1
|
Han J, Xie N, Ju J, Zhang Y, Wang Y, Kang W. Developments of electrospinning technology in membrane bioreactor: A review. CHEMOSPHERE 2024; 364:143091. [PMID: 39151583 DOI: 10.1016/j.chemosphere.2024.143091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 07/30/2024] [Accepted: 08/13/2024] [Indexed: 08/19/2024]
Abstract
The necessity for effective wastewater treatment and purification has grown as a result of the increasing pollution issues brought on by industrial and municipal wastewater. Membrane bioreactor (MBR) technology stands out when compared to other treatment methods because of its high efficiency, environmental friendliness, small footprint, and ease of maintenance. However, the development and application of membrane bioreactors has been severely constrained by the higher cost and shorter service life of these devices brought on by membrane biofouling issues resulting from contaminants and bacteria in the water. The nanoscale size of the electrospinning products provides unique microstructure, and the technology facilitates the production of structurally different membranes, or the modification and functionalization of membranes, which makes it possible to solve the membrane fouling problem. Therefore, many current studies have attempted to use electrospinning in MBRs to address membrane fouling and ultimately improve treatment efficacy. Meanwhile, in addition to solving the problem of membrane fouling, the fabrication technology of electrospinning also shows great advantages in constructing thin porous fiber membrane materials with controllable surface wettability and layered structure, which is helpful for the performance enhancement of MBR and expanding innovation. This paper systematically reviews the application and research progress of electrospinning in MBRs. Firstly, the current status of the application of electrospinning technology in various MBRs is introduced, and the relevant measures to solve the membrane fouling based on electrospinning technology are analyzed. Subsequently, some new types of MBRs and new application areas developed with the help of electrospinning technology are introduced. Finally, the limitations and challenges of merging the two technologies are presented, and pertinent recommendations are provided for future research on the use of electrospinning technology in membrane bioreactors.
Collapse
Affiliation(s)
- Jiacheng Han
- State Key Laboratory of Separation Membranes and Membrane Processes, National Center for International Joint Research on Separation Membranes, School of Textile Science and Engineering, Key Laboratory of Advanced Textile Composite, Ministry of Education, Tiangong University, No. 399 BinShuiXi Road, XiQing District, Tianjin, 300387, PR China
| | - Nan Xie
- ChinaTianjin Research Institute of Construction Machinery, No.91 Huashi Road, Beichen Technology Park, Tianjin, 300409, PR China
| | - Jingge Ju
- State Key Laboratory of Separation Membranes and Membrane Processes, National Center for International Joint Research on Separation Membranes, School of Textile Science and Engineering, Key Laboratory of Advanced Textile Composite, Ministry of Education, Tiangong University, No. 399 BinShuiXi Road, XiQing District, Tianjin, 300387, PR China.
| | - Yan Zhang
- State Key Laboratory of Separation Membranes and Membrane Processes, National Center for International Joint Research on Separation Membranes, School of Textile Science and Engineering, Key Laboratory of Advanced Textile Composite, Ministry of Education, Tiangong University, No. 399 BinShuiXi Road, XiQing District, Tianjin, 300387, PR China
| | - Yongcheng Wang
- State Key Laboratory of Separation Membranes and Membrane Processes, National Center for International Joint Research on Separation Membranes, School of Textile Science and Engineering, Key Laboratory of Advanced Textile Composite, Ministry of Education, Tiangong University, No. 399 BinShuiXi Road, XiQing District, Tianjin, 300387, PR China
| | - Weimin Kang
- State Key Laboratory of Separation Membranes and Membrane Processes, National Center for International Joint Research on Separation Membranes, School of Textile Science and Engineering, Key Laboratory of Advanced Textile Composite, Ministry of Education, Tiangong University, No. 399 BinShuiXi Road, XiQing District, Tianjin, 300387, PR China.
| |
Collapse
|
2
|
Min KJ, Lee E, Lee AH, Kim DY, Park KY. Effect of settling time and organic loading rates on aerobic granulation processes treating high strength wastewater. Heliyon 2024; 10:e36018. [PMID: 39247328 PMCID: PMC11379613 DOI: 10.1016/j.heliyon.2024.e36018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 08/07/2024] [Indexed: 09/10/2024] Open
Abstract
Despite its numerous advantages, the aerobic granular sludge (AGS) process faces several challenges that hinder its widespread implementation. One such challenge is the requirement for high organic load ratios (OLR), which significantly impacts AGS formation and stability, posing a barrier to commercialization. In response to these challenges, this study investigates the granulation and treatment efficacy of the AGS process for treating high-concentration wastewater under various OLR and settling time. Three sequential batch reactors (R1, R2, R3) were operated at OLRs of 0.167, 0.33, and 1 kg COD/m3·day. The study focuses on analyzing key parameters including sludge characteristics, extracellular polymeric substances (EPS) content, PN/PS ratio, and microbial clusters. Results demonstrate that reducing settling time from 90 to 30 min enhances sludge settleability, resulting in a maximum 50.8 % decrease in SVI30 (from 98.1 to 122.8 mL/g to 51.9-81.3 mL/g), thereby facilitating the selection of beneficial microorganisms during granulation. Particularly, at R2, the PN/PS ratio was 4.3, and EPS content increased by 1.52-fold, leading to a 1.41-fold increase in sludge attachment. This observation suggests a progressive maturation of AGS. Additionally, analysis of microbial diversity and cluster composition highlights the influence of OLR variations on the ratios of Proteobacteria and Bacteroidetes. These findings emphasize the significant impact of SBR operational strategies on AGS process performance and biological stability, offering valuable insights for the efficient operation of future high-concentration wastewater treatment processes.
Collapse
Affiliation(s)
- Kyung Jin Min
- Department of Tech Center for Research Facilities, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul, 05029, South Korea
| | - Eunyoung Lee
- Department of Civil and Environmental Engineering, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul, 05029, South Korea
| | - Ah Hyun Lee
- Department of Civil and Environmental Engineering, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul, 05029, South Korea
| | - Do Yeon Kim
- Department of Civil and Environmental Engineering, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul, 05029, South Korea
| | - Ki Young Park
- Department of Civil and Environmental Engineering, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul, 05029, South Korea
| |
Collapse
|
3
|
Huang R, Geng M, Gao S, Yin X, Tian J. In-depth insight into improvement of simultaneous nitrification and denitrification/biofouling control by increasing sludge concentration in membrane reactor: performance, microbial assembly and metagenomic analysis. BIORESOURCE TECHNOLOGY 2024; 393:130013. [PMID: 37956947 DOI: 10.1016/j.biortech.2023.130013] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 11/09/2023] [Accepted: 11/10/2023] [Indexed: 11/21/2023]
Abstract
Currently, severe membrane fouling and inefficient nitrogen removal were two main issues that hindered the sustainable operation and further application of membrane bioreactor (MBR). This study aimed to simultaneously alleviate membrane fouling and improve nitrogen removal by applying high sludge concentration in MBR. Results showed that high sludge concentration (12000 mg/L) enhanced total nitrogen removal efficiency (78 %) and reduced transmembrane pressure development rate. Microbial community analysis revealed that high sludge concentration enriched functional bacteria associated with nitrogen removal, increased filamentous bacteria fraction in bio-cake and inhibited Thiothrix overgrowth in bulk sludge. From molecular level, the key genes involved in nitrogen metabolism, electron donor/adenosine triphosphate production and amino acid degradation were up-regulated under high sludge concentration. Overall, high sludge concentration improved microbial assembly and functional gene abundance, which not only enhanced nitrogen removal but also alleviated membrane fouling. This study provided an effective strategy for sustainable operation of MBR.
Collapse
Affiliation(s)
- Rui Huang
- School of Civil and Transportation Engineering, Hebei University of Technology, Tianjin 300401, China; Guangdong GDH Water Co. Ltd, Shenzhen 518021, China; School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Mingyue Geng
- School of Civil and Transportation Engineering, Hebei University of Technology, Tianjin 300401, China.
| | - Shanshan Gao
- School of Civil and Transportation Engineering, Hebei University of Technology, Tianjin 300401, China
| | - Xing Yin
- School of Civil and Transportation Engineering, Hebei University of Technology, Tianjin 300401, China
| | - Jiayu Tian
- School of Civil and Transportation Engineering, Hebei University of Technology, Tianjin 300401, China
| |
Collapse
|
4
|
Zuo Y, Shao Y, Wang L, Sun Y, An Y, Jiang LM, Yu N, Hao R, Zhou C, Tao J, Zhou Z. Simultaneous sludge minimization and membrane fouling mitigation in membrane bioreactors by using a microaerobic - Settling pretreatment module. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 328:116977. [PMID: 36495823 DOI: 10.1016/j.jenvman.2022.116977] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 12/02/2022] [Accepted: 12/03/2022] [Indexed: 06/17/2023]
Abstract
Membrane fouling is the major obstacle for membrane bioreactors operated at a long sludge retention time to reduce sludge production. In this study, a sludge process reduction (SPR) module, consisting of a microaerobic tank and a settler, was inserted before an anoxic/oxic MBR (AO-MBR) to achieve dual objectives of fouling alleviation and sludge reduction. Three SPR-MBRs were operated to investigate influences of sludge recirculation ratios from the SPR settler to the microaerobic tank on process performance. Compared to AO-MBR, the SPR-MBRs reduced sludge production by 43.1-56.4% by maintaining sludge retention times above 175 d, and decreased foulant layer resistance and pore clogging resistance. Inserting SPR reduced the accumulation of dissolved organic matters and extracellular polymeric substances, enlarged sludge flocs, and decreased sludge viscoelasticity. However, increasing RSPR stimulated outward diffusion of extracellular polymeric substances and increased sludge viscosity. SPR-MBRs achieved effective sludge reduction by enriching hydrolytic (Trichococcus and Aeromonas) and fermentative genera (Lactococcus, Paludibacter, Macellibacteroides, and Acinetobacter) in the SPR, and alleviated membrane fouling by prohibiting the growth of extracellular polymeric substance-secreting bacteria and enriching filamentous bacteria to enlarge particle size. The results revealed that the SPR-MBR maximized sludge reduction with a very long sludge retention time, and alleviated membrane fouling synchronously.
Collapse
Affiliation(s)
- Yi Zuo
- Shanghai Engineering Research Center of Energy - Saving in Heat Exchange Systems, College of Environmental and Chemical Engineering, Shanghai University of Electric Power, Shanghai, 200090, China
| | - Yanjun Shao
- Shanghai Engineering Research Center of Energy - Saving in Heat Exchange Systems, College of Environmental and Chemical Engineering, Shanghai University of Electric Power, Shanghai, 200090, China
| | - Lihua Wang
- Shanghai Chengtou Wastewater Treatment Co., Ltd, Shanghai, 201203, China
| | - Yiyue Sun
- Shanghai Engineering Research Center of Energy - Saving in Heat Exchange Systems, College of Environmental and Chemical Engineering, Shanghai University of Electric Power, Shanghai, 200090, China
| | - Ying An
- Shanghai Engineering Research Center of Energy - Saving in Heat Exchange Systems, College of Environmental and Chemical Engineering, Shanghai University of Electric Power, Shanghai, 200090, China
| | - Lu-Man Jiang
- Shanghai Engineering Research Center of Energy - Saving in Heat Exchange Systems, College of Environmental and Chemical Engineering, Shanghai University of Electric Power, Shanghai, 200090, China
| | - Nan Yu
- Jinluo Water Co., Ltd, Linyi, 276600, China
| | - Rujie Hao
- Jinluo Water Co., Ltd, Linyi, 276600, China
| | - Chuanting Zhou
- Shanghai Urban Construction Design and Research Institute, Shanghai, 200125, China
| | - Jun Tao
- Shanghai Chengtou Wastewater Treatment Co., Ltd, Shanghai, 201203, China
| | - Zhen Zhou
- Shanghai Engineering Research Center of Energy - Saving in Heat Exchange Systems, College of Environmental and Chemical Engineering, Shanghai University of Electric Power, Shanghai, 200090, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, China.
| |
Collapse
|
5
|
Ramos P, Honda R, Hoek EMV, Mahendra S. Carbon/nitrogen ratios determine biofilm formation and characteristics in model microbial cultures. CHEMOSPHERE 2023; 313:137628. [PMID: 36565767 DOI: 10.1016/j.chemosphere.2022.137628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 12/19/2022] [Accepted: 12/20/2022] [Indexed: 06/17/2023]
Abstract
The influence of growth medium water chemistry, specifically carbon/nitrogen (C/N) molar ratios, on the characteristics and development of biofilms of the model microorganism Pseudomonas aeruginosa was investigated. C/N = 9 had a unique effect on biofilm composition as well as quorum sensing (QS) pathways, with higher concentrations of carbohydrates and proteins in the biofilm and a significant upregulation of the QS gene lasI in planktonic cells. The effect of C/N ratio on total attached biomass was negligible. Principal component analysis revealed a different behavior of most outputs such as carbohydrates and QS chemicals at C/N = 9, and pointed to correlations between parameters of biofilm formation and steady state distribution of cells and extracellular components. C/N ratio was also shown to influence organic compound utilization by both planktonic and sessile organisms, with a maximum chemical oxygen demand (COD) removal of 83% achieved by biofilms at C/N = 21. Planktonic cells achieved higher COD removal rates, but greater overall rates after six days occurred in biofilms. The development of a dual-species biofilm of P. aeruginosa and Nitrobacter winogradskyi was also influenced by C/N, with increase in the relative abundance of the slower-growing N. winogradskyi above C/N = 9. These results indicate that altering operational parameters related to C/N would be relevant for mitigating or promoting biofilm formation and function depending on the desired industrial application or treatment configuration.
Collapse
Affiliation(s)
- Pia Ramos
- Department of Civil and Environmental Engineering, University of California Los Angeles, 5732 Boelter Hall, Los Angeles, CA, 90095, USA
| | - Ryo Honda
- Faculty of Geoscience and Civil Engineering, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa, 920-1192, Japan
| | - Eric M V Hoek
- Department of Civil and Environmental Engineering, University of California Los Angeles, 5732 Boelter Hall, Los Angeles, CA, 90095, USA; UCLA California NanoSystems Institute, Los Angeles, CA, 90095, USA; UCLA Institute of the Environment & Sustainability, Los Angeles, CA, 90095, USA
| | - Shaily Mahendra
- Department of Civil and Environmental Engineering, University of California Los Angeles, 5732 Boelter Hall, Los Angeles, CA, 90095, USA; UCLA California NanoSystems Institute, Los Angeles, CA, 90095, USA; UCLA Institute of the Environment & Sustainability, Los Angeles, CA, 90095, USA.
| |
Collapse
|
6
|
Xiao K, Wang K, Yu S, Yuan Y, Qin Y, An Y, Zhao X, Zhou Z. Membrane fouling behavior in membrane bioreactors for nitrogen-deficient wastewater pretreated by ammonium ion exchange. J Memb Sci 2023. [DOI: 10.1016/j.memsci.2022.121087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
7
|
Lin L, Zhang Y, Yan W, Fan B, Fu Q, Li S. Performance of gravity-driven membrane systems for algal water treatment: Effects of temperature and membrane properties. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 838:155963. [PMID: 35584755 DOI: 10.1016/j.scitotenv.2022.155963] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 04/22/2022] [Accepted: 05/11/2022] [Indexed: 06/15/2023]
Abstract
Gravity-driven membrane (GDM) systems are promising for algal water treatment. However, the algae-bacteria interaction in the biofilm on the membrane, which is highly dependent on temperature and membrane properties, is still unclear. Therefore, this study investigated the effect of temperature on the performance of GDM systems during the filtration of algae-rich water for 50 days using two types of membranes. The results suggested that the combined effect of the microbial growth (controlled by temperature) and organic rejection (related to membrane properties) determined the membrane biofilm structure and its hydraulic resistance. Increasing the temperature from 10 to 35 °C gradually improved the foulant removal by both polyvinylidene fluoride (PVDF200) and polyvinyl chloride (PVC0.01) membranes, corresponding to different microbial activities. The lowest removal observed at 10 °C was attributed to the algal cell rupture and limited bacteria growth. At 25 °C, the stimulated algae population was mainly responsible for nutrient removal, meanwhile the oxygenic environment encouraged the proliferation of heterotrophic bacteria for the organic removal. At a higher temperature of 35 °C, both the nutrient and organic removal were dominated by denitrification, accompanied by a strong increase in biological activity. Although PVDF200 membranes had 10 times higher initial fluxes than PVC0.01 membranes, they obtained comparable final fluxes. Unlike PVDF200 membranes exhibited the highest final flux at 10 °C (3.64 L/m2/h), the PVC0.01 membrane permeability increased in the order: 10 °C (1.58 L/m2/h) < 25 °C (2.20 L/m2/h) < 35 °C (4.00 L/m2/h). This is mainly because the PVDF200 membrane fouling was dominated by microbial biomass, while PVC0.01 membranes with smaller pores and higher hydrophilicity were more sensitive to changes in microbial metabolites. This study links temperature, membrane properties and biofilm physiology, with practical relevance for the hydraulic performance of GDM systems, hopefully leading to their wider application in algal water treatment.
Collapse
Affiliation(s)
- Li Lin
- School of Water Conservancy and Civil Engineering, Northeast Agricultural University, China
| | - Yan Zhang
- School of Water Conservancy and Civil Engineering, Northeast Agricultural University, China.
| | - Wenxin Yan
- School of Municipal and Environmental Engineering, Jilin Jianzhu University, China
| | - Bangjun Fan
- Heilongjiang Airport Management Group Co. LTD, China
| | - Qiang Fu
- School of Water Conservancy and Civil Engineering, Northeast Agricultural University, China.
| | - Shuang Li
- Key Lab of Smart Prevention and Mitigation of Civil Engineering Disasters of the Ministry of Industry and Information Technology, Harbin Institute of Technology, China
| |
Collapse
|
8
|
Ma B, Liu Y, Lin H, Fan H, Lu C, Zhao K, Qi J. A pilot-scale study of the integrated floc-ultrafiltration membrane-based drinking water treatment process. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 830:154809. [PMID: 35341872 DOI: 10.1016/j.scitotenv.2022.154809] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 02/18/2022] [Accepted: 03/21/2022] [Indexed: 06/14/2023]
Abstract
Although applications of the integrated ultrafiltration (UF) membrane have been investigated for years, most studies have been conducted at the lab scale. Here, a case study on the integrated Fe-based floc-UF process was presented. To enhance membrane performance, both pre-filtration (bag filter) and pre-oxidation were used as pretreatments to remove particles and inhibit the development of microorganisms. Results showed that the integrated process operated stably with pre-treatments, and the UF membrane fouling behavior could be divided into three different phases: slow increase rate (phase I), medium increase rate (phase II), and fast increase rate (phase III). In comparison to those in phases II and III, both natural organic matters and colloids were the main membrane fouling mechanisms during phase I, as the pollutants were not successfully removed by flocs initially. With the continuous injection of flocs, a loose cake layer became the main fouling mechanism during phase II, resulting in the deterioration of membrane fouling. During phase III, however, microorganisms (e.g., Proteobacteria) were inevitably nourished within the cake layer and played an important role in aggravating the degree of membrane fouling. During this integrated membrane-based process, several operating factors, including floc concentration, sludge discharge frequency, and the aeration rate during backwashing, played important roles in determining membrane performance. In addition, except for oxygen consumption, all the effluent quality parameters met the drinking water criteria followed in China (GB5749-2006).
Collapse
Affiliation(s)
- Baiwen Ma
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; Lehrstuhl für Technische Chemie II, Universität Duisburg-Essen, Essen 45117, Germany.
| | - Yansong Liu
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of New Energy and Environment, Jilin University, Changchun, 130021, Jilin, China
| | - Hui Lin
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hongwei Fan
- College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Chaojie Lu
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Kai Zhao
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jing Qi
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| |
Collapse
|
9
|
Wang M, Li J, Ning S, Fu X, Wang X, Tan L. Simultaneously enhanced treatment efficiency of simulated hypersaline azo dye wastewater and membrane antifouling by a novel static magnetic field membrane bioreactor (SMFMBR). THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 821:153452. [PMID: 35093373 DOI: 10.1016/j.scitotenv.2022.153452] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 01/19/2022] [Accepted: 01/22/2022] [Indexed: 06/14/2023]
Abstract
Operation performance and membrane fouling of a novel static magnetic field membrane bioreactor (SMFMBR) for treatment of hypersaline azo dye wastewater was investigated. The results showed that SMFMBRs possessed higher efficiency of dye decolorization, COD removal and detoxification than the control MBR without SMF. The (3#) SMFMBR equipped with 305.0 mT (the highest intensity) SMF displayed the best treatment performance among all the four reactors (named as 0#-3#, equipped with SMFs of 0 mT, 95.0 mT, 206.3 mT and 305.0 mT, respectively). Potentially effective microbes belonging to Rhodanobacter, Saccharibacteria genera incertae sedis, Defluviimonas, Cellulomonas, Cutaneotrichosporon, Candida and Pichia were enriched in three SMFMBRs, in both of suspended sludge and bio-cakes. The relative abundance of Candida and Pichia in suspended sludge of 3# SMFMBR was the highest among all the four reactors, suggesting their successful colonization and potentially persistent effect of bioaugmentation. On the other hand, SMF of higher intensity effectively mitigated membrane fouling. Less production of soluble microbial products (SMP) and extracellular polymeric substances (EPS), lower protein/polysaccharide (PN/PS) ratio in SMP and EPS, looser structure of bio-cakes on membrane surface, as well as lower relative abundance of potential fouling causing microbes (mainly bacteria) in microbial communities were determined in 3# SMFMBR than the other three groups.
Collapse
Affiliation(s)
- Meining Wang
- Key Laboratory of Plant Biotechnology of Liaoning Province, School of Life Sciences, Liaoning Normal University, Dalian, Liaoning 116081, China
| | - Jiamin Li
- Key Laboratory of Plant Biotechnology of Liaoning Province, School of Life Sciences, Liaoning Normal University, Dalian, Liaoning 116081, China
| | - Shuxiang Ning
- Key Laboratory of Plant Biotechnology of Liaoning Province, School of Life Sciences, Liaoning Normal University, Dalian, Liaoning 116081, China
| | - Xinmei Fu
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024, China
| | - Xiaohan Wang
- Key Laboratory of Plant Biotechnology of Liaoning Province, School of Life Sciences, Liaoning Normal University, Dalian, Liaoning 116081, China
| | - Liang Tan
- Key Laboratory of Plant Biotechnology of Liaoning Province, School of Life Sciences, Liaoning Normal University, Dalian, Liaoning 116081, China.
| |
Collapse
|
10
|
Nguyen AQ, Nguyen LN, Xu Z, Luo W, Nghiem LD. New insights to the difference in microbial composition and interspecies interactions between fouling layer and mixed liquor in a membrane bioreactor. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2021.120034] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
11
|
Roles of initial bacterial attachment and growth in the biofouling development on the microfiltration membrane: From viewpoints of individual cell and interfacial interaction energy. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2021.119723] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
12
|
Siddiqui MA, Biswal BK, Saleem M, Guan D, Iqbal A, Wu D, Khanal SK, Chen G. Anaerobic self-forming dynamic membrane bioreactors (AnSFDMBRs) for wastewater treatment - Recent advances, process optimization and perspectives. BIORESOURCE TECHNOLOGY 2021; 332:125101. [PMID: 33858757 DOI: 10.1016/j.biortech.2021.125101] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 03/24/2021] [Accepted: 03/26/2021] [Indexed: 06/12/2023]
Abstract
Recently, anaerobic self-forming dynamic membrane bioreactors (AnSFDMBRs) have attracted increasing attention, and are considered as an alternative to conventional anaerobic membrane bioreactors (AnMBRs). The key advantages of AnSFDMBRs include high flux, low propensity towards fouling, and low capital and operational costs. Although there have been several reviews on AnMBRs, very few reviews on AnSFDMBR system. Previous AnSFDMBR studies have focused on lab-scale to investigate the long-term flux, methods to improve performance and the associated mechanisms. Microbial analysis showed that the phyla namely Proteobacteria, Bacteroidetes and Firmicutes are dominant in both bulk sludge and cake biofilm, but their abundance is low in biocake. This review critically examines the fundamentals of AnSFDMBRs, operational conditions, process optimization and applications. Moreover, the current knowledge gaps (e.g., dynamic membrane module optimization, membrane surface modification and functional microbes enrichment) that should be studied in future to design an efficient AnSFDMBR system for treatment of diverse wastewaters.
Collapse
Affiliation(s)
- Muhammad Ahmar Siddiqui
- Department of Civil and Environmental Engineering, Water Technology Center, Hong Kong Branch of Chinese National Engineering Research Centre for Control & Treatment of Heavy Metal Pollution, The Hong Kong University of Science & Technology, Clear Water Bay, Kowloon, Hong Kong, China; Shenzhen Research Institute, Fok Ying Tung Graduate School, The Hong Kong University of Science & Technology, Guangdong, China
| | - Basanta Kumar Biswal
- Department of Civil and Environmental Engineering, Water Technology Center, Hong Kong Branch of Chinese National Engineering Research Centre for Control & Treatment of Heavy Metal Pollution, The Hong Kong University of Science & Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Mubbshir Saleem
- Department of Industrial Engineering, University of Padova, Via Venezia 1, 35131 Padova, Italy
| | - Dao Guan
- Department of Civil and Environmental Engineering, Water Technology Center, Hong Kong Branch of Chinese National Engineering Research Centre for Control & Treatment of Heavy Metal Pollution, The Hong Kong University of Science & Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Asad Iqbal
- Department of Civil and Environmental Engineering, Water Technology Center, Hong Kong Branch of Chinese National Engineering Research Centre for Control & Treatment of Heavy Metal Pollution, The Hong Kong University of Science & Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Di Wu
- Department of Civil and Environmental Engineering, Water Technology Center, Hong Kong Branch of Chinese National Engineering Research Centre for Control & Treatment of Heavy Metal Pollution, The Hong Kong University of Science & Technology, Clear Water Bay, Kowloon, Hong Kong, China; Shenzhen Research Institute, Fok Ying Tung Graduate School, The Hong Kong University of Science & Technology, Guangdong, China.
| | - Samir Kumar Khanal
- Department of Molecular Biosciences and Bioengineering, University of Hawai'i at Mānoa, Honolulu, HI 96882, USA
| | - Guanghao Chen
- Department of Civil and Environmental Engineering, Water Technology Center, Hong Kong Branch of Chinese National Engineering Research Centre for Control & Treatment of Heavy Metal Pollution, The Hong Kong University of Science & Technology, Clear Water Bay, Kowloon, Hong Kong, China; Shenzhen Research Institute, Fok Ying Tung Graduate School, The Hong Kong University of Science & Technology, Guangdong, China
| |
Collapse
|
13
|
Takimoto Y, Hatamoto M, Soga T, Kuratate D, Watari T, Yamaguchi T. Maintaining microbial diversity mitigates membrane fouling of an anoxic/oxic membrane bioreactor under starvation condition. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 759:143474. [PMID: 33213916 DOI: 10.1016/j.scitotenv.2020.143474] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 10/25/2020] [Accepted: 10/26/2020] [Indexed: 06/11/2023]
Abstract
The aim of this study was to evaluate the contribution of dissolved organic carbon (DOC) and microbial community dynamics to membrane fouling development in membrane bioreactor (MBR). We operated laboratory-scale anoxic/oxic-MBRs under prolonged starvation conditions in different seasons and the dynamics and diversity of the microbial communities were investigated. Although fouled-MBRs showed DOC accumulation in the activated sludge (AS), the fouling-mitigated MBR suggested that dissolved oxygen was consumed and DOC of the sludge supernatant was degraded. 16S rRNA genes analysis of AS in the MBRs revealed that Chitinophagaceae and Candidatus Promineofilum specifically increased in the fouling-mitigated MBR, suggesting that they played important roles in membrane fouling mitigation; high microbial diversity in the reactor also contributed to fouling mitigation. In the fouled reactor, enrichment of Xanthomonadaceae might be related to fouling causing substances formation leading to membrane fouling development; lower microbial diversity also contributed to fouling development in the fouled MBR.
Collapse
Affiliation(s)
- Yuya Takimoto
- Department of Science of Technology Innovation, Nagaoka University of Technology, 1603-1 Kamitomioka, Nagaoka, Niigata 940-2188, Japan
| | - Masashi Hatamoto
- Department of Civil and Environmental Systems Engineering, Nagaoka University of Technology, 1603-1 Kamitomioka, Nagaoka, Niigata 940-2188, Japan.
| | - Toru Soga
- Department of Science of Technology Innovation, Nagaoka University of Technology, 1603-1 Kamitomioka, Nagaoka, Niigata 940-2188, Japan
| | - Daiki Kuratate
- Department of Civil and Environmental Systems Engineering, Nagaoka University of Technology, 1603-1 Kamitomioka, Nagaoka, Niigata 940-2188, Japan
| | - Takahiro Watari
- Department of Civil and Environmental Systems Engineering, Nagaoka University of Technology, 1603-1 Kamitomioka, Nagaoka, Niigata 940-2188, Japan
| | - Takashi Yamaguchi
- Department of Science of Technology Innovation, Nagaoka University of Technology, 1603-1 Kamitomioka, Nagaoka, Niigata 940-2188, Japan; Department of Civil and Environmental Systems Engineering, Nagaoka University of Technology, 1603-1 Kamitomioka, Nagaoka, Niigata 940-2188, Japan
| |
Collapse
|
14
|
Hansen SH, Nierychlo M, Christensen ML, Nielsen PH, Jørgensen MK. Fouling of membranes in membrane bioreactors for wastewater treatment: Planktonic bacteria can have a significant contribution. WATER ENVIRONMENT RESEARCH : A RESEARCH PUBLICATION OF THE WATER ENVIRONMENT FEDERATION 2021; 93:207-216. [PMID: 32645226 DOI: 10.1002/wer.1392] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 06/17/2020] [Accepted: 06/30/2020] [Indexed: 06/11/2023]
Abstract
Membrane bioreactors (MBRs) for wastewater treatment show great potentials in the sustainable development of urban environments. However, fouling of membranes remains the largest challenge of MBR technology. Dissolved extracellular polymeric substances (EPS) are often assumed be the main foulant in MBRs. However, single bacterial cells are often erroneously measured as EPS in traditional spectrophotometric analysis of EPS in activated sludge, so we hypothesized that single cells in many cases could be the true foulants in MBRs for wastewater treatment. To study this, raw MBR sludge and sludge supernatant with varying concentrations of planktonic cells were filtered on microfiltration (MF) membranes, and we found a direct correlation between the cell count and rate of flux decline. Addition of planktonic cells to fresh MBR sludge dramatically increased the flux decline. The identity of the most abundant planktonic cells in a full-scale MBR water resource recovery facility was determined by DNA fingerprinting. Many of these genera are known to be abundant in influent wastewater suggesting that the influent bacterial cells may have a direct effect on the fouling propensity in MBR systems. This new knowledge may lead to new anti-fouling strategies targeting incoming planktonic bacteria from the wastewater feed. PRACTITIONER POINTS: Planktonic cells constituted up to 60% of the total protein content of "soluble extracellular polymeric substances" in membrane bioreactor sludge. Planktonic cells are hidden under a surrogate concentration of extracellular polymeric substances which is often associated with fouling. Membrane fouling rate is directly proportional to amount of free planktonic cells suspended in sludge. Several influent bacterial genera are enriched in the water phase of membrane bioreactor sludge. Removing these may mitigate fouling.
Collapse
Affiliation(s)
- Susan Hove Hansen
- Department of Chemistry and Bioscience, Center for Microbial Communities, Aalborg University, Aalborg, Denmark
| | - Marta Nierychlo
- Department of Chemistry and Bioscience, Center for Microbial Communities, Aalborg University, Aalborg, Denmark
| | - Morten L Christensen
- Department of Chemistry and Bioscience, Center for Membrane Technology, Aalborg University, Aalborg, Denmark
| | - Per Halkjaer Nielsen
- Department of Chemistry and Bioscience, Center for Microbial Communities, Aalborg University, Aalborg, Denmark
| | - Mads Koustrup Jørgensen
- Department of Chemistry and Bioscience, Center for Membrane Technology, Aalborg University, Aalborg, Denmark
| |
Collapse
|
15
|
Zhou L, Zhang W, De Costa YG, Zhuang WQ, Yi S. Assessing inorganic components of cake layer in A/O membrane bioreactor for physical-chemical treated tannery effluent. CHEMOSPHERE 2020; 250:126220. [PMID: 32120146 DOI: 10.1016/j.chemosphere.2020.126220] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 01/17/2020] [Accepted: 02/13/2020] [Indexed: 06/10/2023]
Abstract
In this study, an anoxic-oxic membrane bioreactor (A/O-MBR), was used to treat effluent tannery wastewater pretreated by physicochemical processes. The A/O-MBR performed well during the experimental period and was able to produce a high-quality effluent containing 90 ± 10 mg-CODcr/L and 0.5 ± 0.1 mg-NH4+-N/L. However, it was observed that at rates of approximately 1.02 kPa/day and 1.2 μm/day, both transmembrane pressure (TMP) and thickness of cake layer increased during wastewater treatment. The eventual thickness of the cake layer was between 47.8 and 51.5 μm. Furthermore, an Inductively Coupled Plasma-Optical Emission Spectrometer, used to analyze inorganic components of the cake layer, revealed that four inorganic elements, Cr, Ca, Mg and Al were predominant (weight percentage rate 4:13:10:72). Due to low solubility (Cr(OH)3: Ksp 6.3 × 10-31; Al(OH)3: Ksp 6.3 × 10-19), the elements of Cr and Al mainly existed in the forms of Cr(OH)3 and Al(OH)3, respectively. Other minerals in the cake layer included Al2O3, CaCO3, and MgCO3. Additionally, using an SEM-EDX (Scanning electron microscopy-energy dispersive X-ray analyzer), we discovered that inorganic particles that formed within the activated sludge of the A/O-MBR steadily accumulating on the membrane surface, resulted in an evenly distributed inorganic layer which could be observed along the cross-sections of the cake layer.
Collapse
Affiliation(s)
- Lijie Zhou
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518060, China.
| | - Wenyu Zhang
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Yashika G De Costa
- Department of Civil and Environmental Engineering, University of Auckland, Auckland, 1142, New Zealand
| | - Wei-Qin Zhuang
- Department of Civil and Environmental Engineering, University of Auckland, Auckland, 1142, New Zealand
| | - Shan Yi
- Department of Chemical and Materials Engineering, University of Auckland, Auckland, 1142, New Zealand
| |
Collapse
|