1
|
Zhang T, Wang Z, Li S, Zhang X, Su J. Double-Walled Carbon Nanotubes Enable Breakdown of the Trade-off between Ion Selectivity and Water Permeability. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:27104-27113. [PMID: 39657605 DOI: 10.1021/acs.langmuir.4c04185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2024]
Abstract
Although evidence has been presented for desalination potentials in single-walled carbon nanotubes (SWCNTs), it is still very challenging to overcome the trade-off between ion selectivity and water permeability by simply tuning the carbon nanotube (CNT) size. In this work, we prove that double-walled carbon nanotubes (DWCNTs) can make it. Employing a series of molecular dynamics simulations, we find a striking phenomenon that tuning the combination architecture of DWCNTs can significantly improve the desalination performance, with the salt rejection rate even reaching 100% in some cases while maintaining high levels of water flux. Specifically, under a certain outer CNT (20,20), with the increase in inner CNT radius, the salt rejection rate reaches a maximum for the CNT (9,9), attributed to the small size of the inner CNT and the space between the two CNT walls that significantly impedes the ion passage; however, it still allows the passage of massive water. Furthermore, as the pressure difference increases, the water flux greatly increases, while the salt rejection rate only slightly decreases for the CNTs (8,8) and (9,9), effectively addressing the trade-off between ion selectivity and water permeability. As a result, optimizing the architecture of DWCNTs should be an effective strategy for designing an efficient desalination membrane, which is still a challenge for SWCNTs.
Collapse
Affiliation(s)
- Tao Zhang
- MIIT Key Laboratory of Semiconductor Microstructure and Quantum Sensing and Department of Applied Physics, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Zi Wang
- MIIT Key Laboratory of Semiconductor Microstructure and Quantum Sensing and Department of Applied Physics, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Shuang Li
- MIIT Key Laboratory of Semiconductor Microstructure and Quantum Sensing and Department of Applied Physics, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Xinke Zhang
- MIIT Key Laboratory of Semiconductor Microstructure and Quantum Sensing and Department of Applied Physics, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Jiaye Su
- MIIT Key Laboratory of Semiconductor Microstructure and Quantum Sensing and Department of Applied Physics, Nanjing University of Science and Technology, Nanjing 210094, China
| |
Collapse
|
2
|
Kadhom M. A Review on the Polyamide Thin Film Composite (TFC) Membrane Used for Desalination: Improvement Methods, Current Alternatives, and Challenges. Chem Eng Res Des 2023. [DOI: 10.1016/j.cherd.2023.02.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
3
|
Xie Y, Wang X, Men J, Qin F. Study on the migration performance of Cs(I) in the treatment of simulated radioactive wastewater by electrodialysis. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2022; 86:1613-1628. [PMID: 36178827 DOI: 10.2166/wst.2022.286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
As a competitive radioactive wastewater treatment technology, electrodialysis (ED) has the advantages of low operating pressure and high cycles of concentration. In order to analyze the migration performance of radionuclides during the treatment of radioactive wastewater by ED, a radionuclide migration model was constructed based on the mass conservation law and Faraday's law with the typical radionuclide cesium as the research object. Experiments were carried out for the treatment of simulated radioactive wastewater in a small-scale ED system, and the average migration rate of radionuclides under different operating conditions was predicted by the model. The results showed that the experimental values of concentration and average migration rate of Cs(I) were significantly correlated with the calculated values of the model, in which the relative error of the average migration rate was 4.54%. The variation characteristics of Cs(I) concentration in diluted solution under different current and volume ratio conditions can be predicted by the model. The average variation rate of Cs(I) concentration decreases significantly with the increase of current and volume ratio.
Collapse
Affiliation(s)
- Yudong Xie
- Naval university of Engineering, Wuhan 430033, China E-mail:
| | - Xiaowei Wang
- Naval university of Engineering, Wuhan 430033, China E-mail:
| | - Jinfeng Men
- Naval university of Engineering, Wuhan 430033, China E-mail:
| | - Feibo Qin
- Naval university of Engineering, Wuhan 430033, China E-mail:
| |
Collapse
|
4
|
Rapid construction of cyclodextrin polyester layer on polyamide for preparing highly permeable reverse osmosis membrane. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.120862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
5
|
Applications of Polymeric Membranes with Carbon Nanotubes: A Review. MEMBRANES 2022; 12:membranes12050454. [PMID: 35629780 PMCID: PMC9144913 DOI: 10.3390/membranes12050454] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 04/07/2022] [Accepted: 04/18/2022] [Indexed: 02/01/2023]
Abstract
Nanomaterials have been commonly employed to enhance the performance of polymeric membrane materials that are used in several industrial applications. Carbon nanotubes (CNTs) have gained notable attention over the years for use in membrane technology due to their anti-biofouling properties, salt rejection capability, exceptional electrical conductivity, and mechanical properties. This paper aims to discuss some of the recent applications of CNTs in membrane technology and their effect on a larger scale. The paper reviews successful case studies of incorporation of CNTs in membranes and their impact on water purification, desalination, gas separations, and energy storage, in an effort to provide a better understanding of their capabilities. Regarding the future trends of this technology, this review emphasizes improving the large-scale production processes and addressing environmental and health-related hazards of CNTs during production and usage.
Collapse
|
6
|
Wang Z, Liang S, Kang Y, Zhao W, Xia Y, Yang J, Wang H, Zhang X. Manipulating interfacial polymerization for polymeric nanofilms of composite separation membranes. Prog Polym Sci 2021. [DOI: 10.1016/j.progpolymsci.2021.101450] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
7
|
Han JC, Zhu YK, Wang LF, Mu Y, Feng GG, Liu KQ, Tong CH, Yu ZX. Modification of regenerated cellulose ultrafiltration membranes with multi-walled carbon nanotubes for enhanced antifouling ability: Field test and mechanism study. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 780:146657. [PMID: 34030319 DOI: 10.1016/j.scitotenv.2021.146657] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 03/11/2021] [Accepted: 03/17/2021] [Indexed: 06/12/2023]
Abstract
Although ultrafiltration (UF) has been extensively employed for drinking water purification, it is crucial to further develop novel membrane materials to improve the antifouling capacity and satisfy the practical usage. Multi-walled carbon nanotubes (MWCNTs) have characteristics that could potentially improve the membrane antifouling performance. Therefore, in this study, modified cellulose UF membranes were prepared using MWCNTs of various outer diameters ranging from 10 to 20 nm to 40-60 nm. The antifouling properties of the modified membrane and natural organic matter (NOM) removal mechanism were investigated while treating water from a local drinking water source river. Overall, the antifouling ability increased by more than one-fold when the nascent cellulose membrane was coated with MWCNTs (outer diameter of 40-60 nm) at a loading of 17.4 g/m2. The molecular weight distribution profiles of the NOM in the raw water and permeates suggest the superior performance of the modified membranes in removing two major NOM fractions with molecular weights ranging from approximately 5 k-30 k and 500 k-1000 k. Based on its hydrophobicity, the NOM of the raw water was fractionated into the strong hydrophobic (SHPO), the weak hydrophobic, the strong hydrophilic and the moderately hydrophilic (MHPI) fractions. The WHPO fraction caused the highest fouling compared with the other fractions under consistent experimental conditions. Meanwhile, the modified membranes showed a preference for removing the MHPI and SHPO fractions. These results imply that MWCNTs can be employed to improve the antifouling property of cellulose UF membranes and have the potential to selectively remove moderately hydrophilic contaminants from water.
Collapse
Affiliation(s)
- Jun-Cheng Han
- Department of Civil and Environmental Engineering, School of Civil and Environmental Engineering, Ningbo University, Ningbo 315211, China
| | - Yi-Kang Zhu
- Department of Civil and Environmental Engineering, School of Civil and Environmental Engineering, Ningbo University, Ningbo 315211, China
| | - Long-Fei Wang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China
| | - Yang Mu
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science & Technology of China, Hefei 230026, China
| | - Guo-Guang Feng
- Ningbo Urban Planning & Design Institute, Ningbo 315211, China
| | - Kun-Qiao Liu
- Department of Civil and Environmental Engineering, School of Civil and Environmental Engineering, Ningbo University, Ningbo 315211, China
| | - Cai-Huan Tong
- Centre Testing International (Ningbo) Corporation, Ningbo 315211, China
| | - Zhen-Xun Yu
- Department of Civil and Environmental Engineering, School of Civil and Environmental Engineering, Ningbo University, Ningbo 315211, China.
| |
Collapse
|
8
|
Cui Y, An X, Zhang S, Tang Q, Lan H, Liu H, Qu J. Emerging graphitic carbon nitride-based membranes for water purification. WATER RESEARCH 2021; 200:117207. [PMID: 34020332 DOI: 10.1016/j.watres.2021.117207] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 04/26/2021] [Accepted: 04/27/2021] [Indexed: 06/12/2023]
Abstract
Membrane separation is a promising technology that can effectively remove various existing contaminants from water with low energy consumption and small carbon footprint. The critical issue of membrane technology development is to obtain a low-cost, stable, tunable and multifunctional material for membrane fabrication. Graphitic carbon nitride (g-C3N4) has emerged as a promising membrane material, owing to the unique structure characteristics and outstanding catalytic activity. This review paper outlined the advanced material strategies used to regulate the molecule structure of g-C3N4 for membrane separation. The presentative progresses on the applications of g-C3N4-based membranes for water purification have been elaborated. Essentially, we highlighted the innovation integration of physical separation, catalysis and energy conversion during water purification, which was of great importance for the sustainability of water treatment techniques. Finally, the continuing challenges of g-C3N4-based membranes and the possible breakthrough directions in the future research was prospected.
Collapse
Affiliation(s)
- Yuqi Cui
- Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Xiaoqiang An
- Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Shun Zhang
- Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Qingwen Tang
- Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Huachun Lan
- Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China.
| | - Huijuan Liu
- Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Jiuhui Qu
- Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| |
Collapse
|
9
|
Liao Z, Zhu J, Li X, Van der Bruggen B. Regulating composition and structure of nanofillers in thin film nanocomposite (TFN) membranes for enhanced separation performance: A critical review. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2021.118567] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
10
|
A Comprehensive Review on Membrane Fouling: Mathematical Modelling, Prediction, Diagnosis, and Mitigation. WATER 2021. [DOI: 10.3390/w13091327] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Membrane-based separation has gained increased popularity over the past few decades, particularly reverse osmosis (RO). A major impediment to the improved performance of membrane separation processes, in general, is membrane fouling. Fouling has detrimental effects on the membrane’s performance and integrity, as the deposition and accumulation of foulants on its surface and/or within its pores leads to a decline in the permeate flux, deterioration of selectivity, and permeability, as well as a significantly reduced lifespan. Several factors influence the fouling-propensity of a membrane, such as surface morphology, roughness, hydrophobicity, and material of fabrication. Generally, fouling can be categorized into particulate, organic, inorganic, and biofouling. Efficient prediction techniques and diagnostics are integral for strategizing control, management, and mitigation interventions to minimize the damage of fouling occurrences in the membranes. To improve the antifouling characteristics of RO membranes, surface enhancements by different chemical and physical means have been extensively sought after. Moreover, research efforts have been directed towards synthesizing membranes using novel materials that would improve their antifouling performance. This paper presents a review of the different membrane fouling types, fouling-inducing factors, predictive methods, diagnostic techniques, and mitigation strategies, with a special focus on RO membrane fouling.
Collapse
|
11
|
Lee JH, Kim HS, Yun ET, Ham SY, Park JH, Ahn CH, Lee SH, Park HD. Vertically Aligned Carbon Nanotube Membranes: Water Purification and Beyond. MEMBRANES 2020; 10:membranes10100273. [PMID: 33023144 PMCID: PMC7601676 DOI: 10.3390/membranes10100273] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 09/24/2020] [Accepted: 10/01/2020] [Indexed: 12/07/2022]
Abstract
Vertically aligned carbon nanotube (VACNT) membranes have attracted significant attention for water purification owing to their ultra-high water permeability and antibacterial properties. In this paper, we critically review the recent progresses in the synthesis of VACNT arrays and fabrication of VACNT membrane methods, with particular emphasis on improving water permeability and anti-biofouling properties. Furthermore, potential applications of VACNT membranes other than water purification (e.g., conductive membranes, electrodes in proton exchange membrane fuel cells, and solar electricity–water generators) have been introduced. Finally, future outlooks are provided to overcome the limitations of commercialization and desalination currently faced by VACNT membranes. This review will be useful to researchers in the broader scientific community as it discusses current and new trends regarding the development of VACNT membranes as well as their potential applications.
Collapse
Affiliation(s)
- Jeong Hoon Lee
- School of Civil, Environmental and Architectural Engineering, Korea University, Seoul 02855, Korea; (J.H.L.); (E.-T.Y.); (S.-Y.H.); (C.H.A.)
| | - Han-Shin Kim
- Korea Institute of Civil Engineering and Building Technology (KICT), Goyang 10223, Gyeonggi-do, Korea;
| | - Eun-Tae Yun
- School of Civil, Environmental and Architectural Engineering, Korea University, Seoul 02855, Korea; (J.H.L.); (E.-T.Y.); (S.-Y.H.); (C.H.A.)
| | - So-Young Ham
- School of Civil, Environmental and Architectural Engineering, Korea University, Seoul 02855, Korea; (J.H.L.); (E.-T.Y.); (S.-Y.H.); (C.H.A.)
| | - Jeong-Hoon Park
- Clean Innovation Technology Group, Korea Institute of Industrial Technology (KITECH), Jeju-si 63243, Korea;
| | - Chang Hoon Ahn
- School of Civil, Environmental and Architectural Engineering, Korea University, Seoul 02855, Korea; (J.H.L.); (E.-T.Y.); (S.-Y.H.); (C.H.A.)
| | - Sang Hyup Lee
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul 02841, Korea;
| | - Hee-Deung Park
- School of Civil, Environmental and Architectural Engineering, Korea University, Seoul 02855, Korea; (J.H.L.); (E.-T.Y.); (S.-Y.H.); (C.H.A.)
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul 02841, Korea;
- Correspondence: ; Tel.: +82-2-3290-4861; Fax: +82-2-3290-5999
| |
Collapse
|
12
|
Al-Hamadani YAJ, Jun BM, Yoon M, Taheri-Qazvini N, Snyder SA, Jang M, Heo J, Yoon Y. Applications of MXene-based membranes in water purification: A review. CHEMOSPHERE 2020; 254:126821. [PMID: 32325351 DOI: 10.1016/j.chemosphere.2020.126821] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 04/13/2020] [Accepted: 04/15/2020] [Indexed: 06/11/2023]
Abstract
Since MXenes (a new family of two-dimensional materials) were first produced in 2011, they have become very attractive nanomaterials due to their unique properties and the range of potential industrial applications. Numerous recent studies have discussed the environmental applications of different MXenes in adsorption, catalysis, and membranes. Only a limited number of MXene-based membrane studies have been published to date, and most have discussed only specific MXenes (i.e., Ti3C2Tx), a small number of solutes (e.g., dyes and inorganic salts), and laboratory-scale short-term experiments under limited water-quality and operational conditions. In addition, to our knowledge, there has been no review of MXene-membrane studies. It is therefore essential to assess the current status of understanding of the performance of these membranes in liquid separation and water purification. Here, a comprehensive literature review is conducted to summarize the current preparation techniques for MXene-based membranes and their applications, particularly in terms of environmental and industrial applications (e.g., water treatment and organic solvent filtration), and to direct future research by identifying gaps in our present understanding. In particular, this review focuses on several key factors, including the effects of preparation techniques on membrane properties, operational conditions, and compound properties that influence liquid separation during MXene-based membrane filtration.
Collapse
Affiliation(s)
- Yasir A J Al-Hamadani
- Directorate of Construction and Building, Ministry of Higher Education and Scientific Research of Iraq, 52 Street, Al-Rusafa, Baghdad, 00964, Iraq
| | - Byung-Moon Jun
- Department of Civil and Environmental Engineering, University of South Carolina, Columbia, 300 Main Street, SC, 29208, USA
| | - Michelle Yoon
- Department of Biology, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Nader Taheri-Qazvini
- Department of Chemical Engineering, University of South Carolina, Columbia, SC, 29208, USA; Biomedical Engineering Program, University of South Carolina, Columbia, SC, 29208, USA
| | - Shane A Snyder
- School of Civil & Environmental Engineering, Nanyang Technological University, 1 Cleantech Loop, 637141, Singapore; Department of Chemical and Environmental Engineering, University of Arizona, Tucson, AZ, 85721, USA
| | - Min Jang
- Department of Environmental Engineering, Kwangwoon University, 447-1, Wolgye-Dong Nowon-Gu, Seoul, Republic of Korea
| | - Jiyong Heo
- Department of Civil and Environmental Engineering, Korea Army Academy at Young-cheon, 495 Hogook-ro, Kokyungmeon, Young-Cheon, Gyeongbuk, 38900, Republic of Korea.
| | - Yeomin Yoon
- Department of Civil and Environmental Engineering, University of South Carolina, Columbia, 300 Main Street, SC, 29208, USA.
| |
Collapse
|
13
|
Recent Advances in Applications of Carbon Nanotubes for Desalination: A Review. NANOMATERIALS 2020; 10:nano10061203. [PMID: 32575642 PMCID: PMC7353087 DOI: 10.3390/nano10061203] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 06/16/2020] [Accepted: 06/18/2020] [Indexed: 11/17/2022]
Abstract
As a sustainable, cost-effective and energy-efficient method, membranes are becoming a progressively vital technique to solve the problem of the scarcity of freshwater resources. With these critical advantages, carbon nanotubes (CNTs) have great potential for membrane desalination given their high aspect ratio, large surface area, high mechanical strength and chemical robustness. In recent years, the CNT membrane field has progressed enormously with applications in water desalination. The latest theoretical and experimental developments on the desalination of CNT membranes, including vertically aligned CNT (VACNT) membranes, composited CNT membranes, and their applications are timely and comprehensively reviewed in this manuscript. The mechanisms and effects of CNT membranes used in water desalination where they offer the advantages are also examined. Finally, a summary and outlook are further put forward on the scientific opportunities and major technological challenges in this field.
Collapse
|