1
|
Cheng Z, Zhang P, Wang Z, Jiang H, Wang W, Liu D, Wang L, Zhu G, Zou X. A Bipyridyl Covalent Organic Framework with Coordinated Cu(I) for Membrane C 3 H 6 /C 3 H 8 Separation. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023:e2300438. [PMID: 37029586 DOI: 10.1002/smll.202300438] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 03/08/2023] [Indexed: 06/19/2023]
Abstract
Covalent organic frameworks (COFs) mixed matrix membranes (MMMs) combining individual attributes of COFs and polymers are promising for gas separation. However, applying COF MMMs for propylene/propane (C3 H6 /C3 H8 ) separation remains a big challenge due to COF inert pores and C3 H6 /C3 H8 similar molecular sizes. Herein, the designed synthesis of a Cu(I) coordinated COF for membrane C3 H6 /C3 H8 separation is reported. A platform COF is synthesized from 5,5'-diamino-2,2'-bipyridine and 2-hydroxybenzene-1,3,5-tricarbaldehyde. This COF possesses a porous 2D structure with high crystallinity. Cu(I) is coordinated to bipyridyl moieties in the COF framework, acting as recognizable sites for C3 H6 gas, as shown by the adsorption measurements. Cu(I) COF is blended with 6FDA-DAM polymer to yield MMMs. This COF MMM exhibits selective and permeable separation of C3 H6 from C3 H8 (C3 H6 permeability of 44.7 barrer, C3 H6 /C3 H8 selectivity of 28.1). The high porosity and Cu(I) species contribute to the great improvement of separation performance by virtue of 2.3-fold increase in permeability and 2.2-fold increase in selectivity compared to pure 6FDA-DAM. The superior performance to those of most relevant reported MMMs demonstrates that the Cu(I) coordinated COF is an excellent candidate material for C3 H6 separation membranes.
Collapse
Affiliation(s)
- Zeliang Cheng
- Faculty of Chemistry, Northeast Normal University, Changchun, 130024, P. R. China
| | - Pinyue Zhang
- Faculty of Chemistry, Northeast Normal University, Changchun, 130024, P. R. China
| | - Ziyang Wang
- Faculty of Chemistry, Northeast Normal University, Changchun, 130024, P. R. China
| | - Haicheng Jiang
- Faculty of Chemistry, Northeast Normal University, Changchun, 130024, P. R. China
| | - Wenjian Wang
- Faculty of Chemistry, Northeast Normal University, Changchun, 130024, P. R. China
| | - Dandan Liu
- Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, P. R. China
| | - Lina Wang
- Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, P. R. China
| | - Guangshan Zhu
- Faculty of Chemistry, Northeast Normal University, Changchun, 130024, P. R. China
| | - Xiaoqin Zou
- Faculty of Chemistry, Northeast Normal University, Changchun, 130024, P. R. China
| |
Collapse
|
2
|
Rigid-interface-locking of ZIF-8 membranes to enable for superior high-pressure propylene/propane separation. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.121193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
3
|
Yamaki T, Sakai M, Matsukata M, Tsutsuminai S, Sakamoto N, Toratani N, Kataoka S. Impact of process configuration on energy consumption and membrane area in hybrid separation process using olefin-selective zeolite membrane. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
4
|
Highly permeable ZIF-8 membranes for propylene permselective pervaporation under high pressure up to 20 bar. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2021.120055] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
5
|
Design and Evaluation of Two-Stage Membrane-Separation Processes for Propylene–Propane Mixtures. MEMBRANES 2022; 12:membranes12020163. [PMID: 35207084 PMCID: PMC8874774 DOI: 10.3390/membranes12020163] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 01/20/2022] [Accepted: 01/25/2022] [Indexed: 11/17/2022]
Abstract
Propylene is industrially produced in a mixture with propane and generally separated from the mixture via distillation. However, because distillation is an energy-consuming process, a more efficient separation process should be developed to mitigate both carbon dioxide (CO2) emissions and production costs. In this study, a two-stage membrane-separation process was designed, and its CO2 emission and production costs were evaluated. The separation processes were designed to minimize energy consumption using different membrane combinations (two recently developed membranes each). To evaluate the separation processes using various membrane combinations, two indicators, i.e., CO2 emissions and total annual costs (TACs), were estimated based on the process simulation (Pro/II, version 10.1.1) results, including energy consumptions, operation expenditure, and capital expenditure. These results were compared to the distillation processes as benchmarks, and the advantages of the membrane-separation process were discussed. In the comparison, carbon taxes were implemented for assessing these two independent indicators as a single indicator, i.e., TAC with carbon tax. Furthermore, using the same scheme, model membranes were also employed in the two-stage membrane-separation process as case studies of technological forecasts.
Collapse
|
6
|
Yang K, Ban Y, Yang W. Layered MOF membranes modified with ionic liquid/AgBF4 composite for olefin/paraffin separation. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2021.119771] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
7
|
Improved C3H6/C3H8 separation performance on ZIF-8 membranes through enhancing PDMS contact-dependent confinement effect. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2021.119613] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
8
|
Ethylene production using oxidative dehydrogenation: effects of membrane-based separation technology on process safety & economics. Catal Today 2021. [DOI: 10.1016/j.cattod.2020.07.063] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
9
|
Pisarenko EV, Ponomarev AB, Pisarenko VN. Studying the Selective Methylacetylene Hydrogenation Reaction in Methylacetylene–Propylene Mixtures on Palladium Oxide Nanocatalysts. THEORETICAL FOUNDATIONS OF CHEMICAL ENGINEERING 2021. [DOI: 10.1134/s0040579521030179] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
10
|
Liu Y, Kita H, Tanaka K, Imawaka K, Tanaka S, Takewaki T. Mechanochemically synthesized
ZIF
‐8 nanoparticles blended into
6FDA‐TrMPD
membranes for
C
3
H
6
/
C
3
H
8
separation. J Appl Polym Sci 2020. [DOI: 10.1002/app.50251] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Affiliation(s)
- Yongsheng Liu
- Graduate School of Sciences and Technology for Innovation Yamaguchi University Yamaguchi Japan
| | - Hidetoshi Kita
- Graduate School of Sciences and Technology for Innovation Yamaguchi University Yamaguchi Japan
| | - Kazuhiro Tanaka
- Graduate School of Sciences and Technology for Innovation Yamaguchi University Yamaguchi Japan
| | - Kota Imawaka
- Faculty of Environmental and Urban Engineering Kansai University Osaka Japan
| | - Shunsuke Tanaka
- Faculty of Environmental and Urban Engineering Kansai University Osaka Japan
| | - Takahiko Takewaki
- Yokohama Research Center Mitsubishi Chemical Corporation Yokohama Japan
| |
Collapse
|
11
|
Ren Y, Liang X, Dou H, Ye C, Guo Z, Wang J, Pan Y, Wu H, Guiver MD, Jiang Z. Membrane-Based Olefin/Paraffin Separations. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2020; 7:2001398. [PMID: 33042752 PMCID: PMC7539199 DOI: 10.1002/advs.202001398] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 05/27/2020] [Indexed: 06/11/2023]
Abstract
Efficient olefin/paraffin separation is a grand challenge because of their similar molecular sizes and physical properties, and is also a priority in the modern chemical industry. Membrane separation technology has been demonstrated as a promising technology owing to its low energy consumption, mild operation conditions, tunability of membrane materials, as well as the integration of physical and chemical mechanisms. In this work, inspired by the physical mechanism of mass transport in channel proteins and the chemical mechanism of mass transport in carrier proteins, recent progress in channel-based and carrier-based membranes toward olefin/paraffin separations is summarized. Further, channel-based membranes are categorized into membranes with network structures and with framework structures according to the morphology of channels. The separation mechanisms, separation performance, and membrane stability in channel-based and carrier-based membranes are elaborated. Future perspectives toward membrane-based olefin/paraffin separation are proposed.
Collapse
Affiliation(s)
- Yanxiong Ren
- Key Laboratory for Green Chemical Technology of Ministry of EducationSchool of Chemical Engineering and TechnologyTianjin UniversityTianjin300072P. R. China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin)Tianjin300072P. R. China
| | - Xu Liang
- Key Laboratory for Green Chemical Technology of Ministry of EducationSchool of Chemical Engineering and TechnologyTianjin UniversityTianjin300072P. R. China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin)Tianjin300072P. R. China
| | - Haozhen Dou
- Key Laboratory for Green Chemical Technology of Ministry of EducationSchool of Chemical Engineering and TechnologyTianjin UniversityTianjin300072P. R. China
| | - Chumei Ye
- Key Laboratory for Green Chemical Technology of Ministry of EducationSchool of Chemical Engineering and TechnologyTianjin UniversityTianjin300072P. R. China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin)Tianjin300072P. R. China
| | - Zheyuan Guo
- Key Laboratory for Green Chemical Technology of Ministry of EducationSchool of Chemical Engineering and TechnologyTianjin UniversityTianjin300072P. R. China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin)Tianjin300072P. R. China
| | - Jianyu Wang
- Key Laboratory for Green Chemical Technology of Ministry of EducationSchool of Chemical Engineering and TechnologyTianjin UniversityTianjin300072P. R. China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin)Tianjin300072P. R. China
| | - Yichang Pan
- State Key Laboratory of Materials‐Oriented Chemical EngineeringCollege of Chemical EngineeringNanjing Tech UniversityNanjing210009P. R. China
| | - Hong Wu
- Key Laboratory for Green Chemical Technology of Ministry of EducationSchool of Chemical Engineering and TechnologyTianjin UniversityTianjin300072P. R. China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin)Tianjin300072P. R. China
| | - Michael D. Guiver
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin)Tianjin300072P. R. China
- State Key Laboratory of EnginesSchool of Mechanical EngineeringTianjin UniversityTianjin300072P. R. China
| | - Zhongyi Jiang
- Key Laboratory for Green Chemical Technology of Ministry of EducationSchool of Chemical Engineering and TechnologyTianjin UniversityTianjin300072P. R. China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin)Tianjin300072P. R. China
- Joint School of National University of Singapore and Tianjin UniversityInternational Campus of Tianjin UniversityBinhai New CityFuzhou350207P. R. China
| |
Collapse
|
12
|
Liu LJ, Chen GE, Mao HF, Wang Y, Wan JJ. High performance polyvinylidene fluoride (PVDF) mixed matrix membrane (MMM) doped by various zeolite imidazolate frameworks. HIGH PERFORM POLYM 2020. [DOI: 10.1177/0954008320952525] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Zeolitic imidazolate framework (ZIF-8) in three particle sizes (40, 70 and 100 nm) was prepared through both solvothermal and hydrothermal methods and employed to decorate polyvinylidene fluoride (PVDF). The finger-like macro-voids, sponge-like poly-porous morphology and surface roughness of prepared membranes were characterized by SEM and AFM microscopy. The FTIR spectrum and XPS analysis bear out the chemical component. ZIF-8 has the characteristics of higher porosity and appropriate pore size, which is a condition for improving the permeability and pollution resistance of the modified membrane. Results indicated that different ZIF-8s have different enhancement effects on PVDF MMM. 100 nm ZIF-8 membrane possessed pure water flux (PWF) of 350 L m−2h−1, which was 10 times more than the bare membrane (30 L m−2h−1), and OVA flux recovery ration (FRR%) is 98%. 40 nm ZIF-8 membrane owned BSA FRR% of 98.4%. The 70 nm ZIF-8 showed the best mechanical properties. The dynamic contact angles of UP-Z70 ranged from 104.5° to 62.5° within 180 s. Furthermore, pore size distribution, molecular weight cut-off (MWCO) and porosity were also researched to evaluate the MMM. The dislodge of Reactive Black KN-B, Reactive Red 3BS and Reactive Brilliant Blue KN-R dyes by MMM were studied under different dye concentrations and transmembrane pressures. The membrane can provide selective separation methods for dyes and Reactive Brilliant Blue KN-R up to 99%. Overall, the permeability, hydrophilicy, anti-fouling performance and wastewater treatment of modified membranes were regulated by the ZIF-8 in a steerable blending reaction modification process.
Collapse
Affiliation(s)
- Lian-Jing Liu
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai, China
| | - Gui-E Chen
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai, China
| | - Hai-Fang Mao
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai, China
| | - Yang Wang
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai, China
| | - Jia-Jun Wan
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai, China
| |
Collapse
|
13
|
Wang Y, Chen H, Wang X, Meng B, Yang N, Tan X, Liu S. Preparation of ZIF-8 Membranes on Porous ZnO Hollow Fibers by a Facile ZnO-Induced Method. Ind Eng Chem Res 2020. [DOI: 10.1021/acs.iecr.0c02750] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Yang Wang
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo 255000, China
| | - Hanhan Chen
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo 255000, China
| | - Xiaobin Wang
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo 255000, China
| | - Bo Meng
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo 255000, China
| | - Naitao Yang
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo 255000, China
| | - Xiaoyao Tan
- Department of Chemical Engineering, Tianjin Polytechnic University, Tianjin 300387, China
| | - Shaomin Liu
- Department of Chemical Engineering, Curtin University, Perth, Western Australia 6845, Australia
- College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| |
Collapse
|
14
|
Qiao Z, Liang Y, Zhang Z, Mei D, Wang Z, Guiver MD, Zhong C. Ultrathin Low-Crystallinity MOF Membranes Fabricated by Interface Layer Polarization Induction. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e2002165. [PMID: 32666633 DOI: 10.1002/adma.202002165] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Revised: 06/04/2020] [Indexed: 06/11/2023]
Abstract
Practical, ultrathin metal-organic framework (MOF) membranes have the potential to achieve otherwise difficult separations, but current fabrication methods still face challenges in the simultaneous improvement of both selectivity and permeance. Here, ultrathin, low-crystallinity-state MOF (LC-MOF) membranes are realized by a facile general method of interface layer polarization induction. This is achieved using an interface layer having metal ions with dense and uniform distribution, resulting in the creation of abundant open metal sites. Three types of LC-MOF membranes (45-150 nm) are fabricated, among which ZIF-8 membranes modified in situ with diethanolamine (DZIF-8) display the best performance for propylene/propane separation, showing unprecedented propylene permeance (2000-3000 Gas Permeance Units) with very high propylene/propane selectivity (90-120).
Collapse
Affiliation(s)
- Zhihua Qiao
- State Key Laboratory of Separation Membranes and Membrane Processes School of Chemistry and Chemical Engineering, Tiangong University, Tianjin, 300387, China
| | - Yueyao Liang
- School of Materials Science and Engineering, Tiangong University, Tianjin, 300387, China
| | - Zhengqing Zhang
- State Key Laboratory of Separation Membranes and Membrane Processes School of Chemistry and Chemical Engineering, Tiangong University, Tianjin, 300387, China
| | - Donghai Mei
- State Key Laboratory of Separation Membranes and Membrane Processes School of Chemistry and Chemical Engineering, Tiangong University, Tianjin, 300387, China
| | - Zhi Wang
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300072, China
| | - Michael D Guiver
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300072, China
- State Key Laboratory of Engines, Tianjin University, Tianjin, 300072, China
| | - Chongli Zhong
- State Key Laboratory of Separation Membranes and Membrane Processes School of Chemistry and Chemical Engineering, Tiangong University, Tianjin, 300387, China
- College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| |
Collapse
|
15
|
Qian Q, Asinger PA, Lee MJ, Han G, Mizrahi Rodriguez K, Lin S, Benedetti FM, Wu AX, Chi WS, Smith ZP. MOF-Based Membranes for Gas Separations. Chem Rev 2020; 120:8161-8266. [PMID: 32608973 DOI: 10.1021/acs.chemrev.0c00119] [Citation(s) in RCA: 551] [Impact Index Per Article: 110.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Metal-organic frameworks (MOFs) represent the largest known class of porous crystalline materials ever synthesized. Their narrow pore windows and nearly unlimited structural and chemical features have made these materials of significant interest for membrane-based gas separations. In this comprehensive review, we discuss opportunities and challenges related to the formation of pure MOF films and mixed-matrix membranes (MMMs). Common and emerging separation applications are identified, and membrane transport theory for MOFs is described and contextualized relative to the governing principles that describe transport in polymers. Additionally, cross-cutting research opportunities using advanced metrologies and computational techniques are reviewed. To quantify membrane performance, we introduce a simple membrane performance score that has been tabulated for all of the literature data compiled in this review. These data are reported on upper bound plots, revealing classes of MOF materials that consistently demonstrate promising separation performance. Recommendations are provided with the intent of identifying the most promising materials and directions for the field in terms of fundamental science and eventual deployment of MOF materials for commercial membrane-based gas separations.
Collapse
Affiliation(s)
- Qihui Qian
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Patrick A Asinger
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Moon Joo Lee
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Gang Han
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Katherine Mizrahi Rodriguez
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Sharon Lin
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Francesco M Benedetti
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Albert X Wu
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Won Seok Chi
- School of Polymer Science and Engineering, Chonnam National University, Buk-gu, Gwangju 61186, Korea
| | - Zachary P Smith
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|