1
|
Xue YR, Ma ZY, Liu C, Zhu CY, Wu J, Xu ZK. Polyamide Nanofilms Synthesized by a Sequential Process of Blade Coating – Spraying - Interfacial Polymerization toward Reverse Osmosis. Sep Purif Technol 2023. [DOI: 10.1016/j.seppur.2023.123122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
2
|
Zhao S, Xue S, Li L, Ji C, Li P, Niu QJ. A comprehensive evaluation of PVA enhanced polyamide nanofiltration membranes: additive versus interlayer. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.130870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
3
|
Shalaby MS, Abdallah H, Wilken R, Christoph S, Shaban AM, Gaber MH, Sołowski G. Effect graphene oxide nanostructure/tannic acid on mixed polymeric
substrate‐surface
modified
RO
membranes. J Appl Polym Sci 2022. [DOI: 10.1002/app.53195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Marwa S. Shalaby
- Chemical Engineering Department Engineering Research & Renewable Energy Institute, National Research Centre Giza Egypt
| | - Heba Abdallah
- Chemical Engineering Department Engineering Research & Renewable Energy Institute, National Research Centre Giza Egypt
| | - Ralph Wilken
- Abteilungsleiter Plasmatechnik und Oberflächen Fraunhofer Institute for Manufacturing Technologies and Advanced Materials (IFAM) Bremen Germany
| | - Schmüser Christoph
- Abteilungsleiter Plasmatechnik und Oberflächen Fraunhofer Institute for Manufacturing Technologies and Advanced Materials (IFAM) Bremen Germany
| | - Ahmed M. Shaban
- Water Pollution Research Department Environmental Research Institute, National Research Centre Giza Egypt
| | - Marwa H. Gaber
- Chemical Engineering Department Engineering Research & Renewable Energy Institute, National Research Centre Giza Egypt
| | - Gaweł Sołowski
- Department of Molecular Biology and Genetics Faculty of Science and Art, Bingol University Bingol Turkey
| |
Collapse
|
4
|
Zhang X, Tian J, Xu R, Cheng X, Zhu X, Loh CY, Fu K, Zhang R, Wu D, Ren H, Xie M. In Situ Chemical Modification with Zwitterionic Copolymers of Nanofiltration Membranes: Cure for the Trade-Off between Filtration and Antifouling Performance. ACS APPLIED MATERIALS & INTERFACES 2022; 14:28842-28853. [PMID: 35709360 PMCID: PMC9247986 DOI: 10.1021/acsami.2c05311] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Breaking the trade-off between filtration performance and antifouling property is critical to enabling a thin-film nanocomposite (TFC) nanofiltration (NF) membrane for a wide range of feed streams. We proposed a novel design route for TFC NF membranes by grafting well-defined zwitterionic copolymers of [2-(methacryloyloxy)ethyl]dimethyl-(3-sulfopropyl)ammonium hydroxide (SBMA) and 2-aminoethyl methacrylate hydrochloride (AEMA) on the polyamide surfaces via an in situ surface chemical modification process. The successful grafting of a zwitterionic copolymer imparted the modified NF membranes with better surface hydrophilicity, a larger actual surface area (i.e., nodular structures), and a thinner polyamide layer. As a result, the water permeability of the modified membrane (i.e., TFC-10) was triple that of the pristine TFC membrane while maintaining high Na2SO4 rejection. We further demonstrated that the TFC-10 membrane possessed exceptional antifouling properties in both static adsorption tests and three cycles of dynamic protein and humic acid fouling tests. To recap, this work provides valuable insights and strategies for the fabrication of TFC NF membranes with simultaneously enhanced filtration performance and antifouling property.
Collapse
Affiliation(s)
- Xinyu Zhang
- School
of Civil and Environmental Engineering, Shandong Jianzhu University, Jinan 250101, PR China
| | - Jiayu Tian
- School
of Civil Engineering and Transportation, Hebei University of Technology, Tianjin 300401, PR China
| | - Ruiyang Xu
- International
Education School, Shandong Polytechnic College
(SDPC), Jining 272100, PR China
| | - Xiaoxiang Cheng
- School
of Civil and Environmental Engineering, Shandong Jianzhu University, Jinan 250101, PR China
| | - Xuewu Zhu
- School
of Civil and Environmental Engineering, Shandong Jianzhu University, Jinan 250101, PR China
| | - Ching Yoong Loh
- Department
of Chemical Engineering, University of Bath, Bath BA27AY, U.K.
| | - Kaifang Fu
- School
of Civil and Environmental Engineering, Shandong Jianzhu University, Jinan 250101, PR China
| | - Ruidong Zhang
- School
of Civil and Environmental Engineering, Shandong Jianzhu University, Jinan 250101, PR China
| | - Daoji Wu
- School
of Civil and Environmental Engineering, Shandong Jianzhu University, Jinan 250101, PR China
- .
Phone: +44(0)1225 383246
| | - Huixue Ren
- School
of Civil and Environmental Engineering, Shandong Jianzhu University, Jinan 250101, PR China
| | - Ming Xie
- Department
of Chemical Engineering, University of Bath, Bath BA27AY, U.K.
| |
Collapse
|
5
|
High density star poly HEMA containing bis-indole rich dendrimer inner core for integrated anti-fouling and anti-bacterial coating applications. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2022.111170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
6
|
Porter CJ, DuChanois RM, MacDonald E, Kilpatrick SM, Zhong M, Elimelech M. Tethered electrolyte active-layer membranes. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2021.120004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
7
|
Mahdavi H, Amin Kerachian M, Abazari M. Synergistic effect of GO@SiO2 and GO@ZnO nano-hybrid particles with PVDF-g-PMMA copolymer in high-flux ultrafiltration membrane for oily wastewater treatment and antifouling properties. J IND ENG CHEM 2022. [DOI: 10.1016/j.jiec.2022.01.016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
8
|
Tailored thin film nanocomposite membrane incorporated with Noria for simultaneously overcoming the permeability-selectivity trade-off and the membrane fouling in nanofiltration process. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2021.119863] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
9
|
Roles of initial bacterial attachment and growth in the biofouling development on the microfiltration membrane: From viewpoints of individual cell and interfacial interaction energy. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2021.119723] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
10
|
Suresh D, Goh PS, Ismail AF, Hilal N. Surface Design of Liquid Separation Membrane through Graft Polymerization: A State of the Art Review. MEMBRANES 2021; 11:832. [PMID: 34832061 PMCID: PMC8621935 DOI: 10.3390/membranes11110832] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Revised: 10/17/2021] [Accepted: 10/21/2021] [Indexed: 11/17/2022]
Abstract
Surface modification of membranes is an effective approach for imparting unique characteristics and additional functionalities to the membranes. Chemical grafting is a commonly used membrane modification technique due to its versatility in tailoring and optimizing the membrane surface with desired functionalities. Various types of polymers can be precisely grafted onto the membrane surface and the operating conditions of grafting can be tailored to further fine-tune the membrane surface properties. This review focuses on the recent strategies in improving the surface design of liquid separation membranes through grafting-from technique, also known as graft polymerization, to improve membrane performance in wastewater treatment and desalination applications. An overview on membrane technology processes such as pressure-driven and osmotically driven membrane processes are first briefly presented. Grafting-from surface chemical modification approaches including chemical initiated, plasma initiated and UV initiated approaches are discussed in terms of their features, advantages and limitations. The innovations in membrane surface modification techniques based on grafting-from techniques are comprehensively reviewed followed by some highlights on the current challenges in this field. It is concluded that grafting-from is a versatile and effective technique to introduce various functional groups to enhance the surface properties and separation performances of liquid separation membranes.
Collapse
Affiliation(s)
- Deepa Suresh
- Advanced Membrane Technology Research Centre, Faculty of Chemical and Energy Engineering, Universiti Teknologi Malaysia, Johor Bahru 81310, Johor, Malaysia; (D.S.); (A.F.I.)
| | - Pei Sean Goh
- Advanced Membrane Technology Research Centre, Faculty of Chemical and Energy Engineering, Universiti Teknologi Malaysia, Johor Bahru 81310, Johor, Malaysia; (D.S.); (A.F.I.)
| | - Ahmad Fauzi Ismail
- Advanced Membrane Technology Research Centre, Faculty of Chemical and Energy Engineering, Universiti Teknologi Malaysia, Johor Bahru 81310, Johor, Malaysia; (D.S.); (A.F.I.)
| | - Nidal Hilal
- NYUAD Water Research Center, New York University Abu Dhabi, Abu Dhabi P.O. Box 129188, United Arab Emirates
| |
Collapse
|
11
|
Effect of hydrophilic polymer modification of reverse osmosis membrane surfaces on organic adsorption and biofouling behavior. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2020.125680] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
12
|
Yang Z, Takagi R, Zhang X, Yasui T, Zhang L, Matsuyama H. Engineering a dual-functional sulfonated polyelectrolyte-silver nanoparticle complex on a polyamide reverse osmosis membrane for robust biofouling mitigation. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2020.118757] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
13
|
Ren L, Chen J, Lu Q, Han J, Wu H. Anti-biofouling nanofiltration membrane constructed by in-situ photo-grafting bactericidal and hydrophilic polymers. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2020.118658] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
14
|
Ren L, Chen J, Lu Q, Han J, Wu H. Antifouling Nanofiltration Membrane Fabrication via Surface Assembling Light-Responsive and Regenerable Functional Layer. ACS APPLIED MATERIALS & INTERFACES 2020; 12:52050-52058. [PMID: 33156605 DOI: 10.1021/acsami.0c16858] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Membrane fouling, caused by aggregation of organics and microorganisms from filtrate on the membrane surface, seriously reduces the service life of a nanofiltration (NF) membrane. Developing facile and renewable antifouling modification methods without sacrificing separation properties of the membrane remain an imperative requirement. Herein, a thin-film composite (TFC) NF membrane with a light-responsive and regenerable functional layer (P-TFC) was fabricated via host-guest interactions between the azobenzene (guest) labeled functional polymers and the β-cyclodextrin (host) bonded membrane surface (H-TFC). The P-TFC-3 not only showed outstanding antifouling ability and high flux recovery ratio (FRR > 90% at the fourth antiadhesive test) but also exhibited enhanced water permeability (17.9 L m-2 h-1 bar-1) and high selectivity (αMgSO4NaCl = 33.4 and fast antibiotics enrichment capacity) compared with the pristine membrane. Furthermore, when the functional layer was contaminated, it can be removed by ultraviolet light irradiation and a new functional layer can be rebuilt by adding fresh azobenzene labeled functional polymers. After several regeneration processes, the membranes still showed constant separation properties and high flux recovery ability (FRR > 90%). This work proposes an easy-to-assemble and regenerable surface modification strategy to endow TFC NF membranes with excellent fouling resistance and sustainable utilization ability while maintaining high separation properties.
Collapse
Affiliation(s)
- Liang Ren
- School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130, China
| | - Jianxin Chen
- School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130, China
- National-Local Joint Engineering Laboratory for Energy Conservation in Chemical Process Integration and Resources Utilization, Hebei University of Technology, Tianjin 300130, China
| | - Qing Lu
- Tianjin Bokelin Medical Packaging Technology Co., Ltd., Tasly Group, Tianjin 300410, China
| | - Jian Han
- School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130, China
| | - Hong Wu
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| |
Collapse
|
15
|
The investigation of hydrophilic modification of membrane surface based on the mono-esterification between maleic anhydride and polyethylene glycol: Response surface methodology, reaction kinetics and performance analysis. J Taiwan Inst Chem Eng 2020. [DOI: 10.1016/j.jtice.2020.07.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|