019] [Accepted: 01/05/2020] [Indexed: 06/10/2023]
Abstract
An anoxic/oxic membrane bioreactors (AO-MBR) and three identical anaerobic side-stream reactor coupled with anoxic/oxic membrane bioreactors (ASSR-MBR) were constructed and operated in parallel to investigate the appropriate filling fraction of carriers packed in ASSR, influences on pollutants removal, sludge reduction, membrane fouling and microbial community of ASSR-MBR. Inserting ASSR achieved efficient COD removal and nitrification, and packing carriers in ASSR obtained the highest sludge reduction efficiency of 50.5 % at filling fraction of 25 %. Compared to AO-MBR, inserting ASSR without carriers induced the release of viscous components in extracellular polymeric substances (EPS) and the formation of calcium carbonate-related bacteria on membrane surface, and thus deteriorated membrane fouling. Packing carriers with 25 % filling fraction promoted the hydrolysis of soluble microbial products and EPS, whilst reduced the viscoelasticity of sludge flocs. Higher filling fraction of 50 % increased the shear forces to the biofilm and biomarkers related to membrane fouling, and thus showed little improvement to alleviate membrane fouling. MiSeq sequencing revealed that although it enriched in the bulk sludge of conventional ASSR-MBR and the coupled reactor with filling fraction of 50 %, the floc-forming, hydrolytic and fermentative bacteria were more inclined to attach on the membrane surface and alleviate fouling process.
Collapse
Affiliation(s)
- Yue Zheng
- Shanghai Engineering Research Center of Energy, Saving in Heat Exchange Systems, College of Environmental and Chemical Engineering, Shanghai University of Electric Power, Shanghai 200090, China
| | - Zhen Zhou
- Shanghai Engineering Research Center of Energy, Saving in Heat Exchange Systems, College of Environmental and Chemical Engineering, Shanghai University of Electric Power, Shanghai 200090, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, China.
| | - Lingyan Jiang
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China; Shanghai Chengtou Wastewater Treatment Co., Ltd, Shanghai 201203, China
| | - Jing Huang
- Shanghai Engineering Research Center of Energy, Saving in Heat Exchange Systems, College of Environmental and Chemical Engineering, Shanghai University of Electric Power, Shanghai 200090, China
| | - Jie Jiang
- Shanghai Engineering Research Center of Energy, Saving in Heat Exchange Systems, College of Environmental and Chemical Engineering, Shanghai University of Electric Power, Shanghai 200090, China
| | - Yirong Chen
- Shanghai Engineering Research Center of Energy, Saving in Heat Exchange Systems, College of Environmental and Chemical Engineering, Shanghai University of Electric Power, Shanghai 200090, China
| | - Yanjun Shao
- Shanghai Engineering Research Center of Energy, Saving in Heat Exchange Systems, College of Environmental and Chemical Engineering, Shanghai University of Electric Power, Shanghai 200090, China
| | - Siqi Yu
- Shanghai Engineering Research Center of Energy, Saving in Heat Exchange Systems, College of Environmental and Chemical Engineering, Shanghai University of Electric Power, Shanghai 200090, China
| | - Kaichong Wang
- Shanghai Engineering Research Center of Energy, Saving in Heat Exchange Systems, College of Environmental and Chemical Engineering, Shanghai University of Electric Power, Shanghai 200090, China
| | - Jianping Huang
- Shanghai Chengtou Wastewater Treatment Co., Ltd, Shanghai 201203, China
| | - Zhiwei Wang
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, China
| |
Collapse
|
31
|
Wang KM, Jiang SF, Zhang ZH, Ye QQ, Zhang YC, Zhou JH, Hong QK, Yu JM, Wang HY. Impact of static biocarriers on the microbial community, nitrogen removal and membrane fouling in submerged membrane bioreactor at different COD:N ratios. BIORESOURCE TECHNOLOGY 2020; 301:122798. [PMID: 31981907 DOI: 10.1016/j.biortech.2020.122798] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2019] [Revised: 01/08/2020] [Accepted: 01/10/2020] [Indexed: 06/10/2023]
Abstract
The polyvinyl formal (PVFM) biocarrier addition in a membrane bioreactor (MBR) was evaluated at high and low carbon/nitrogen (C/N) ratio of 20.0 and 6.7. Results indicated that static biocarrier addition could enrich nitrification and denitrification bacteria, dominating by Tauera, Amaricoccus and Nitrosospira at the genus level and slightly improved the total nitrogen removal even at a low C/N ratio. The bulk sludge characteristics (such as bigger particle size, lower SMP, lower SMP P/C) were also significantly changed in the hybrid MBR (HMBR), leading to a more sustainable membrane operation. The biocarrier addition also reduced the relative abundance of Sphingobacterials_unclassified, Ohtaekwangia and Rhodocyclaceae_unclassified at the genus level, indicating less membrane fouling in the HMBR. Consequently, HMBR with static PVFM addition could partially overcome the drawback of low C/N ratio for total nitrogen removal and membrane fouling control, providing a more resilient MBR to the undesirable environment such as low C/N ratio.
Collapse
Affiliation(s)
- K M Wang
- College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| | - S F Jiang
- College of Civil Engineering and Architecture, Zhejiang University of Technology, Hangzhou 310014, China
| | - Z H Zhang
- College of Civil Engineering and Architecture, Zhejiang University of Technology, Hangzhou 310014, China
| | - Q Q Ye
- College of Civil Engineering and Architecture, Zhejiang University of Technology, Hangzhou 310014, China
| | - Y C Zhang
- College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| | - J H Zhou
- College of Civil Engineering and Architecture, Zhejiang University of Technology, Hangzhou 310014, China
| | - Q K Hong
- College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| | - J M Yu
- College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| | - H Y Wang
- College of Environment, Zhejiang University of Technology, Hangzhou 310014, China.
| |
Collapse
|
32
|
Zhang B, Yue J, Guo Y, Liu T, Zhou M, Yang Y, Wu J, Zeng Y, Ning X. Effects of bioporous carriers on the performance and microbial community structure in side-stream anaerobic membrane bioreactors. Can J Microbiol 2020; 66:475-489. [PMID: 32223723 DOI: 10.1139/cjm-2019-0632] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The aim of this study was to investigate the effects of a volcanic rock porous carrier (VRPC) on sludge reduction, pollutant removal, and microbial community structure in an anaerobic side-stream reactor (ASSR). Three lab-scale membrane bioreactors (MBRs), including an anoxic-oxic MBR, which served as the control (C-MBR), an ASSR-coupled MBR (A-MBR), and an A-MBR filled with VRPC (FA-MBR) were stably and simultaneously operated for 120 days. The effect of the three reactors on the removal of chemical oxygen demand (COD) was almost negligible (all greater than 95%), but the average removal efficiency of ammonium nitrogen, total nitrogen, and total phosphorus was significantly improved by the insertion of an ASSR, especially when the ASSR was filled with VRPC. Finally, A-MBR and FA-MBR achieved 16.2% and 26.4% sludge reduction rates, with observed sludge yields of 0.124 and 0.109 g mixed liquid suspended solids/g COD, respectively. Illumina MiSeq sequencing revealed that microbial diversity and richness were highest in the VRPC, indicating that a large number of microorganisms formed on the carrier surface in the form of a biofilm. Abundant denitrifying bacteria (Azospira, Comamonadaceae_unclassified, and Flavobacterium) were immobilized on the carrier biofilm, which contributed to increased nitrogen removal. The addition of a VRPC to the ASSR successfully immobilized abundant hydrolytic, fermentative, and slow-growing microorganisms, which all contributed to reductions in sludge yield.
Collapse
Affiliation(s)
- Bin Zhang
- School of Civil Engineering and Construction and Environment, Xihua University, Chengdu 610039, P.R. China.,School of Food and Biotechnology, Xihua University, Chengdu 610039, P.R. China
| | - Jiao Yue
- School of Civil Engineering and Construction and Environment, Xihua University, Chengdu 610039, P.R. China
| | - Yu Guo
- School of Civil Engineering, Sichuan University of Science & Engineering, Zigong 643000, P.R. China
| | - Taixin Liu
- School of Civil Engineering, Sichuan University of Science & Engineering, Zigong 643000, P.R. China
| | - Min Zhou
- School of Civil Engineering, Sichuan University of Science & Engineering, Zigong 643000, P.R. China
| | - Ying Yang
- School of Civil Engineering, Sichuan University of Science & Engineering, Zigong 643000, P.R. China
| | - Jiaxu Wu
- School of Civil Engineering, Sichuan University of Science & Engineering, Zigong 643000, P.R. China
| | - Yang Zeng
- School of Civil Engineering, Sichuan University of Science & Engineering, Zigong 643000, P.R. China
| | - Xinqiang Ning
- School of Civil Engineering, Sichuan University of Science & Engineering, Zigong 643000, P.R. China
| |
Collapse
|
33
|
Qiang J, Zhou Z, Wang K, Qiu Z, Zhi H, Yuan Y, Zhang Y, Jiang Y, Zhao X, Wang Z, Wang Q. Coupling ammonia nitrogen adsorption and regeneration unit with a high-load anoxic/aerobic process to achieve rapid and efficient pollutants removal for wastewater treatment. WATER RESEARCH 2020; 170:115280. [PMID: 31759237 DOI: 10.1016/j.watres.2019.115280] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 10/05/2019] [Accepted: 11/04/2019] [Indexed: 06/10/2023]
Abstract
In this study, an ammonium nitrogen (NH4+-N) adsorption and regeneration (AAR) was constructed by a zeolite-packed column and NaClO-NaCl regeneration unit, and coupled with an anoxic/aerobic (AO) system to achieve efficient removal of carbon, nitrogen and phosphorus under short hydraulic retention time (HRT) and sludge retention time (SRT). Compared to conventional anaerobic/anoxic/aerobic (AAO) process, the proposed AO-AAR process achieved more efficient and stable nitrogen removal with greatly shorter HRT (5.6 h) and SRT (8 d) at 10.4 °C, with NH4+-N and total nitrogen in the effluent below 1.5 and 8.0 mg/L, respectively. The AO-AAR also obtained efficient phosphorus removal (<0.5 mg/L) by dosing aluminum in aerobic tank. High load and short SRT deteriorated sludge settleability and dewaterability, but enhanced methane production by improving sludge biodegradability. Dosing aluminum made the AO operating module more stable with improved settleability and dewaterability, and further enhanced methane production. Short HRT and SRT also resulted in the thriving of filamentous bacteria (Thiothrix) and heterotrophic nitrifiers (Acinetobacter, Pseudomonas and Rhodobacter) in the AO module, which helped in enhancing denitrification potential and nitrification efficiency under low temperature. Long-term operation showed that exchange capacity and physicochemical properties of zeolite were unchanged under NaClO-NaCl regeneration by introducing the tail gas from aerobic tank into the used regenerant to remove Ca2+ and Mg2+ exchanged from effluent of the AO module. Techno-economic analysis showed that the AO-AAR process is attractive and sustainable for municipal wastewater treatment by significantly improving nitrogen removal, greatly reducing land occupancy, enhancing methane production and achieving efficient reduction of carbon dioxide emission.
Collapse
Affiliation(s)
- Jiaxin Qiang
- College of Environmental and Chemical Engineering, Shanghai University of Electric Power, Shanghai, 200090, China
| | - Zhen Zhou
- College of Environmental and Chemical Engineering, Shanghai University of Electric Power, Shanghai, 200090, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, China.
| | - Kaichong Wang
- College of Environmental and Chemical Engineering, Shanghai University of Electric Power, Shanghai, 200090, China
| | - Zhan Qiu
- Shanghai Chengtou Wastewater Treatment Co., Ltd, Shanghai, 201203, China
| | - Hui Zhi
- College of Environmental and Chemical Engineering, Shanghai University of Electric Power, Shanghai, 200090, China
| | - Yao Yuan
- College of Environmental and Chemical Engineering, Shanghai University of Electric Power, Shanghai, 200090, China
| | - Yubin Zhang
- College of Environmental and Chemical Engineering, Shanghai University of Electric Power, Shanghai, 200090, China
| | - Yuexi Jiang
- College of Environmental and Chemical Engineering, Shanghai University of Electric Power, Shanghai, 200090, China
| | - Xiaodan Zhao
- College of Environmental and Chemical Engineering, Shanghai University of Electric Power, Shanghai, 200090, China
| | - Zhiwei Wang
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, China; State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China
| | - Qiaoying Wang
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, China; State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China.
| |
Collapse
|
34
|
Huang J, Zhou Z, Zheng Y, Sun X, Yu S, Zhao X, Yang A, Wu C, Wang Z. Biological nutrient removal in the anaerobic side-stream reactor coupled membrane bioreactors for sludge reduction. BIORESOURCE TECHNOLOGY 2020; 295:122241. [PMID: 31627067 DOI: 10.1016/j.biortech.2019.122241] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 09/30/2019] [Accepted: 10/02/2019] [Indexed: 06/10/2023]
Abstract
An anoxic-aerobic membrane bioreactor (AO-MBR), an anaerobic side-stream reactor (ASSR) coupled MBR (A-MBR), and an MBR with ASSR packed with carriers (AP-MBR) were operated parallelly to investigate biological nutrient removal, microbial community structure and mass balance of nutrients in sludge reduction systems. Compared to AO-MBR, A-MBR and AP-MBR were both efficient in COD and NH4+-N removal, had significantly higher nitrogen removal, reduced sludge production by 35.0% and 45.9%, but deteriorated biological phosphorus removal. Nitrosomonadaceae and Nitrospira were major bacteria responsible for ammonium and nitrite oxidation in the three systems. Inserting ASSR and packing carriers both favored denitrifying bacteria enrichment and organic substances release, and thus resulted in higher nitrate uptake rate (NUR) in the anoxic tank. Higher endogenous NUR in ASSR than in anoxic tank also indicated that ASSR and carriers both accelerated sludge decay. Denitrification and sludge reduction occurred in ASSR played important roles in biological nutrient removal.
Collapse
Affiliation(s)
- Jing Huang
- Shanghai Engineering Research Center of Energy - Saving in Heat Exchange Systems, College of Environmental and Chemical Engineering, Shanghai University of Electric Power, Shanghai 200090, China
| | - Zhen Zhou
- Shanghai Engineering Research Center of Energy - Saving in Heat Exchange Systems, College of Environmental and Chemical Engineering, Shanghai University of Electric Power, Shanghai 200090, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China.
| | - Yue Zheng
- Shanghai Engineering Research Center of Energy - Saving in Heat Exchange Systems, College of Environmental and Chemical Engineering, Shanghai University of Electric Power, Shanghai 200090, China
| | - Xiao Sun
- Shanghai Fudan Water Engineering Technology Co., Ltd, Shanghai 200433, China
| | - Siqi Yu
- Shanghai Engineering Research Center of Energy - Saving in Heat Exchange Systems, College of Environmental and Chemical Engineering, Shanghai University of Electric Power, Shanghai 200090, China
| | - Xiaodan Zhao
- Shanghai Engineering Research Center of Energy - Saving in Heat Exchange Systems, College of Environmental and Chemical Engineering, Shanghai University of Electric Power, Shanghai 200090, China
| | - Aming Yang
- Shanghai Fudan Water Engineering Technology Co., Ltd, Shanghai 200433, China
| | - Chunhua Wu
- Shanghai Engineering Research Center of Energy - Saving in Heat Exchange Systems, College of Environmental and Chemical Engineering, Shanghai University of Electric Power, Shanghai 200090, China
| | - Zhiwei Wang
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China; State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| |
Collapse
|
35
|
Zheng Y, Zhou Z, Ye X, Huang J, Jiang L, Chen G, Chen L, Wang Z. Identifying microbial community evolution in membrane bioreactors coupled with anaerobic side-stream reactor, packing carriers and ultrasonication for sludge reduction by linear discriminant analysis. BIORESOURCE TECHNOLOGY 2019; 291:121920. [PMID: 31382094 DOI: 10.1016/j.biortech.2019.121920] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Revised: 07/23/2019] [Accepted: 07/25/2019] [Indexed: 06/10/2023]
Abstract
An anoxic/oxic membrane bioreactor (AO-MBR), an anaerobic side-stream reactor (ASSR) coupled MBRs (A-MBRs), an A-MBR with carriers packed in ASSR (AP-MBR) and an AP-MBR with sludge ultrasonicated before ASSR (AUP-MBR) were operated for 261 d to investigate effects of ASSR, packing carriers and ultrasonication on sludge reduction and microbial population. Sludge reduction efficiencies of A-MBR, AP-MBR and AUP-MBR were 36.2%, 46.4% and 51.4%, respectively. Packing carriers and ultrasonication both enhanced hydrolysis by stimulating activities of α-glucosidase and protease, while uncoupling metabolism was enhanced greatly by packing carriers but slightly by ultrasonication. Linear discriminant analysis of effect size (LEfSe) results showed that packing carriers promoted the growth of hydrolytic and fermentative bacteria in bulk sludge, and enriched anaerobes and fermentative bacteria on the surface of carriers. Ultrasonication screened ultrasonication-resistant bacteria, and created an anaerobic environment beneficial to hydrolytic and fermentative bacteria.
Collapse
Affiliation(s)
- Yue Zheng
- Shanghai Engineering Research Center of Energy - Saving in Heat Exchange Systems, College of Environmental and Chemical Engineering, Shanghai University of Electric Power, Shanghai 200090, China
| | - Zhen Zhou
- Shanghai Engineering Research Center of Energy - Saving in Heat Exchange Systems, College of Environmental and Chemical Engineering, Shanghai University of Electric Power, Shanghai 200090, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China.
| | - Xiaofang Ye
- Shanghai Engineering Research Center of Energy - Saving in Heat Exchange Systems, College of Environmental and Chemical Engineering, Shanghai University of Electric Power, Shanghai 200090, China
| | - Jing Huang
- Shanghai Engineering Research Center of Energy - Saving in Heat Exchange Systems, College of Environmental and Chemical Engineering, Shanghai University of Electric Power, Shanghai 200090, China
| | - Lingyan Jiang
- Shanghai Chengtou Wastewater Treatment Co Ltd, Shanghai 201203, China
| | - Guang Chen
- Shanghai Chengtou Wastewater Treatment Co Ltd, Shanghai 201203, China
| | - Liuyu Chen
- Shanghai Engineering Research Center of Energy - Saving in Heat Exchange Systems, College of Environmental and Chemical Engineering, Shanghai University of Electric Power, Shanghai 200090, China
| | - Zhiwei Wang
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| |
Collapse
|