1
|
Yao C, Ben-Zvi AM, Xu R, Ram N, Stolov M, Gupta P, Coupin MJ, Behera H, Freger V, Warner J, Ramon GZ, Kumar M, Segal-Peretz T. 3D Nanoscale Structures of Hydrated Polyamide Desalination Membranes Revealed by Cryogenic Transmission Electron Microscopy Tomography. ACS NANO 2025; 19:16718-16731. [PMID: 40173274 DOI: 10.1021/acsnano.5c01190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2025]
Abstract
Desalination via reverse osmosis (RO) membrane technology is a preferred solution to the ongoing global challenges of freshwater scarcity. The active separation layer of RO membranes is a polyamide thin film (<200 nm), whose morphology critically influences membrane performance. However, conflicting descriptions of trends between morphology and performance abound in the literature due to the lack of a rigorous morphological description of these membranes. Notably, comprehensive three-dimensional (3D) morphological characterization of these membranes has so far been conducted exclusively under dry conditions, which contrasts with the operational, hydrated state of these membranes. Here, we present, for the first time, characterization of the hydrated 3D nanoscale morphology of polyamide films from commercial brackish water (BW) and seawater (SW) membranes using cryo-transmission electron microscopy (cryo-TEM) tomography. Our findings reveal significant morphological differences between hydrated and dry membranes, resulting in variations in key structural parameters that impact performance. Both SW and BW membranes swell and increase in total volume and thickness upon hydration, with BW membranes exhibiting more pronounced swelling (32% vs 7% in volume and 35% vs 11% in effective thickness), primarily due to the lower degree of cross-linking of BW membranes. Additionally, while the surface area decreases upon hydration for both SW and BW membranes, indicating a smoothing of surface nodules and cavities, surface roughness remains unchanged, suggesting that current roughness measurement methods such as atomic force microscopy do not capture intrinsic morphological features. Overall, this study demonstrates the feasibility of employing cryo-TEM tomography techniques to characterize RO membrane morphology under operation relevant conditions, thus enabling a better linkage between membrane morphology and performance.
Collapse
Affiliation(s)
- Chenhao Yao
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, Texas 78721, United States
| | - Adi M Ben-Zvi
- Department of Civil & Environmental Engineering, Technion─Israel Institute of Technology, Haifa 32000, Israel
- Nanoscience and Nanotechnology Program, Technion─Israel Institute of Technology, Haifa 32000, Israel
| | - Ruizhe Xu
- Maseeh Department of Civil, Architectural and Environmental Engineering, The University of Texas at Austin, Austin, Texas 78721, United States
| | - Noa Ram
- Department of Chemical Engineering, Technion─Israel Institute of Technology, Haifa 32000, Israel
| | - Mikhail Stolov
- Department of Chemical Engineering, Technion─Israel Institute of Technology, Haifa 32000, Israel
| | - Priyanshu Gupta
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, Texas 78721, United States
| | - Matthew J Coupin
- Walker Department of Mechanical Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Harekrushna Behera
- Maseeh Department of Civil, Architectural and Environmental Engineering, The University of Texas at Austin, Austin, Texas 78721, United States
| | - Viatcheslav Freger
- Department of Chemical Engineering, Technion─Israel Institute of Technology, Haifa 32000, Israel
| | - Jamie Warner
- Walker Department of Mechanical Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Guy Z Ramon
- Department of Civil & Environmental Engineering, Technion─Israel Institute of Technology, Haifa 32000, Israel
- Nanoscience and Nanotechnology Program, Technion─Israel Institute of Technology, Haifa 32000, Israel
- Department of Chemical Engineering, Technion─Israel Institute of Technology, Haifa 32000, Israel
| | - Manish Kumar
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, Texas 78721, United States
- Maseeh Department of Civil, Architectural and Environmental Engineering, The University of Texas at Austin, Austin, Texas 78721, United States
| | - Tamar Segal-Peretz
- Department of Chemical Engineering, Technion─Israel Institute of Technology, Haifa 32000, Israel
| |
Collapse
|
2
|
R Leivas F, Barbosa MC. Functionalized carbon nanocones performance in water harvesting. J Chem Phys 2023; 158:2890471. [PMID: 37184010 DOI: 10.1063/5.0142718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 04/30/2023] [Indexed: 05/16/2023] Open
Abstract
In this work, we investigate the water capture process for functionalized carbon nanocones (CNCs) through molecular dynamic simulations in the following three scenarios: a single CNC in contact with a reservoir containing liquid water, a single CNC in contact with a water vapor reservoir, and a combination of more than one CNC in contact with vapor. We found that water flows through the nanocones when in contact with the liquid reservoir if the nanocone tip presents hydrophilic functionalization. In contact with steam, we observed the formation of droplets at the base of the nanocone only when hydrophilic functionalization is present. Then, water flows through in a linear manner, a process that is more efficient than that in the liquid reservoir regime. The scalability of the process is tested by analyzing the water flow through more than one nanocone. The results suggest that the distance between the nanocones is a fundamental ingredient for the efficiency of water harvesting.
Collapse
Affiliation(s)
- Fernanda R Leivas
- Instituto de Física, Universidade Federal do Rio Grande do Sul, CP 15051, 91501-970 Porto Alegre, RS, Brazil
| | - Marcia C Barbosa
- Instituto de Física, Universidade Federal do Rio Grande do Sul, CP 15051, 91501-970 Porto Alegre, RS, Brazil
| |
Collapse
|
3
|
Kammakakam I, Lai Z. Next-generation ultrafiltration membranes: A review of material design, properties, recent progress, and challenges. CHEMOSPHERE 2023; 316:137669. [PMID: 36623590 DOI: 10.1016/j.chemosphere.2022.137669] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Revised: 12/09/2022] [Accepted: 12/24/2022] [Indexed: 06/17/2023]
Abstract
Membrane technology utilizing ultrafiltration (UF) processes has emerged as the most widely used and cost-effective simple process in many industrial applications. The industries like textiles and petroleum refining are promptly required membrane based UF processes to alleviate the potential environmental threat caused by the generation of various wastewater. At the same time, major limitations such as material selection as well as fouling behavior challenge the overall performance of UF membranes, particularly in wastewater treatment. Therefore, a complete discussion on material design with structural property relation and separation performance of UF membranes is always exciting. This state-of-the-art review has exclusively focused on the development of UF membranes, the material design, properties, progress in separation processes, and critical challenges. So far, most of the review articles have examined the UF membrane processes through a selected track of paving typical materials and their limited applications. In contrast, in this review, we have exclusively aimed at comprehensive research from material selection and fabrication methods to all the possible applications of UF membranes, giving more attention and theoretical understanding to the complete development of high-performance UF systems. We have discussed the methodical engineering behind the development of UF membranes regardless of their materials and fabrication mechanisms. Identifying the utility of UF membrane systems in various applications, as well as their mode of separation processes, has been well discussed. Overall, the current review conveys the knowledge of the present-day significance of UF membranes together with their future prospective opportunities whilst overcoming known difficulties in many potential applications.
Collapse
Affiliation(s)
- Irshad Kammakakam
- Division of Physical Science and Engineering, King Abdullah University of Science and Technology, Thuwal, 23955, Saudi Arabia.
| | - Zhiping Lai
- Division of Physical Science and Engineering, King Abdullah University of Science and Technology, Thuwal, 23955, Saudi Arabia.
| |
Collapse
|
4
|
Tan DY, Hashimoto T, Takizawa S. 3D modeling of PVDF membrane aging using scanning electron microscope and OpenCV image analysis. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.121141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
5
|
Riasi MS, Tsaur L, Li YM, Zhang Q, Wiesner U, Yeghiazarian L. Stochastic microstructure delineation and flow simulation in asymmetric block copolymer ultrafiltration membranes. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.121163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
6
|
Shao S, Zeng F, Long L, Zhu X, Peng LE, Wang F, Yang Z, Tang CY. Nanofiltration Membranes with Crumpled Polyamide Films: A Critical Review on Mechanisms, Performances, and Environmental Applications. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:12811-12827. [PMID: 36048162 DOI: 10.1021/acs.est.2c04736] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Nanofiltration (NF) membranes have been widely applied in many important environmental applications, including water softening, surface/groundwater purification, wastewater treatment, and water reuse. In recent years, a new class of piperazine (PIP)-based NF membranes featuring a crumpled polyamide layer has received considerable attention because of their great potential for achieving dramatic improvements in membrane separation performance. Since the report of novel crumpled Turing structures that exhibited an order of magnitude enhancement in water permeance ( Science 2018, 360 (6388), 518-521), the number of published research papers on this emerging topic has grown exponentially to approximately 200. In this critical review, we provide a systematic framework to classify the crumpled NF morphologies. The fundamental mechanisms and fabrication methods involved in the formation of these crumpled morphologies are summarized. We then discuss the transport of water and solutes in crumpled NF membranes and how these transport phenomena could simultaneously improve membrane water permeance, selectivity, and antifouling performance. The environmental applications of these emerging NF membranes are highlighted, and future research opportunities/needs are identified. The fundamental insights in this review provide critical guidance on the further development of high-performance NF membranes tailored for a wide range of environmental applications.
Collapse
Affiliation(s)
- Senlin Shao
- School of Civil Engineering, Wuhan University, Wuhan 430072, PR China
| | - Fanxi Zeng
- School of Civil Engineering, Wuhan University, Wuhan 430072, PR China
| | - Li Long
- Department of Civil Engineering, The University of Hong Kong, Pokfulam, Hong Kong, SAR, China
| | - Xuewu Zhu
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan 250101, PR China
| | - Lu Elfa Peng
- Department of Civil Engineering, The University of Hong Kong, Pokfulam, Hong Kong, SAR, China
| | - Fei Wang
- Department of Civil Engineering, The University of Hong Kong, Pokfulam, Hong Kong, SAR, China
| | - Zhe Yang
- Department of Civil Engineering, The University of Hong Kong, Pokfulam, Hong Kong, SAR, China
| | - Chuyang Y Tang
- Department of Civil Engineering, The University of Hong Kong, Pokfulam, Hong Kong, SAR, China
| |
Collapse
|
7
|
Fabrication of polysulfone membrane with sponge-like structure by using different non-woven fabrics. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121553] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
8
|
Re-thinking polyamide thin film formation: How does interfacial destabilization dictate film morphology? J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.120593] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
9
|
Dissecting the structure-compaction-performance relationship of thin-film composite polyamide membranes with different structure features. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.120553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
10
|
Li J, Yu Y, Zhou P, Li H, Liu Y. Dependency of polyacrylonitrile membrane structures on Hansen solubility parameters during
non‐solvent
induced phase separation. J Appl Polym Sci 2022. [DOI: 10.1002/app.52383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Jin Li
- CAS Key Laboratory of Carbon Materials, Institute of Coal Chemistry Chinese Academy of Sciences Taiyuan Shanxi Province China
- Center of Materials Science and Optoelectronics Engineering University of Chinese Academy of Sciences Beijing China
| | - Yuxiu Yu
- CAS Key Laboratory of Carbon Materials, Institute of Coal Chemistry Chinese Academy of Sciences Taiyuan Shanxi Province China
| | - Pucha Zhou
- CAS Key Laboratory of Carbon Materials, Institute of Coal Chemistry Chinese Academy of Sciences Taiyuan Shanxi Province China
| | - Haojie Li
- CAS Key Laboratory of Carbon Materials, Institute of Coal Chemistry Chinese Academy of Sciences Taiyuan Shanxi Province China
- Center of Materials Science and Optoelectronics Engineering University of Chinese Academy of Sciences Beijing China
| | - Yaodong Liu
- CAS Key Laboratory of Carbon Materials, Institute of Coal Chemistry Chinese Academy of Sciences Taiyuan Shanxi Province China
- University of Chinese Academy of Sciences Beijing China
| |
Collapse
|
11
|
Peng LE, Yang Z, Long L, Zhou S, Guo H, Tang CY. A critical review on porous substrates of TFC polyamide membranes: Mechanisms, membrane performances, and future perspectives. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2021.119871] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
12
|
The open membrane database: Synthesis–structure–performance relationships of reverse osmosis membranes. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2021.119927] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
13
|
Chen Y, Li Y, Li Y, Guo J, Li S, Zhang S. Nano-Interlayers Fabricated via Interfacial Azo-Coupling Polymerization: Effect of Pore Properties of Interlayers on Overall Performance of Thin-Film Composite for Nanofiltration. ACS APPLIED MATERIALS & INTERFACES 2021; 13:59329-59340. [PMID: 34855350 DOI: 10.1021/acsami.1c19525] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The supporting layer of nanofiltration membranes is critical to the overall nanofiltration performance. However, conventional supports lack efficient surface porosity, which leads to the limited utilization rate of the polyamide (PA) layer. Herein a double-skin-layer nanofiltration membrane with porous organic polymer nanointerlayers prepared via a two-step interfacial polymerization technique is presented to investigate the effect of the interlayers' pore properties on the performance of the thin-film composite. Nanometer interlayers with different pore sizes are fabricated via interfacial azo-coupling polymerization. The pore properties of the nanointerlayer extremely influence the permeance, where a suitable pore size of 4.22 nm promotes pure water permeance of up to 32.2 L m-2 h-1 bar-1, which is ∼3.8-fold greater than the membrane without an interlayer. However, an interlayer with 0.54 nm pores limits the performance (4.7 L m-2 h-1 bar-1), which is even lower than the unmodified membrane (7.5 L m-2 h-1 bar-1), because of the narrow pores and confined transport mode. However, the confined diffusion rate of amino monomers from the support to interface leads to a thinner PA layer of ∼45 nm and results in high flux. This work provides a facial route for the fabrication of interlayers and facilitate the design of high-performance membrane materials with interlayers.
Collapse
Affiliation(s)
- Yaohan Chen
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
- University of Science and Technology of China, Hefei 230026, P. R. China
| | - Yonggang Li
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
| | - Yunqi Li
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
- University of Science and Technology of China, Hefei 230026, P. R. China
| | - Jing Guo
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
| | - Shenghai Li
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
- University of Science and Technology of China, Hefei 230026, P. R. China
| | - Suobo Zhang
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
- University of Science and Technology of China, Hefei 230026, P. R. China
| |
Collapse
|
14
|
|
15
|
Structural modification of polysulfone/NMP membranes: effect of chloroform as co-solvent. Polym Bull (Berl) 2021. [DOI: 10.1007/s00289-021-03828-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
16
|
Current progress in membranes for fuel cells and reverse electrodialysis. MENDELEEV COMMUNICATIONS 2021. [DOI: 10.1016/j.mencom.2021.07.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
17
|
Vasil’eva VI, Saud AM, Akberova EM. Effect of the Mass Fraction of Ion-Exchange Resin in a Ralex CM Cation-Exchange Membrane on Demineralization of Phenylalanine Aqueous Salt Solutions by Neutralization Dialysis. MEMBRANES AND MEMBRANE TECHNOLOGIES 2021. [DOI: 10.1134/s2517751621020074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
18
|
Wells CC, Melnikov DV, Cirillo JT, Gracheva ME. Multiscale simulations of charge and size separation of nanoparticles with a solid-state nanoporous membrane. Phys Rev E 2020; 102:063104. [PMID: 33465955 DOI: 10.1103/physreve.102.063104] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 11/19/2020] [Indexed: 11/07/2022]
Abstract
Nanoporous membranes provide an attractive approach for rapid filtering of nanoparticles at high-throughput volume, a goal useful to many fields of science and technology. Creating a device to readily separate different particles would require an extensive knowledge of particle-nanopore interactions and particle translocation dynamics. To this end, we use a multiscale model for the separation of nanoparticles by combining microscopic Brownian dynamics simulations to simulate the motion of spherical nanoparticles of various sizes and charges in a system with nanopores in an electrically biased membrane with a macroscopic filtration model accounting for bulk diffusion of nanoparticles and membrane surface pore density. We find that, in general, the separation of differently sized particles is easier to accomplish than of differently charged particles. The separation by charge can be better performed in systems with low pore density and/or smaller filtration chambers when electric nanopore-particle interactions are significant. The results from these simple cases can be used to gain insight in the more complex dynamics of separating, for example, globular proteins.
Collapse
Affiliation(s)
- Craig C Wells
- Department of Physics, Clarkson University, Potsdam, New York 13699, USA
| | - Dmitriy V Melnikov
- Department of Physics, Clarkson University, Potsdam, New York 13699, USA
| | - Joshua T Cirillo
- Department of Physics, Clarkson University, Potsdam, New York 13699, USA
| | - Maria E Gracheva
- Department of Physics, Clarkson University, Potsdam, New York 13699, USA
| |
Collapse
|
19
|
Verbeke R, Seynaeve M, Bastin M, Davenport DM, Eyley S, Thielemans W, Koeckelberghs G, Elimelech M, Vankelecom IF. The significant role of support layer solvent annealing in interfacial polymerization: The case of epoxide-based membranes. J Memb Sci 2020. [DOI: 10.1016/j.memsci.2020.118438] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
20
|
Reis FDAA, Mallio DO, Galindo JL, Huertas R. Scaling of roughness and porosity in thin film deposition with mixed transport mechanisms and adsorption barriers. Phys Rev E 2020; 102:042802. [PMID: 33212663 DOI: 10.1103/physreve.102.042802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 10/13/2020] [Indexed: 06/11/2023]
Abstract
Thin film deposition with particle transport mixing collimated and diffusive components and with barriers for adsorption are studied using numerical simulations and scaling approaches. Biased random walks on lattices are used to model the particle flux and the analogy with advective-diffusive transport is used to define a Peclet number P that represents the effect of the bias towards the substrate. An aggregation probability that relates the rates of adsorption and of the dominant transport mechanism plays the role of a Damkohler number D, where D≲1 is set to describe moderate to low adsorption rates. Very porous deposits with sparse branches are obtained with P≪1, whereas low porosity deposits with large height fluctuations at short scales are obtained with P≫1. For P≳1 in which the field bias is intense, an initial random deposition is followed by Kardar-Parisi-Zhang (KPZ) roughening. As the transport is displaced from those limiting conditions, the interplay of the transport and adsorption mechanisms establishes a condition to produce films with the smoothest surfaces for a constant deposited mass: with low adsorption barriers, a balance of random and collimated flux is required, whereas for high barriers the smoothest surfaces are obtained with P∼D^{1/2}. For intense bias, the roughness is shown to be a power law of P/D, whose exponent depends on the growth exponent β of the KPZ class, and the porosity has a superuniversal scaling as (P/D)^{-1/3}. We also study a generalized ballistic deposition model with slippery particle aggregation that shows the universality of these relations in growth with dominant collimated flux, particle adsorption at any point of the deposit, and negligible adsorbate diffusion, in contrast with the models where aggregation is restricted to the outer surface.
Collapse
Affiliation(s)
- Fábio D A Aarão Reis
- Instituto de Física, Universidade Federal Fluminense, Avenida Litorânea s/n, 24210-340 Niterói Rio de Janeiro, Brazil
| | - Daniel O Mallio
- Instituto de Física, Universidade Federal Fluminense, Avenida Litorânea s/n, 24210-340 Niterói Rio de Janeiro, Brazil
| | - Jose Luis Galindo
- Departament of Optics, TexColImag Group, University of Granada, Granada 18071, Spain
| | - Rafael Huertas
- Departament of Optics, TexColImag Group, University of Granada, Granada 18071, Spain
| |
Collapse
|
21
|
Prikhno IA, Safronova EY, Stenina IA, Yurova PA, Yaroslavtsev AB. Dependence of the Transport Properties of Perfluorinated Sulfonated Cation-Exchange Membranes on Ion-Exchange Capacity. MEMBRANES AND MEMBRANE TECHNOLOGIES 2020. [DOI: 10.1134/s2517751620040095] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
22
|
Stenina I, Golubenko D, Nikonenko V, Yaroslavtsev A. Selectivity of Transport Processes in Ion-Exchange Membranes: Relationship with the Structure and Methods for Its Improvement. Int J Mol Sci 2020; 21:E5517. [PMID: 32752236 PMCID: PMC7432390 DOI: 10.3390/ijms21155517] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 07/28/2020] [Accepted: 07/30/2020] [Indexed: 11/16/2022] Open
Abstract
Nowadays, ion-exchange membranes have numerous applications in water desalination, electrolysis, chemistry, food, health, energy, environment and other fields. All of these applications require high selectivity of ion transfer, i.e., high membrane permselectivity. The transport properties of ion-exchange membranes are determined by their structure, composition and preparation method. For various applications, the selectivity of transfer processes can be characterized by different parameters, for example, by the transport number of counterions (permselectivity in electrodialysis) or by the ratio of ionic conductivity to the permeability of some gases (crossover in fuel cells). However, in most cases there is a correlation: the higher the flux density of the target component through the membrane, the lower the selectivity of the process. This correlation has two aspects: first, it follows from the membrane material properties, often expressed as the trade-off between membrane permeability and permselectivity; and, second, it is due to the concentration polarization phenomenon, which increases with an increase in the applied driving force. In this review, both aspects are considered. Recent research and progress in the membrane selectivity improvement, mainly including a number of approaches as crosslinking, nanoparticle doping, surface modification, and the use of special synthetic methods (e.g., synthesis of grafted membranes or membranes with a fairly rigid three-dimensional matrix) are summarized. These approaches are promising for the ion-exchange membranes synthesis for electrodialysis, alternative energy, and the valuable component extraction from natural or waste-water. Perspectives on future development in this research field are also discussed.
Collapse
Affiliation(s)
- Irina Stenina
- Kurnakov Institute of General and Inorganic Chemistry of the RAS, 119991 Moscow, Russia
| | - Daniel Golubenko
- Kurnakov Institute of General and Inorganic Chemistry of the RAS, 119991 Moscow, Russia
| | - Victor Nikonenko
- Membrane Institute, Kuban State University, 350040 Krasnodar, Russia
| | - Andrey Yaroslavtsev
- Kurnakov Institute of General and Inorganic Chemistry of the RAS, 119991 Moscow, Russia
| |
Collapse
|
23
|
Thinking the future of membranes: Perspectives for advanced and new membrane materials and manufacturing processes. J Memb Sci 2020. [DOI: 10.1016/j.memsci.2019.117761] [Citation(s) in RCA: 203] [Impact Index Per Article: 40.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|