1
|
Su Y, Liu S, Zhu W, Huang K, Mu G, Jiang P, Liu J, Yang G, He Z, Wang J. Nature of Solvent/Nonsolvent Strategy in Achieving Superior Polybenzimidazole Membrane for Vanadium Redox Flow Battery. CHEMSUSCHEM 2025; 18:e202402513. [PMID: 39853970 DOI: 10.1002/cssc.202402513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2024] [Revised: 01/21/2025] [Accepted: 01/22/2025] [Indexed: 01/26/2025]
Abstract
The tightly connected structure of polybenzimidazole (PBI) membrane can be relaxed by solvent/nonsolvent solution to achieve a high proton conductivity for vanadium redox flow battery (VRFB). However, the nature behind the solvent/nonsolvent strategy is not unraveled. This work proposes a guideline to analyze the effect of PBI membrane relaxing formulas based on the interactions between different components in membranes. The supreme-efficient PBI membrane derived by the DMSO/formamide formula according to the guideline displays a marvelous performance for VRFB, with the proton conductivity boosted by 4300 % (from 1.93 to 83.33 mS cm-1), and VRFB assembled with this membrane achieves an outstanding energy efficiency of 82.5 % under 200 mA cm-2. Moreover, this work profoundly unravels the structure, property and performance relationship of PBI membrane, which is of great value for the development of membranes.
Collapse
Affiliation(s)
- Yuke Su
- College of Chemistry and Chemical Engineering, Hunan Provincial Key Laboratory of Chemical Power Sources, Central South University, Changsha, Hunan, 410083, P. R. China
| | - Suqin Liu
- College of Chemistry and Chemical Engineering, Hunan Provincial Key Laboratory of Chemical Power Sources, Central South University, Changsha, Hunan, 410083, P. R. China
| | - Weiwei Zhu
- College of Chemistry and Chemical Engineering, Hunan Provincial Key Laboratory of Chemical Power Sources, Central South University, Changsha, Hunan, 410083, P. R. China
| | - Kui Huang
- College of Chemistry and Chemical Engineering, Hunan Provincial Key Laboratory of Chemical Power Sources, Central South University, Changsha, Hunan, 410083, P. R. China
| | - Guangyuan Mu
- College of Chemistry and Chemical Engineering, Hunan Provincial Key Laboratory of Chemical Power Sources, Central South University, Changsha, Hunan, 410083, P. R. China
| | - Peng Jiang
- Shenzhen Gas Corporation Ltd., Shenzhen, Guangdong, 518049, P.R. China
| | - Jianhui Liu
- Shenzhen Gas Corporation Ltd., Shenzhen, Guangdong, 518049, P.R. China
| | - Guang Yang
- Shenzhen Gas Corporation Ltd., Shenzhen, Guangdong, 518049, P.R. China
| | - Zhen He
- College of Chemistry and Chemical Engineering, Hunan Provincial Key Laboratory of Chemical Power Sources, Central South University, Changsha, Hunan, 410083, P. R. China
| | - Jue Wang
- College of Chemistry and Chemical Engineering, Hunan Provincial Key Laboratory of Chemical Power Sources, Central South University, Changsha, Hunan, 410083, P. R. China
| |
Collapse
|
2
|
Ye J, Xia L, Li H, de Arquer FPG, Wang H. The Critical Analysis of Membranes toward Sustainable and Efficient Vanadium Redox Flow Batteries. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2402090. [PMID: 38776138 DOI: 10.1002/adma.202402090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 05/07/2024] [Indexed: 05/29/2024]
Abstract
Vanadium redox flow batteries (VRFB) are a promising technology for large-scale storage of electrical energy, combining safety, high capacity, ease of scalability, and prolonged durability; features which have triggered their early commercial implementation. Furthering the deployment of VRFB technologies requires addressing challenges associated to a pivotal component: the membrane. Examples include vanadium crossover, insufficient conductivity, escalated costs, and sustainability concerns related to the widespread adoption of perfluoroalkyl-based membranes, e.g., perfluorosulfonic acid (PFSA). Herein, recent advances in high-performance and sustainable membranes for VRFB, offering insights into prospective research directions to overcome these challenges, are reviewed. The analysis reveals the disparities and trade-offs between performance advances enabled by PFSA membranes and composites, and the lack of sustainability in their final applications. The potential of PFSA-free membranes and present strategies to enhance their performance are discussed. This study delves into vital membrane parameters to enhance battery performance, suggesting protocols and design strategies to achieve high-performance and sustainable VRFB membranes.
Collapse
Affiliation(s)
- Jiaye Ye
- School of Chemistry and Physics, Faculty of Science, Queensland University of Technology, Brisbane, QLD, 4001, Australia
- Centre for Materials Science, Queensland University of Technology, Brisbane, QLD, 4001, Australia
| | - Lu Xia
- ICFO-Institut de Ciències Fotòniques, The Barcelona Institute of Science and Technology, Castelldefels, Barcelona, 08860, Spain
| | - Huiyun Li
- Center for Automotive Electronics, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - F Pelayo García de Arquer
- ICFO-Institut de Ciències Fotòniques, The Barcelona Institute of Science and Technology, Castelldefels, Barcelona, 08860, Spain
| | - Hongxia Wang
- School of Chemistry and Physics, Faculty of Science, Queensland University of Technology, Brisbane, QLD, 4001, Australia
- Centre for Materials Science, Queensland University of Technology, Brisbane, QLD, 4001, Australia
| |
Collapse
|
3
|
Jiang S, Wang H, Li L, Zhao C, Sheng J, Shi H. Improvement of proton conductivity and efficiency of SPEEK-based composite membrane influenced by dual-sulfonated flexible comb-like polymers for vanadium flow battery. J Memb Sci 2023. [DOI: 10.1016/j.memsci.2023.121394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
4
|
Sheng J, Li L, Wang H, Zhang L, Jiang S, Shi H. An ultrahigh conductivity and efficiency of SPEEK-based hybrid proton exchange membrane containing amphoteric GO-VIPS nanofillers for vanadium flow battery. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.121326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
5
|
Ultrahigh proton conductive nanofibrous composite membrane with an interpenetrating framework and enhanced acid-base interfacial layers for vanadium redox flow battery. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.120327] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
6
|
An enhanced stability and efficiency of SPEEK-based composite membrane influenced by amphoteric side-chain polymer for vanadium redox flow battery. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2021.120011] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
7
|
Lou X, Lu B, He M, Yu Y, Zhu X, Peng F, Qin C, Ding M, Jia C. Functionalized carbon black modified sulfonated polyether ether ketone membrane for highly stable vanadium redox flow battery. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2021.120015] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
8
|
A Chemistry and Microstructure Perspective on Ion‐Conducting Membranes for Redox Flow Batteries. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202105619] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
9
|
Galdino AL, Oliveira JCA, Magalhaes ML, Lucena SMP, Liu D, Huang T, Zhu L. Prediction of the phenol removal capacity from water by adsorption on activated carbon. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2021; 84:135-143. [PMID: 34280160 DOI: 10.2166/wst.2021.202] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
High-performance sulfonated polysulfone (SPSf) mixed-matrix membranes (MMMs) were fabricated via a nonsolvent-induced phase separation (NIPS) method using zeolitic imidazolate frameworks-67 (ZIF-67) as a crosslinker. Acid-base crosslinking occurred between the sulfonic acid groups of SPSf and the tertiary amine groups of the embedded ZIF-67, which improved the dispersion of ZIF-67 and simultaneously improved the membrane strzcture and permselectivity. The dispersion of ZIF-67 in the MMMs and the acid-base crosslinking reaction were verified by energy-dispersive X-ray spectroscopy (EDX), X-ray diffractometry (XRD), Fourier-transform infrared spectroscopy (FTIR), and X-ray photoelectron spectroscopy (XPS). The pore structure analysis of MMMs indicated that filling ZIF-67 into SPSf enhanced the average surface pore sizes, surface porosities and more micropore in cross-sections. The crossflow filtrations showed the MMMs have higher pure water fluxes (57 to 111 L m-2 h-1) than the SPSf membrane (55 L m-2 h-1) but also higher bovine serum albumin (BSA) rejection rate of 93.9-95.8%, a model protein foulant. The MMMs showed a higher water contact angle than the SPSf membrane due to the addition of hydrophobic ZIF-67 and acid-base crosslinking, and also maintained high thermal stability evidenced by the thermogravimetric analysis (TGA) results. At the optimal ZIF-67 concentration of 0.3 wt%, the water flux of the SPSf-Z67-0.3 membrane was 82 L m-2 h-1 with a high BSA rejection rate of 95.3% at 0.1 MPa and better antifouling performance (FRR = 70%).
Collapse
Affiliation(s)
- Ana Luísa Galdino
- Laboratory of Modeling and 3D Visualization, GPSA, Department of Chemical Engineering, Universidade Federal do Ceará, Campus do Pici, bl 709, Fortaleza, CE, 60455-760, Brazil
| | - José C A Oliveira
- Laboratory of Modeling and 3D Visualization, GPSA, Department of Chemical Engineering, Universidade Federal do Ceará, Campus do Pici, bl 709, Fortaleza, CE, 60455-760, Brazil
| | - Madson L Magalhaes
- Laboratory of Modeling and 3D Visualization, GPSA, Department of Chemical Engineering, Universidade Federal do Ceará, Campus do Pici, bl 709, Fortaleza, CE, 60455-760, Brazil
| | - Sebastião M P Lucena
- School of Chemical and Environmental Engineering, Anhui Polytechnic University, Wuhu, Anhui 241000, China
| | - Di Liu
- School of Chemical and Environmental Engineering, Anhui Polytechnic University, Wuhu, Anhui 241000, China
| | - Tingting Huang
- School of Chemical and Environmental Engineering, Anhui Polytechnic University, Wuhu, Anhui 241000, China
| | - Lei Zhu
- School of Chemical and Environmental Engineering, Anhui Polytechnic University, Wuhu, Anhui 241000, China
| |
Collapse
|
10
|
Xiong P, Zhang L, Chen Y, Peng S, Yu G. A Chemistry and Microstructure Perspective on Ion-Conducting Membranes for Redox Flow Batteries. Angew Chem Int Ed Engl 2021; 60:24770-24798. [PMID: 34165884 DOI: 10.1002/anie.202105619] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Indexed: 01/04/2023]
Abstract
Redox flow batteries (RFBs) are among the most promising grid-scale energy storage technologies. However, the development of RFBs with high round-trip efficiency, high rate capability, and long cycle life for practical applications is highly restricted by the lack of appropriate ion-conducting membranes. Promising RFB membranes should separate positive and negative species completely and conduct balancing ions smoothly. Specific systems must meet additional requirements, such as high chemical stability in corrosive electrolytes, good resistance to organic solvents in nonaqueous systems, and excellent mechanical strength and flexibility. These rigorous requirements put high demands on the membrane design, essentially the chemistry and microstructure associated with ion transport channels. In this Review, we summarize the design rationale of recently reported RFB membranes at the molecular level, with an emphasis on new chemistry, novel microstructures, and innovative fabrication strategies. Future challenges and potential research opportunities within this field are also discussed.
Collapse
Affiliation(s)
- Ping Xiong
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Advanced Catalytic Engineer Research Center of the Ministry of Education, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, P. R. China
| | - Leyuan Zhang
- Materials Science and Engineering Program and Department of Mechanical Engineering, The University of Texas at Austin, Austin, TX, USA
| | - Yuyue Chen
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Advanced Catalytic Engineer Research Center of the Ministry of Education, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, P. R. China
| | - Sangshan Peng
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Advanced Catalytic Engineer Research Center of the Ministry of Education, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, P. R. China
| | - Guihua Yu
- Materials Science and Engineering Program and Department of Mechanical Engineering, The University of Texas at Austin, Austin, TX, USA
| |
Collapse
|
11
|
Hybrid proton exchange membrane of sulfonated poly(ether ether ketone) containing polydopamine-coated carbon nanotubes loaded phosphotungstic acid for vanadium redox flow battery. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2021.119159] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
12
|
Two-dimensional MoS2 nanosheets constructing highly ion-selective composite membrane for vanadium redox flow battery. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2021.119051] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
13
|
Düerkop D, Widdecke H, Schilde C, Kunz U, Schmiemann A. Polymer Membranes for All-Vanadium Redox Flow Batteries: A Review. MEMBRANES 2021; 11:214. [PMID: 33803681 PMCID: PMC8003036 DOI: 10.3390/membranes11030214] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 03/01/2021] [Accepted: 03/05/2021] [Indexed: 01/08/2023]
Abstract
Redox flow batteries such as the all-vanadium redox flow battery (VRFB) are a technical solution for storing fluctuating renewable energies on a large scale. The optimization of cells regarding performance, cycle stability as well as cost reduction are the main areas of research which aim to enable more environmentally friendly energy conversion, especially for stationary applications. As a critical component of the electrochemical cell, the membrane influences battery performance, cycle stability, initial investment and maintenance costs. This review provides an overview about flow-battery targeted membranes in the past years (1995-2020). More than 200 membrane samples are sorted into fluoro-carbons, hydro-carbons or N-heterocycles according to the basic polymer used. Furthermore, the common description in membrane technology regarding the membrane structure is applied, whereby the samples are categorized as dense homogeneous, dense heterogeneous, symmetrical or asymmetrically porous. Moreover, these properties as well as the efficiencies achieved from VRFB cycling tests are discussed, e.g., membrane samples of fluoro-carbons, hydro-carbons and N-heterocycles as a function of current density. Membrane properties taken into consideration include membrane thickness, ion-exchange capacity, water uptake and vanadium-ion diffusion. The data on cycle stability and costs of commercial membranes, as well as membrane developments, are compared. Overall, this investigation shows that dense anion-exchange membranes (AEM) and N-heterocycle-based membranes, especially poly(benzimidazole) (PBI) membranes, are suitable for VRFB requiring low self-discharge. Symmetric and asymmetric porous membranes, as well as cation-exchange membranes (CEM) enable VRFB operation at high current densities. Amphoteric ion-exchange membranes (AIEM) and dense heterogeneous CEM are the choice for operation mode with the highest energy efficiency.
Collapse
Affiliation(s)
- Dennis Düerkop
- Institute of Recycling, Ostfalia University of Applied Sciences, Robert-Koch-Platz 8a, 38440 Wolfsburg, Germany; (H.W.); (A.S.)
| | - Hartmut Widdecke
- Institute of Recycling, Ostfalia University of Applied Sciences, Robert-Koch-Platz 8a, 38440 Wolfsburg, Germany; (H.W.); (A.S.)
| | - Carsten Schilde
- Institute of Particle Technology, Braunschweig University of Technology, Volkmaroder Straße 5, 38100 Braunschweig, Germany;
| | - Ulrich Kunz
- Institute of Chemical and Electrochemical Process Engineering, Clausthal University of Technology, Leibnizstraße 17, 38678 Clausthal-Zellerfeld, Germany;
| | - Achim Schmiemann
- Institute of Recycling, Ostfalia University of Applied Sciences, Robert-Koch-Platz 8a, 38440 Wolfsburg, Germany; (H.W.); (A.S.)
| |
Collapse
|
14
|
Zheng T, Zou X, Li M, Zhou S, Zhao Y, Zhong Z. Two-dimensional graphitic carbon nitride for membrane separation. Chin J Chem Eng 2021. [DOI: 10.1016/j.cjche.2021.01.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
15
|
Gvozdik NA, Sanginov EA, Abunaeva LZ, Konev DV, Usenko AA, Novikova KS, Stevenson KJ, Dobrovolsky YA. A Composite Membrane Based on Sulfonated Polystyrene Implanted in a Stretched PTFE Film for Vanadium Flow Batteries. Chempluschem 2020; 85:2580-2585. [PMID: 33155772 DOI: 10.1002/cplu.202000618] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 10/21/2020] [Indexed: 11/06/2022]
Abstract
The quality of ion-selective membranes determines the efficiency of Vanadium Flow Batteries (VFBs), and alternatives to expensive Nafion™ materials are actively being searched for. One of the membrane architecture approaches is to imitate the Nafion™ structure with two separate phases: a conductive sulfonated polymer and an inner matrix. We introduce a new composite material based on sulfonated styrene polymerized inside the pores of a stretched PTFE matrix. Variation of polystyrene content and a sulfonation degree allowed to obtain membranes with IEC from to 0.96 to 1.84 mmol/g. Balanced vanadium permeability (ca. 5.5 ⋅ 10-6 cm2 /min) and proton conductivity (ca. 50 mS/cm) were achieved for the material with 21-23 % polystyrene content and a sulfonation degree up to 94 %. Membranes showed stable cycling with 81 % energy efficiency in a single-cell VFB. This work contributes to the existing knowledge of Nafion alternatives by providing a cheap and scalable method of membrane production.
Collapse
Affiliation(s)
- Nataliya A Gvozdik
- Center for Energy Science and Technology, Skolkovo Institute of Science and Technology, Bolshoy Boulevard 30, 1, Moscow, 121205, Russia
| | - Evgeny A Sanginov
- Institute for Problems of Chemical Physics, Russian Academy of Sciences, Prosp. Akad. Semenova 1, 142432, Chernogolovka, Russia
| | - Lilia Z Abunaeva
- Moscow Institute of Physics and Technology, Instituskiy Per. 9, 141701, Dolgoprudny, Russia.,D.I. Mendeleev University of Chemical Technology of Russia, Miusskaya sq. 9, 125047, Moscow, Russia
| | - Dmirty V Konev
- Institute for Problems of Chemical Physics, Russian Academy of Sciences, Prosp. Akad. Semenova 1, 142432, Chernogolovka, Russia
| | - Andrey A Usenko
- Institute for Problems of Chemical Physics, Russian Academy of Sciences, Prosp. Akad. Semenova 1, 142432, Chernogolovka, Russia
| | - Ksenia S Novikova
- Institute for Problems of Chemical Physics, Russian Academy of Sciences, Prosp. Akad. Semenova 1, 142432, Chernogolovka, Russia
| | - Keith J Stevenson
- Center for Energy Science and Technology, Skolkovo Institute of Science and Technology, Bolshoy Boulevard 30, 1, Moscow, 121205, Russia
| | - Yury A Dobrovolsky
- Institute for Problems of Chemical Physics, Russian Academy of Sciences, Prosp. Akad. Semenova 1, 142432, Chernogolovka, Russia
| |
Collapse
|