1
|
Kim H, Jeon S, Choi J, Park YS, Park SJ, Lee MS, Nam Y, Park H, Kim M, Lee C, An SE, Jung J, Kim S, Kim JF, Cho HS, Lee AS, Lee JH. Interfacially Assembled Anion Exchange Membranes for Water Electrolysis. ACS NANO 2024; 18:32694-32704. [PMID: 39541159 DOI: 10.1021/acsnano.4c10212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
High-performance and durable anion exchange membranes (AEMs) are critical for realizing economical green hydrogen production through alkaline water electrolysis (AWE) or AEM water electrosysis (AEMWE). However, existing AEMs require sophisticated fabrication protocols and exhibit unsatisfactory electrochemical performance and long-term durability. Here we report an AEM fabricated via a one-pot, in situ interfacial Menshutkin reaction, which assembles a highly cross-linked polymer containing high-density quaternary ammoniums and nanovoids inside a reinforcing porous support. This structure endows the membrane with high anion-conducting ability, water uptake (but low swelling), and mechanical and thermochemical robustness. Consequently, the assembled membrane achieves excellent AWE (0.97 A cm-2 at 1.8 V) and AEMWE (5.23 A cm-2 at 1.8 V) performance at 5 wt % KOH and 80 °C, significantly exceeding that of commercial and previously developed membranes, and excellent long-term durability. Our approach provides an effective method for fabricating AEMs for various energy and environmental applications.
Collapse
Affiliation(s)
- Hansoo Kim
- Department of Chemical and Biological Engineering, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Sungkwon Jeon
- Department of Polymer Science and Engineering, Kumoh National Institute of Technology, 61 Daehak-ro, Gumi-si, Gyeongsangbuk-do 39177, Republic of Korea
| | - Juyeon Choi
- Department of Chemical and Biological Engineering, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Young Sang Park
- Materials Architecturing Research Center, Korea Institute of Science and Technology (KIST), 5 Hwarang-ro 14-gil, Seongbuk-gu, Seoul 02792, Republic of Korea
- Convergence Research Center for Solutions to Electromagnetic Interference in Future-Mobility, Korea Institute of Science and Technology (KIST), 5 Hwarang-ro 14-gil, Seongbuk-gu, Seoul 02792, Republic of Korea
| | - Sung-Joon Park
- Department of Chemical and Biological Engineering, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Myung-Seok Lee
- Department of Chemical and Biological Engineering, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Yujin Nam
- Department of Chemical and Biological Engineering, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Hosik Park
- Center for Membranes, Advanced Materials Division, Korea Research Institute of Chemical Technology (KRICT), 141 Gajeong-ro, Yuseong-gu, Daejeon 34114, Republic of Korea
| | - MinJoong Kim
- Hydrogen Research Department, Korea Institute of Energy Research (KIER), 152 Gajeong-ro, Yuseong-gu, Daejeon 34129, Republic of Korea
| | - Changsoo Lee
- Hydrogen Research Department, Korea Institute of Energy Research (KIER), 152 Gajeong-ro, Yuseong-gu, Daejeon 34129, Republic of Korea
| | - Si Eon An
- Hydrogen Research Department, Korea Institute of Energy Research (KIER), 152 Gajeong-ro, Yuseong-gu, Daejeon 34129, Republic of Korea
- Department of Mechanical Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
| | - Jiyoon Jung
- Materials Architecturing Research Center, Korea Institute of Science and Technology (KIST), 5 Hwarang-ro 14-gil, Seongbuk-gu, Seoul 02792, Republic of Korea
- Convergence Research Center for Solutions to Electromagnetic Interference in Future-Mobility, Korea Institute of Science and Technology (KIST), 5 Hwarang-ro 14-gil, Seongbuk-gu, Seoul 02792, Republic of Korea
| | - SeungHwan Kim
- Department of Energy and Chemical Engineering, Incheon National University, 119 Academy-ro, Yeonsu-gu, Incheon 22012, Republic of Korea
| | - Jeong F Kim
- Department of Energy and Chemical Engineering, Incheon National University, 119 Academy-ro, Yeonsu-gu, Incheon 22012, Republic of Korea
- Innovation Center for Chemical Engineering, Incheon National University, 119 Academy-ro, Yeonsu-gu, Incheon 22012, Republic of Korea
| | - Hyun-Seok Cho
- Department of Chemical and Biomolecular Engineering, Sogang University, 35 Baekbeom-ro, Mapo-gu, Seoul 04107, Republic of Korea
| | - Albert S Lee
- Materials Architecturing Research Center, Korea Institute of Science and Technology (KIST), 5 Hwarang-ro 14-gil, Seongbuk-gu, Seoul 02792, Republic of Korea
- Convergence Research Center for Solutions to Electromagnetic Interference in Future-Mobility, Korea Institute of Science and Technology (KIST), 5 Hwarang-ro 14-gil, Seongbuk-gu, Seoul 02792, Republic of Korea
| | - Jung-Hyun Lee
- Department of Chemical and Biological Engineering, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| |
Collapse
|
2
|
Choi J, Min K, Mo YH, Han SB, Kim TH. Understanding the Effect of Triazole on Crosslinked PPO–SEBS-Based Anion Exchange Membranes for Water Electrolysis. Polymers (Basel) 2023; 15:polym15071736. [PMID: 37050350 PMCID: PMC10098533 DOI: 10.3390/polym15071736] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 03/19/2023] [Accepted: 03/28/2023] [Indexed: 04/03/2023] Open
Abstract
For anion exchange membrane water electrolysis (AEMWE), two types of anion exchange membranes (AEMs) containing crosslinked poly(phenylene oxide) (PPO) and poly(styrene ethylene butylene styrene) (SEBS) were prepared with and without triazole. The impact of triazole was carefully examined. In this work, the PPO was crosslinked with the non-aryl ether-type SEBS to take advantage of its enhanced chemical stability and phase separation under alkaline conditions. Compared to their triazole-free counterpart, the crosslinked membranes made with triazole had better hydroxide-ion conductivity because of the increased phase separation, which was confirmed by X-ray diffraction (XRD) and atomic force microscopy (AFM). Moreover, they displayed improved mechanical and alkaline stability. Under water electrolysis (WE) conditions, a triazole-containing crosslinked PPO–SEBS membrane electrode assembly (MEA) was created using IrO2 as the anode and a Pt/C catalyst as the cathode. This MEA displayed a current density of 0.7 A/cm2 at 1.8 V, which was higher than that of the MEA created with the triazole-free counterpart. Our study indicated that the crosslinked PPO–SEBS membrane containing triazoles had improved chemo-physical and electrical capabilities for WE because of the strong hydrogen bonding between triazole and water/OH−.
Collapse
Affiliation(s)
- Jiyong Choi
- Organic Material Synthesis Laboratory, Department of Chemistry, Incheon National University, Incheon 22012, Republic of Korea
- Research Institute of Basic Sciences, Core Research Institute, Incheon National University, Incheon 22012, Republic of Korea
| | - Kyungwhan Min
- Organic Material Synthesis Laboratory, Department of Chemistry, Incheon National University, Incheon 22012, Republic of Korea
- Research Institute of Basic Sciences, Core Research Institute, Incheon National University, Incheon 22012, Republic of Korea
| | - Yong-Hwan Mo
- Boyaz Energy, 165 Gasandigital 2-ro, Geumcheon-gu, Seoul 08504, Republic of Korea
| | - Sang-Beom Han
- Boyaz Energy, 165 Gasandigital 2-ro, Geumcheon-gu, Seoul 08504, Republic of Korea
| | - Tae-Hyun Kim
- Organic Material Synthesis Laboratory, Department of Chemistry, Incheon National University, Incheon 22012, Republic of Korea
- Research Institute of Basic Sciences, Core Research Institute, Incheon National University, Incheon 22012, Republic of Korea
- Correspondence: ; Tel.: +82-32-8358232
| |
Collapse
|
3
|
Yang W, Yan J, Xu P, Chen J, Fang Q, Lin D, Yan Y, Zhang Q. Role of Ionic Concentration and Distribution in Anionic Conductivity: Case Study on a Series of Cobaltocenium-Containing Anion Exchange Membranes with Precise Structure Control. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c00980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Weihong Yang
- Chongqing Technology Innovation Center, Northwestern Polytechnical University, Chongqing 401135, P. R. China
- Department of Chemistry, School of Chemistry and Chemical Engineering, Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology, Northwestern Polytechnical University, Xi’an 710129, P. R. China
| | - Jing Yan
- Chongqing Technology Innovation Center, Northwestern Polytechnical University, Chongqing 401135, P. R. China
- Department of Chemistry, School of Chemistry and Chemical Engineering, Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology, Northwestern Polytechnical University, Xi’an 710129, P. R. China
| | - Peng Xu
- Chongqing Technology Innovation Center, Northwestern Polytechnical University, Chongqing 401135, P. R. China
- Department of Chemistry, School of Chemistry and Chemical Engineering, Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology, Northwestern Polytechnical University, Xi’an 710129, P. R. China
| | - Jin Chen
- Chongqing Technology Innovation Center, Northwestern Polytechnical University, Chongqing 401135, P. R. China
- Department of Chemistry, School of Chemistry and Chemical Engineering, Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology, Northwestern Polytechnical University, Xi’an 710129, P. R. China
| | - Qianyi Fang
- Chongqing Technology Innovation Center, Northwestern Polytechnical University, Chongqing 401135, P. R. China
- Department of Chemistry, School of Chemistry and Chemical Engineering, Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology, Northwestern Polytechnical University, Xi’an 710129, P. R. China
| | - Daolei Lin
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Yi Yan
- Chongqing Technology Innovation Center, Northwestern Polytechnical University, Chongqing 401135, P. R. China
- Department of Chemistry, School of Chemistry and Chemical Engineering, Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology, Northwestern Polytechnical University, Xi’an 710129, P. R. China
| | - Qiuyu Zhang
- Department of Chemistry, School of Chemistry and Chemical Engineering, Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology, Northwestern Polytechnical University, Xi’an 710129, P. R. China
| |
Collapse
|
4
|
Wei X, Wu J, Jiang H, Zhao X, Zhu Y. Improving the conductivity and dimensional stability of anion exchange membranes by grafting of quaternized dendrons. JOURNAL OF POLYMER SCIENCE 2022. [DOI: 10.1002/pol.20220045] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Xiangtai Wei
- School of Chemistry and Chemical Engineering Guangxi Key Laboratory of Electrochemical Energy Materials, Guangxi University Nanning P. R. China
| | - Jianrong Wu
- School of Chemistry and Chemical Engineering Guangxi Key Laboratory of Electrochemical Energy Materials, Guangxi University Nanning P. R. China
| | - Hao Jiang
- School of Chemistry and Chemical Engineering Guangxi Key Laboratory of Electrochemical Energy Materials, Guangxi University Nanning P. R. China
| | - Xinsheng Zhao
- School of Physics and Electronic Engineering Jiangsu Normal University Xuzhou P. R. China
| | - Yuanqin Zhu
- School of Chemistry and Chemical Engineering Guangxi Key Laboratory of Electrochemical Energy Materials, Guangxi University Nanning P. R. China
| |
Collapse
|
5
|
|
6
|
Yang W, Chen J, Yan J, Liu S, Yan Y, Zhang Q. Advance of click chemistry in anion exchange membranes for energy application. JOURNAL OF POLYMER SCIENCE 2022. [DOI: 10.1002/pol.20210819] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Weihong Yang
- Chongqing Technology Innovation Centre Northwestern Polytechnical University Chongqing People's Republic of China
- Department of Chemistry, School of Chemistry and Chemical Engineering, Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology Northwestern Polytechnical University Xi'an People's Republic of China
| | - Jin Chen
- Department of Chemistry, School of Chemistry and Chemical Engineering, Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology Northwestern Polytechnical University Xi'an People's Republic of China
| | - Jing Yan
- Chongqing Technology Innovation Centre Northwestern Polytechnical University Chongqing People's Republic of China
- Department of Chemistry, School of Chemistry and Chemical Engineering, Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology Northwestern Polytechnical University Xi'an People's Republic of China
| | - Shuang Liu
- Chongqing Technology Innovation Centre Northwestern Polytechnical University Chongqing People's Republic of China
- Department of Chemistry, School of Chemistry and Chemical Engineering, Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology Northwestern Polytechnical University Xi'an People's Republic of China
| | - Yi Yan
- Chongqing Technology Innovation Centre Northwestern Polytechnical University Chongqing People's Republic of China
- Department of Chemistry, School of Chemistry and Chemical Engineering, Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology Northwestern Polytechnical University Xi'an People's Republic of China
| | - Qiuyu Zhang
- Department of Chemistry, School of Chemistry and Chemical Engineering, Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology Northwestern Polytechnical University Xi'an People's Republic of China
| |
Collapse
|
7
|
|
8
|
Enhanced performance of poly(olefin)-based anion exchange membranes cross-linked by triallylmethyl ammonium iodine and divinylbenzene. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2021.119629] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
9
|
Song W, He Y, Shehzad MA, Ge X, Ge L, Liang X, Wei C, Ge Z, Zhang K, Li G, Yu W, Wu L, Xu T. Exploring H-bonding interaction to enhance proton permeability of an acid-selective membrane. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2021.119650] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
10
|
Lin C, Cheng W, Miao X, Shen X, Ling L. Clustered piperidinium-functionalized poly(terphenylene) anion exchange membranes with well-developed conductive nanochannels. J Colloid Interface Sci 2021; 608:1247-1256. [PMID: 34739988 DOI: 10.1016/j.jcis.2021.10.122] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 10/08/2021] [Accepted: 10/21/2021] [Indexed: 10/20/2022]
Abstract
Anion exchange membrane fuel cells (AEMFCs) attract considerable attention owing to their high-power density and potential utilization of cheap non-noble metal catalysts. However, anion exchange membranes (AEMs) still face the problems of low conductivity, poor dimensional and chemical stability. To address these issues, AEMs with clustered piperidinium groups and ether-bond-free poly(terphenylene) backbone (3QPAP-x, x = 0.3, 0.4, and 0.5) were designed. Transmission electron microscope results show that the clustered ionic groups are responsible for fabricating well-developed conductive nanochannels and restraining the swelling behavior of the membranes. 3QPAP-0.4 and 3QPAP-0.5 AEMs exhibit higher conductivity (117.5 mS cm-1, 80 °C) and lower swelling ratio than that of commercial FAA-3-50 (80.4 mS cm-1, 80 °C). The conductivity of 3QPAP-0.5 only decreased by 10.4% after treating with 1 M NaOH at 80 °C for 720 h. The Hofmann elimination degradation of the cationic groups is restrained by the long flexible alkyl chain between cations. Based on the high performance of 3QPAP-0.5, an H2-O2-type AEMFC reaches 291.2 mW cm-2 (60 °C), which demonstrates that the as-prepared AEMs are promising for application in fuel cells.
Collapse
Affiliation(s)
- Chenxiao Lin
- School of Environment and Civil Engineering, Dongguan University of Technology, Dongguan 523808, China; Department for Electrochemical Energy Storage, Helmholtz-Zentrum Berlin für Materialien und Energie, Hahn-Meitner-Platz, Berlin 14109, Germany.
| | - Wenxue Cheng
- School of Environment and Civil Engineering, Dongguan University of Technology, Dongguan 523808, China
| | - Xinxin Miao
- School of Management, Wenzhou Business College, Wenzhou 325035, China.
| | - Xingchen Shen
- Karlsruhe Institute of Technology, Institute for Quantum Materials and Technologies, 76021 Karlsruhe, Germany.
| | - Liming Ling
- School of Environment and Civil Engineering, Dongguan University of Technology, Dongguan 523808, China
| |
Collapse
|
11
|
Alent’ev AY, Volkov AV, Vorotyntsev IV, Maksimov AL, Yaroslavtsev AB. Membrane Technologies for Decarbonization. MEMBRANES AND MEMBRANE TECHNOLOGIES 2021. [DOI: 10.1134/s2517751621050024] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
12
|
Wang X, Lin C, Gao Y, Lammertink RG. Anion exchange membranes with twisted poly(terphenylene) backbone: Effect of the N-cyclic cations. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2021.119525] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
13
|
Ma L, Hussain M, Li L, Qaisrani NA, Bai L, Jia Y, Yan X, Zhang F, He G. Octopus-like side chain grafted poly(arylene piperidinium) membranes for fuel cell application. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2021.119529] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
14
|
Wang F, Wang D, Nagao Y. OH - Conductive Properties and Water Uptake of Anion Exchange Thin Films. CHEMSUSCHEM 2021; 14:2694-2697. [PMID: 33928758 DOI: 10.1002/cssc.202100711] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 04/28/2021] [Indexed: 06/12/2023]
Abstract
Several investigations have indicated that proton conduction and hydration properties of acidic ionomers differ from those of membranes. However, relations between the OH- conductivity and water uptake in thin film forms of anion exchange membranes have not been reported yet. For this study, new in situ measurements were established to elucidate the OH- conductivity and water uptake without allowing any influence of CO2 from the air. Poly[(9,9-bis(6'-(N,N,N-trimethylammonium)-hexyl)-9H-fluorene)-alt-(1,4-benzene)], denoted as PFB+ , was synthesized as a model ionomer. The highest OH- conductivity of 273 nm-thick PFB+ film was 5.3×10-2 S cm-1 at 25 °C under 95 % relative humidity (RH), which is comparable to the reported OH- conductivity of PFB+ membrane. Reduced OH- conductivity was found in the thinner film at 95 % RH. The decreased OH- conductivity is explainable by the reduced number of water molecules contained in the thinner film. The OH- conductivity was reduced only slightly under the same water uptake.
Collapse
Affiliation(s)
- Fangfang Wang
- School of Materials Science, Japan Advanced Institute of Science and Technology, 1-1 Asahidai, Nomi, Ishikawa, 923-1292, Japan
| | - Dongjin Wang
- School of Materials Science, Japan Advanced Institute of Science and Technology, 1-1 Asahidai, Nomi, Ishikawa, 923-1292, Japan
| | - Yuki Nagao
- School of Materials Science, Japan Advanced Institute of Science and Technology, 1-1 Asahidai, Nomi, Ishikawa, 923-1292, Japan
| |
Collapse
|
15
|
Wu J, Wei X, Jiang H, Zhu Y. Synthesis and properties of anion conductive polymers containing dual quaternary ammonium groups without beta-hydrogen via CuAAC click chemistry. POLYMER 2021. [DOI: 10.1016/j.polymer.2021.123920] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
16
|
Liu L, Wang C, He Z, Liu H, Hu Q, Naik N, Guo Z. Bi-functional side chain architecture tuned amphoteric ion exchange membranes for high-performance vanadium redox flow batteries. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2021.119118] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
17
|
Sung S, Mayadevi T, Min K, Lee J, Chae JE, Kim TH. Crosslinked PPO-based anion exchange membranes: The effect of crystallinity versus hydrophilicity by oxygen-containing crosslinker chain length. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2020.118774] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
18
|
Liu L, Liu Z, Bai L, Shao C, Chen R, Zhao P, Chu X, Li N. Quaternized poly (2, 6-dimethyl-1, 4-phenylene oxide) anion exchange membranes based on isomeric benzyltrimethylammonium cations for alkaline fuel cells. J Memb Sci 2020. [DOI: 10.1016/j.memsci.2020.118133] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
19
|
He X, Cheng C, Huang S, Zhang F, Duan Y, Zhu C, Guo Y, Wang K, Chen D. Alkaline anion exchange membranes with imidazolium-terminated flexible side-chain cross-linked topological structure based on ROMP-type norbornene copolymers. POLYMER 2020. [DOI: 10.1016/j.polymer.2020.122412] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|