1
|
Cai J, Mu X, Xue J, Chen J, Liu Z, Guo F. Mathematical Modeling of NaCl Scaling Development in Long-Distance Membrane Distillation for Improved Scaling Control. MATERIALS (BASEL, SWITZERLAND) 2024; 17:3629. [PMID: 39124294 PMCID: PMC11313132 DOI: 10.3390/ma17153629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 07/13/2024] [Accepted: 07/20/2024] [Indexed: 08/12/2024]
Abstract
Membrane distillation is a novel membrane-based separation technology with the potential to produce pure water from high-salinity brine. It couples transport behaviors along the membrane and across the membrane. The brine in the feed is gradually concentrated due to the permeate flux across the membrane, which is a significant factor in initiating the scaling behavior on the membrane surface along the feed flow direction. It is of great interest to investigate and estimate the development of scaling on the membrane surface. This work specifically focuses on a long-distance membrane distillation process with a sodium chloride solution as the feed. A modeling approach has been developed to estimate the sodium chloride scaling development on the membrane surface along the flow direction. A set of experiments was conducted to validate the results. Based on mathematical simplification and analytical fitting, a simplified model was summarized to predict the initiating position of sodium chloride scaling on the membrane, which is meaningful for scaling control in industrial-scale applications of membrane distillation.
Collapse
Affiliation(s)
- Jingcheng Cai
- School of Energy and Power Engineering, Dalian University of Technology, Dalian 116024, China; (J.C.); (X.M.); (J.C.); (Z.L.)
| | - Xingsen Mu
- School of Energy and Power Engineering, Dalian University of Technology, Dalian 116024, China; (J.C.); (X.M.); (J.C.); (Z.L.)
| | - Jian Xue
- Guangdong Provincial Key Laboratory of Green Chemical Product Technology, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, China;
| | - Jiaming Chen
- School of Energy and Power Engineering, Dalian University of Technology, Dalian 116024, China; (J.C.); (X.M.); (J.C.); (Z.L.)
| | - Zeman Liu
- School of Energy and Power Engineering, Dalian University of Technology, Dalian 116024, China; (J.C.); (X.M.); (J.C.); (Z.L.)
| | - Fei Guo
- School of Energy and Power Engineering, Dalian University of Technology, Dalian 116024, China; (J.C.); (X.M.); (J.C.); (Z.L.)
| |
Collapse
|
2
|
Effective Antiscaling Performance of ACTF/Nylon 6, 12 Nanofiltration Composite Membrane: Adsorption, Membrane Performance, and Antifouling Property. ARABIAN JOURNAL FOR SCIENCE AND ENGINEERING 2022. [DOI: 10.1007/s13369-021-05969-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
3
|
Jiao L, Meng L, Yan K, Wang J, Li G, Yao Z, Sun Z, Zhang L. Micromechanism Underlying Wetting Behavior of the Vacuum Membrane Distillation during Desalination. Ind Eng Chem Res 2022. [DOI: 10.1021/acs.iecr.1c05035] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Lei Jiao
- Ocean College, Zhejiang University, Zhoushan 316021, PR China
| | - Lida Meng
- Ocean College, Zhejiang University, Zhoushan 316021, PR China
| | - Kangkang Yan
- Ocean College, Zhejiang University, Zhoushan 316021, PR China
| | - Jing Wang
- Engineering Research Center of Membrane and Water Treatment of MOE, College of Chemical & Biological Engineering, Zhejiang University, Hangzhou 310027, PR China
- Research Institute of Ningbo, Zhejiang University, Ningbo 315100, PR China
| | - Ge Li
- Engineering Research Center of Membrane and Water Treatment of MOE, College of Chemical & Biological Engineering, Zhejiang University, Hangzhou 310027, PR China
- Research Institute of Ningbo, Zhejiang University, Ningbo 315100, PR China
| | - Zhikan Yao
- Engineering Research Center of Membrane and Water Treatment of MOE, College of Chemical & Biological Engineering, Zhejiang University, Hangzhou 310027, PR China
- Research Institute of Ningbo, Zhejiang University, Ningbo 315100, PR China
| | - Zhilin Sun
- Ocean College, Zhejiang University, Zhoushan 316021, PR China
| | - Lin Zhang
- Engineering Research Center of Membrane and Water Treatment of MOE, College of Chemical & Biological Engineering, Zhejiang University, Hangzhou 310027, PR China
- Research Institute of Ningbo, Zhejiang University, Ningbo 315100, PR China
| |
Collapse
|
4
|
Shao S, Shi D, Hu J, Qing W, Li X, Li X, Ji B, Yang Z, Guo H, Tang CY. Unraveling the Kinetics and Mechanism of Surfactant-Induced Wetting in Membrane Distillation: An In Situ Observation with Optical Coherence Tomography. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:556-563. [PMID: 34928146 DOI: 10.1021/acs.est.1c05090] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
In this study, we performed a direct contact membrane distillation and successfully demonstrated the non-invasive imaging of surfactant-induced wetting using optical coherence tomography. This method enabled us to investigate the wetting kinetics, which was found to follow a "three-region" relationship between the wetting rate and surfactant concentration: the (i) nonwetted region, (ii) concentration-dependent region, and (iii) concentration-independent region at low, intermediate, and high surfactant concentrations, respectively. This wetting behavior was explained by the "autophilic effect", i.e., the wetting was caused by the transfer of surfactants from the water-vapor interface to the unwetted membrane and rendered this membrane hydrophilic, and then the wetting frontier moved forward under capillary forces. At region-(i), the surfactant concentration in the water-vapor interface (Clv) was too low to make the unwetted membrane sufficiently hydrophilic; thereby, the membrane could not be wetted. At region-(ii), due to the fast adsorption of the surfactant on the newly wetted membrane, the wetting rate was determined by the advection/diffusion of surfactants from the feed stream. Consequently, the wetting rate increased with the increases in the water flux and surfactant concentration. At region-(iii), the advection/diffusion provided excess surfactants for adsorption, and thus Clv reached its upper limit (maximum surface excess) and the wetting rate leveled off.
Collapse
Affiliation(s)
- Senlin Shao
- School of Civil Engineering, Wuhan University, Wuhan 430072, PR China
| | - Danting Shi
- School of Civil Engineering, Wuhan University, Wuhan 430072, PR China
| | - Jiangshuai Hu
- Department of Water and Wastewater Engineering, Wuhan University of Science and Technology, Wuhan 430081, PR China
| | - Weihua Qing
- Department of Civil and Environmental Engineering, New Jersey Institute of Technology, Newark, New Jersey 07102, United States
| | - Xianhui Li
- Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, Institute of Environmental and Ecological Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Xue Li
- School of Civil Engineering, Wuhan University, Wuhan 430072, PR China
| | - Bin Ji
- Department of Water and Wastewater Engineering, Wuhan University of Science and Technology, Wuhan 430081, PR China
| | - Zhe Yang
- Department of Civil Engineering, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Hao Guo
- Department of Civil Engineering, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Chuyang Y Tang
- Department of Civil Engineering, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| |
Collapse
|
5
|
Operation conditions affecting scale formation in membrane distillation - An in situ scale study based on optical coherence tomography. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2020.118989] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
6
|
Chang H, Liu B, Zhang Z, Pawar R, Yan Z, Crittenden JC, Vidic RD. A Critical Review of Membrane Wettability in Membrane Distillation from the Perspective of Interfacial Interactions. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:1395-1418. [PMID: 33314911 DOI: 10.1021/acs.est.0c05454] [Citation(s) in RCA: 73] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Hydrophobic membranes used in membrane distillation (MD) systems are often subject to wetting during long-term operation. Thus, it is of great importance to fully understand factors that influence the wettability of hydrophobic membranes and their impact on the overall separation efficiency that can be achieved in MD systems. This Critical Review summarizes both fundamental and applied aspects of membrane wetting with particular emphasis on interfacial interaction between the membrane and solutes in the feed solution. First, the theoretical background of surface wetting, including the relationship between wettability and interfacial interaction, definition and measurement of contact angle, surface tension, surface free energy, adhesion force, and liquid entry pressure, is described. Second, the nature of wettability, membrane wetting mechanisms, influence of membrane properties, feed characteristics and operating conditions on membrane wetting, and evolution of membrane wetting are reviewed in the context of an MD process. Third, specific membrane features that increase resistance to wetting (e.g., superhydrophobic, omniphobic, and Janus membranes) are discussed briefly followed by the comparison of various cleaning approaches to restore membrane hydrophobicity. Finally, challenges with the prevention of membrane wetting are summarized, and future work is proposed to improve the use of MD technology in a variety of applications.
Collapse
Affiliation(s)
- Haiqing Chang
- Key Laboratory of Deep Earth Science and Engineering (Ministry of Education), College of Architecture and Environment, Sichuan University, Chengdu 610207, China
- Department of Civil and Environmental Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
| | - Baicang Liu
- Key Laboratory of Deep Earth Science and Engineering (Ministry of Education), College of Architecture and Environment, Sichuan University, Chengdu 610207, China
| | - Zhewei Zhang
- Department of Civil and Environmental Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
| | - Ritesh Pawar
- Department of Chemical and Petroleum Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
| | - Zhongsen Yan
- College of Civil Engineering, Fuzhou University, Fujian, 350116, China
| | - John C Crittenden
- Brook Byers Institute for Sustainable Systems, School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Radisav D Vidic
- Department of Civil and Environmental Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
- Department of Chemical and Petroleum Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
| |
Collapse
|
7
|
Insight into the feed/permeate flow velocity on the trade-off of water flux and scaling resistance of superhydrophobic and welding-pore fibrous membrane in membrane distillation. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2020.118883] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
8
|
Kim HW, Yun T, Hong S, Lee S, Jeong S. Retardation of wetting for membrane distillation by adjusting major components of seawater. WATER RESEARCH 2020; 175:115677. [PMID: 32179271 DOI: 10.1016/j.watres.2020.115677] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 02/20/2020] [Accepted: 02/28/2020] [Indexed: 06/10/2023]
Abstract
Wetting by fouling is phenomenon specific to membrane distillation (MD) and are regarded as challenges to the seawater membrane distillation (SWMD) process. To understand fouling and wetting, the influence of Mg and Sr crystals, which can potentially cause scaling, as well as Ca crystals deposited on the membrane surface were investigated. Mg(OH)2 and CaSO4 had significant impact on fouling and wetting. Even if CaCO3 and SrSO4 had no effects on fouling and wetting as single salts, CaCO3 and CaSO4 were dominant in synthetic seawater without Mg(OH)2. However, the occurrence of Mg(OH)2 scales became a cause for concern if Ca ion was removed from seawater for the prevention of fouling and wetting. Therefore, Mg as well as Ca should be removed for proper fouling and wetting control. NaOH/Na2CO3 softening was used for the removal of Ca and Mg ions. In addition, based on the inhibition effects of Mg ions on Ca scales, a new pretreatment method involving the injection of MgCl2 to increase the Mg /Ca ratio was examined.
Collapse
Affiliation(s)
- Hye-Won Kim
- Water Cycle Research Center, National Agenda Research Division, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea; Advanced Environmental Science, Energy Environment Policy & Technology, KU-KIST GreenSchool, Graduate School of Energy and Environment, Korea University, 145 Anam-Ro, Seongbuk-Gu, Seoul, 02841, Republic of Korea
| | - Taekgeun Yun
- Water Cycle Research Center, National Agenda Research Division, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea; Advanced Environmental Science, Energy Environment Policy & Technology, KU-KIST GreenSchool, Graduate School of Energy and Environment, Korea University, 145 Anam-Ro, Seongbuk-Gu, Seoul, 02841, Republic of Korea
| | - Seungkwan Hong
- Department of Civil, Environmental and Architectural Engineering, Korea University, 145 Anam-Ro, Seongbuk-Gu, Seoul, 02841, Republic of Korea
| | - Seockheon Lee
- Water Cycle Research Center, National Agenda Research Division, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea; Advanced Environmental Science, Energy Environment Policy & Technology, KU-KIST GreenSchool, Graduate School of Energy and Environment, Korea University, 145 Anam-Ro, Seongbuk-Gu, Seoul, 02841, Republic of Korea.
| | - Seongpil Jeong
- Water Cycle Research Center, National Agenda Research Division, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea; Division of Energy & Environment Technology, KIST school, Korea University of Science and Technology, Seoul, 02792, Republic of Korea.
| |
Collapse
|
9
|
Christie KSS, Yin Y, Lin S, Tong T. Distinct Behaviors between Gypsum and Silica Scaling in Membrane Distillation. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:568-576. [PMID: 31830785 DOI: 10.1021/acs.est.9b06023] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Mineral scaling constrains membrane distillation (MD) and limits its application in treating hypersaline wastewater. Addressing this challenge requires enhanced fundamental understanding of the scaling phenomenon. However, MD scaling with different types of scalants may have distinctive mechanisms and consequences which have not been systematically investigated in the literature. In this work, we compared gypsum and silica scaling in MD and demonstrated that gypsum scaling caused earlier water flux decline and induced membrane wetting that was not observed in silica scaling. Microscopic imaging and elemental mapping revealed contrasting scale morphology and distribution for gypsum and silica, respectively. Notably, while gypsum crystals grew both on the membrane surface and deep in the membrane matrix, silica only formed on the membrane surface in the form of a relatively thin film composed of connected submicrometer silica particles. We attribute the intrusion of gypsum into membrane pores to the crystallization pressure as a result of rapid, oriented crystal growth, which leads to pore deformation and the subsequent membrane wetting. In contrast, the silica scale layer was formed via polymerization of silicic acid and gelation of silica particles, which were less intrusive and had a milder effect on membrane pore structure. This hypothesis was supported by the result of tensile testing, which showed that the MD membrane was significantly weakened by gypsum scaling. The fact that different scaling mechanisms could yield different consequences on membrane performance provides valuable insights for the future development of cost-effective strategies for scaling control.
Collapse
Affiliation(s)
- Kofi S S Christie
- Department of Civil and Environmental Engineering, Vanderbilt University, Nashville, Tennessee 37212, United States
| | - Yiming Yin
- Department of Civil and Environmental Engineering, Colorado State University, Fort Collins, Colorado 80523, United States
| | - Shihong Lin
- Department of Civil and Environmental Engineering, Vanderbilt University, Nashville, Tennessee 37212, United States
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, Tennessee 37212, United States
| | - Tiezheng Tong
- Department of Civil and Environmental Engineering, Colorado State University, Fort Collins, Colorado 80523, United States
| |
Collapse
|