1
|
Aytaç E, Khanzada NK, Ibrahim Y, Khayet M, Hilal N. Reverse Osmosis Membrane Engineering: Multidirectional Analysis Using Bibliometric, Machine Learning, Data, and Text Mining Approaches. MEMBRANES 2024; 14:259. [PMID: 39728709 DOI: 10.3390/membranes14120259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 11/30/2024] [Accepted: 12/04/2024] [Indexed: 12/28/2024]
Abstract
Membrane engineering is a complex field involving the development of the most suitable membrane process for specific purposes and dealing with the design and operation of membrane technologies. This study analyzed 1424 articles on reverse osmosis (RO) membrane engineering from the Scopus database to provide guidance for future studies. The results show that since the first article was published in 1964, the domain has gained popularity, especially since 2009. Thin-film composite (TFC) polymeric material has been the primary focus of RO membrane experts, with 550 articles published on this topic. The use of nanomaterials and polymers in membrane engineering is also high, with 821 articles. Common problems such as fouling, biofouling, and scaling have been the center of work dedication, with 324 articles published on these issues. Wang J. is the leader in the number of published articles (73), while Gao C. is the leader in other metrics. Journal of Membrane Science is the most preferred source for the publication of RO membrane engineering and related technologies. Author social networks analysis shows that there are five core clusters, and the dominant cluster have 4 researchers. The analysis of sentiment, subjectivity, and emotion indicates that abstracts are positively perceived, objectively written, and emotionally neutral.
Collapse
Affiliation(s)
- Ersin Aytaç
- Department of Structure of Matter, Thermal Physics and Electronics, Faculty of Physics, University Complutense of Madrid, Avda. Complutense s/n, 28040 Madrid, Spain
- Department of Environmental Engineering, Zonguldak Bülent Ecevit University, 67100 Zonguldak, Türkiye
| | - Noman Khalid Khanzada
- NYUAD Water Research Center, New York University Abu Dhabi, P.O. Box 129188, Abu Dhabi 129188, United Arab Emirates
| | - Yazan Ibrahim
- NYUAD Water Research Center, New York University Abu Dhabi, P.O. Box 129188, Abu Dhabi 129188, United Arab Emirates
- Chemical and Biomolecular Engineering Division, New York University, Brooklyn, NY 11201, USA
| | - Mohamed Khayet
- Department of Structure of Matter, Thermal Physics and Electronics, Faculty of Physics, University Complutense of Madrid, Avda. Complutense s/n, 28040 Madrid, Spain
- Madrid Institute for Advanced Studies of Water (IMDEA Water Institute), Avda. Punto Com N° 2, 28805 Madrid, Spain
| | - Nidal Hilal
- NYUAD Water Research Center, New York University Abu Dhabi, P.O. Box 129188, Abu Dhabi 129188, United Arab Emirates
| |
Collapse
|
2
|
Zhang QL, Zhou T, Chang C, Gu SY, Wang YJ, Liu Q, Zhu Z. Ultrahigh-Flux Water Nanopumps Generated by Asymmetric Terahertz Absorption. PHYSICAL REVIEW LETTERS 2024; 132:184003. [PMID: 38759176 DOI: 10.1103/physrevlett.132.184003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 12/04/2023] [Accepted: 03/21/2024] [Indexed: 05/19/2024]
Abstract
Controlling active transport of water through membrane channels is essential for advanced nanofluidic devices. Despite advancements in water nanopump design using techniques like short-range invasion and subnanometer-level control, challenges remain facilely and remotely realizing massive waters active transport. Herein, using molecular dynamic simulations, we propose an ultrahigh-flux nanopump, powered by frequency-specific terahertz stimulation, capable of unidirectionally transporting massive water through asymmetric-wettability membrane channels at room temperature without any external pressure. The key physics behind this terahertz-powered water nanopump is revealed to be the energy flow resulting from the asymmetric optical absorption of water.
Collapse
Affiliation(s)
- Qi-Lin Zhang
- School of Mathematics-Physics and Finance and School of Materials Science and Engineering, Anhui Polytechnic University, Wuhu 241000, China
| | - Tong Zhou
- School of Mathematics-Physics and Finance and School of Materials Science and Engineering, Anhui Polytechnic University, Wuhu 241000, China
| | - Chao Chang
- Innovation Laboratory of Terahertz Biophysics, National Innovation Institute of Defense Technology, Beijing 100071, China
- School of Physics, Peking University, Beijing 100871, China
| | - Shi-Yu Gu
- College of Optical-Electrical and Computer Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Yun-Jie Wang
- School of Mathematics-Physics and Finance and School of Materials Science and Engineering, Anhui Polytechnic University, Wuhu 241000, China
| | - Qi Liu
- School of Mathematics-Physics and Finance and School of Materials Science and Engineering, Anhui Polytechnic University, Wuhu 241000, China
| | - Zhi Zhu
- College of Optical-Electrical and Computer Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| |
Collapse
|
3
|
Teng L, Yue C, Zhang G. Epoxied SiO2 nanoparticles and polyethyleneimine (PEI) coated polyvinylidene fluoride (PVDF) membrane for improved oil water separation, anti-fouling, dye and heavy metal ions removal capabilities. J Colloid Interface Sci 2023; 630:416-429. [DOI: 10.1016/j.jcis.2022.09.148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Revised: 09/21/2022] [Accepted: 09/29/2022] [Indexed: 11/05/2022]
|
4
|
Xiao S, Lu X, Liu H, Gu J, Yu S, Tan X. High-flux nanofiltration membrane with modified highly dispersed MOF particles as nano filler. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2022; 86:2642-2657. [PMID: 36450678 DOI: 10.2166/wst.2022.357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
The synthesis of optimized thin film nanocomposite (TFN) membrane with no or few defects is an efficacious method which can improve nanofiltration performance. However, poor dispersion of fillers in the organic phase and wrong compatibility between fillers and polymerizate are still a serious problem. In this study, the particle size of metal organic framework (MOF), aluminum-based metal-organic frameworks (CAU-1) was modulated and for the first time, dodecyl aldehyde was used to modify the surface hydrophobicity of CAU-1, which improved the dispersibility and inhibited the aggregation in the trimesoyl chloride (TMC)/n-hexane solution; later CAU-1 and modified CAU-1 were incorporated into the polyamide (PA) selective layer to synthesize TFN membrane by interfacial polymerization (IP). The particle size modulation and modification of the CAU-1 were demonstrated by X-ray diffraction (XRD), scanning electron microscopy (SEM) and Fourier transform infrared (FTIR) characterization. The characterization showed that PA selective layer was synthesized on the top layer of polysulfone (PSF) substrate. The pure water flux of the TFN membrane was increased to 79.89 ± 1.24 L·m-2·h-1·bar-1 compared to the original thin film composite (TFC) membrane, which was due to the polymerization of 100 nm modified CAU-1 on the PA layer to form a new water molecular channel, thus increasing the water flux by about 70%.
Collapse
Affiliation(s)
- Shujuan Xiao
- College of Material Science and Engineering, North China University of Science and Technology, Tangshan, Hebei 063210, China E-mail:
| | - Xiaohui Lu
- College of Material Science and Engineering, North China University of Science and Technology, Tangshan, Hebei 063210, China E-mail:
| | - Hui Liu
- College of Material Science and Engineering, North China University of Science and Technology, Tangshan, Hebei 063210, China E-mail:
| | - Jiantao Gu
- College of Science, North China University of Science and Technology, Tangshan, Hebei 063210, China
| | - Shouwu Yu
- College of Material Science and Engineering, North China University of Science and Technology, Tangshan, Hebei 063210, China E-mail:
| | - Xiaoyao Tan
- School of Chemistry and Chemical Engineering, Tiangong University, Tianjin 300387, China
| |
Collapse
|
5
|
Cheng Z, Qin Q, Jia H, Wang J. A novel module for scale inhibitors detection in RO process: Membrane modification and enrichment mechanism. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.120744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
6
|
Li Y, Yang Z, Yang K, Wei J, Li Z, Ma C, Yang X, Wang T, Zeng G, Yu G, Yu Z, Zhang C. Removal of chloride from water and wastewater: Removal mechanisms and recent trends. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 821:153174. [PMID: 35051452 DOI: 10.1016/j.scitotenv.2022.153174] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 12/30/2021] [Accepted: 01/12/2022] [Indexed: 06/14/2023]
Abstract
Increased chloride concentration can cause salinization, which has become a serious and widespread environmental problem nowadays. This review aims at providing comprehensive and state-of-the-art knowledge and insights of technologies for chloride removal. Mechanisms for chloride removal mainly include chemical precipitation, adsorption, oxidation and membrane separation. In chemical precipitation, chloride removal by forming CuCl, AgCl, BiOCl and Friedel's salt. Adsorbents used in chloride removal mainly include ion exchangers, bimetal oxides and carbon-based electrodes. Oxidation for chloride removal contains ozone-based, electrochemical and sulfate radical-based oxidation. Membrane separation for chloride removal consists of diffusion dialysis, nanofiltration, reverse osmosis and electrodialysis. In this review, we specifically proposed the factors that affect chloride removal process and the corresponding strategies for improving removal efficiency. In the last section, the remaining challenges of method explorations and material developments were stated to provide guidelines for future development of chloride removal technologies.
Collapse
Affiliation(s)
- Yiming Li
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Zhongzhu Yang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Kaihua Yang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Jingjing Wei
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Zihao Li
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Chi Ma
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Xu Yang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Tantan Wang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Guangming Zeng
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Guanlong Yu
- School of Hydraulic Engineering, Changsha University of Science and Technology, Changsha 410014, PR China
| | - Zhigang Yu
- Australian Centre for Water and Environmental Biotechnology, The University of Queensland, St Lucia, QLD 4072, Australia.
| | - Chang Zhang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China.
| |
Collapse
|
7
|
Abdallah H, Abo-Almaged HH, Amin SK, Shalaby MS, Shaban AM. Fabrication of mixed nanoceramic waste with polymeric matrix membranes for water desalting. JOURNAL OF POLYMER ENGINEERING 2022. [DOI: 10.1515/polyeng-2021-0267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
Mixed matrix membranes were prepared by blending technique between nanoceramic powder and polyethersulfone. Nanoceramic powder (NC) as a fine powder was produced from ceramic industries. The effect of NC as an additive on the membrane matrix was studied. Increasing in NC% on polymeric blend enhances the membrane mechanical properties, where the tensile strength was 13.92 MPa with elongation of 23.67 mm for prepared blend membrane with NC 1 wt%. The highest salt rejection was about 89.3% with permeate flux of 34.6 L/m2 h for R1 membrane using NS of percentage 4 wt% and nonwoven polyester support. The increase in NS% to 6 wt % leads to an increase in the salt rejection to 94.2% after 1 h operating time. The coating was achieved using the layer by layer technique which was carried out on the membrane surface to improve the salt rejection percentage. The salt rejection was found to reach about 99.8% after such coating process; but for permeate flux, it shows a certain decrease. The flux of membrane before the coating was 23.4 L/m2 h for R2 membrane (1 wt% NC & 6 wt% NS), while after coating the flux was reduced to reach 21.6 L/m2 h.
Collapse
Affiliation(s)
- Heba Abdallah
- Chemical Engineering Department , Engineering and Renewable Energy Research Institute, National Research Centre , Dokki , Giza 12311 , Egypt
| | - Hanan H. Abo-Almaged
- Refractories, Ceramic and Building Materials Department , Advanced Materials Technology and Mineral Resources Research Institute, National Research Centre , Dokki , Giza , Egypt
| | - Shereen K. Amin
- Chemical Engineering Department , Engineering and Renewable Energy Research Institute, National Research Centre , Dokki , Giza 12311 , Egypt
| | - Marwa S. Shalaby
- Chemical Engineering Department , Engineering and Renewable Energy Research Institute, National Research Centre , Dokki , Giza 12311 , Egypt
| | - A. M. Shaban
- Water Pollution Department , Environmental and Climate Change Research Institute, National Research Centre , Dokki , Giza 12311 , Egypt
| |
Collapse
|
8
|
Li X, Wang Z, Han X, Liu Y, Wang C, Yan F, Wang J. Regulating the interfacial polymerization process toward high-performance polyamide thin-film composite reverse osmosis and nanofiltration membranes: A review. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2021.119765] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
9
|
Xiao S, Huo X, Tong Y, Cheng C, Yu S, Tan X. Improvement of thin-film nanocomposite (TFN) membrane performance by CAU-1 with low charge and small size. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2021.118467] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
10
|
Arai N, Koishi T, Ebisuzaki T. Nanotube Active Water Pump Driven by Alternating Hydrophobicity. ACS NANO 2021; 15:2481-2489. [PMID: 33534546 DOI: 10.1021/acsnano.0c06493] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Water transport must be efficiency controlled for the future sustainability of life. Various water transport systems using carbon nanotubes have been proposed in recent years. Although these systems are more permeable than aquaporins, their water transport is passive. In this study, we successfully demonstrate an active water pump driven by simple hydrophobic interaction through computer simulation. Even in the absence of a pressure- or density-gradient, the proposed pump can actively transport water molecules by alternately switching the hydrophobicity of the pump surface. The water transport rate can be easily controlled by varying the time interval of switching. The pump with optimized switching time exhibits prominent water permeance. The results obtained herein can be applied in various water transport technologies because of the simple mechanics. The proposed water pump has the potential to realize an effective device such as a low-energy artificial purification system.
Collapse
Affiliation(s)
- Noriyoshi Arai
- Department of Mechanical Engineering, Keio University, Yokohama 223-8522, Japan
- Computational Astrophysics Laboratory, RIKEN, Wako, Saitama 351-0198, Japan
| | - Takahiro Koishi
- Department of Applied Physics, University of Fukui, Bunkyo, Fukui 910-8507, Japan
| | | |
Collapse
|
11
|
Zhang G, Xiao Y, Yin Q, Yan J, Zang C, Zhang H. In Situ Synthesis of Silver Nanoparticles on Amino-Grafted Polyacrylonitrile Fiber and Its Antibacterial Activity. NANOSCALE RESEARCH LETTERS 2021; 16:36. [PMID: 33591425 PMCID: PMC7886948 DOI: 10.1186/s11671-021-03496-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 02/07/2021] [Indexed: 05/28/2023]
Abstract
In this study, amino hyperbranched polymers (HBP)-grafted polyacrylonitrile (PAN) fiber was prepared through an amidation reaction in an autoclave. The prepared PAN-G-HBP fiber can complex Ag+ through amino groups of amino HBP, and in a hot steaming condition, Ag+ can be converted to Ag0 through the reducibility of HBP. PAN-G-HBP and Ag nanoparticles (NPs)-coated fibers were then characterized through FTIR, UV-VIS DRS, FE-SEM, EDS, XPS and antibacterial measurement. FTIR results confirmed HBP was grafted on the surface of PAN fiber. FE-SEM showed that after grafting with HBP, the average diameter of PAN fibers was amplified. EDS, XPS, and UV-VIS DRS method indicated that under hot steaming condition and with the reducibility of HBP, Ag NPs uniform coating on the PAN-G-HBP. Ag NPs-coated fibers exhibits excellent antibacterial property against Escherichia coli and Staphylococcus aureus. Even under 20 times home washing conditions, the antibacterial reduction of Ag NPs-coated PAN fiber can achieved more than 98.94%.
Collapse
Affiliation(s)
- Guangyu Zhang
- National and Local Joint Engineering Research Center of Technical Fiber Composites for Safety and Health, School of Textile and Clothing, Nantong University, Nantong, 226019 People’s Republic of China
| | - Yao Xiao
- National and Local Joint Engineering Research Center of Technical Fiber Composites for Safety and Health, School of Textile and Clothing, Nantong University, Nantong, 226019 People’s Republic of China
| | - Qitao Yin
- National and Local Joint Engineering Research Center of Technical Fiber Composites for Safety and Health, School of Textile and Clothing, Nantong University, Nantong, 226019 People’s Republic of China
| | - Jiawei Yan
- Faculty of Textile Science and Technology, Shinshu University, 3-15-1, Tokida, Ueda, Nagano, 386-8567 Japan
| | - Chuanfeng Zang
- National and Local Joint Engineering Research Center of Technical Fiber Composites for Safety and Health, School of Textile and Clothing, Nantong University, Nantong, 226019 People’s Republic of China
| | - Huiyun Zhang
- Dongfang Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, 100078 People’s Republic of China
| |
Collapse
|
12
|
Qin Y, Zhu Z, Kang G, Yu H, Cao Y. Plasticizer-assisted interfacial polymerization for fabricating advanced reverse osmosis membranes. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2020.118788] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
13
|
Deng L, Li S, Qin Y, Zhang L, Chen H, Chang Z, Hu Y. Fabrication of antifouling thin-film composite nanofiltration membrane via surface grafting of polyethyleneimine followed by zwitterionic modification. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2020.118564] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
14
|
Kim Y, Eom HH, Kim D, Harbottle D, Lee JW. Adsorptive removal of cesium by electrospun nanofibers embedded with potassium copper hexacyanoferrate. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2020.117745] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
15
|
Structure regulation for synergistically improving the permeation properties of the reverse osmosis membrane based on an amphiphilic hyperbranched polymer. J Memb Sci 2020. [DOI: 10.1016/j.memsci.2020.118143] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
16
|
The Recent Progress in Modification of Polymeric Membranes Using Organic Macromolecules for Water Treatment. Symmetry (Basel) 2020. [DOI: 10.3390/sym12020239] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
For decades, the water deficit has been a severe global issue. A reliable supply of water is needed to ensure sustainable economic development in population growth, industrialization and urbanization. To solve this major challenge, membrane-based water treatment technology has attracted a great deal of attention to produce clean drinking water from groundwater, seawater and brackish water. The emergence of nanotechnology in membrane science has opened new frontiers in the development of advanced polymeric membranes to enhance filtration performance. Nevertheless, some obstacles such as fouling and trade-off of membrane selectivity and permeability of water have hindered the development of traditional polymeric membranes for real applications. To overcome these issues, the modification of membranes has been pursued. The use of macromolecules for membrane modification has attracted wide interests in recent years owing to their interesting chemical and structural properties. Membranes modified with macromolecules have exhibited improved anti-fouling properties due to the alteration of their physiochemical properties in terms of the membrane morphology, porosity, surface charge, wettability, and durability. This review provides a comprehensive review of the progress made in the development of macromolecule modified polymeric membranes. The role of macromolecules in polymeric membranes and the advancement of these membrane materials for water solution are presented. The challenges and future directions for this subject are highlighted.
Collapse
|