1
|
Rojas-Rodriguez M, Rico-Martínez S, Prádanos P, Álvarez C, Alexandrova L, Lee YM, Lozano ÁE, Aguilar-Lugo C. Thermally Rearranged (TR) Polybenzoxazoles from o-Substituted Precursor Polyimides with Phenyl Pendant Groups: Synthesis, Properties, and Thermal Rearrangement Conditions. Macromolecules 2024; 57:8187-8201. [PMID: 39219805 PMCID: PMC11363616 DOI: 10.1021/acs.macromol.4c00169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 07/11/2024] [Accepted: 07/17/2024] [Indexed: 09/04/2024]
Abstract
A series of polyimides (PIs) was synthesized from 6FDA and two o-OH substituted diamines having bulky pendant phenyl, Ph, and trifluoromethyl, CF3, groups as precursors for thermally rearranged polybenzoxazole, TR-PBO, membranes. One diamine had two pendant Ph substituents; in the other, the substituents were Ph and CF3. Applying azeotropic and chemical cyclizations allowed the obtention of four o-hydroxy (o-OH) or/and o-acetoxy (o-OAc) substituted PIs depending on the imidization method. The PIs were labeled as 3Ph-OH, 4Ph-OH, or 3Ph-OAc and 4PH-OAc, respectively. Thermal rearrangements of all four precursors were investigated in the interval from 350 to 450 °C. The conversions to TR-PBO increased with temperature, and almost quantitative conversions were obtained at temperatures close to 450 °C, although o-OH substituted PIs reached conversions slightly higher than those of o-OAc PIs at a given temperature. The TR-polymers' fractional free volume (FFV) also increased with conversion but was higher for the o-OAc substituted precursors. Despite the high TR-PBO conversions, self-supported uniform TR membranes with reasonable mechanical properties were obtained, except for 4Ph-OH. Gas separation behavior of the membranes significantly improved after the thermal treatment, and the final CO2/CH4 permselectivities lay between the 1991 and 2008 Robeson upper bounds. Particularly, TR-membranes derived from o-OAc precursors and with pendant CF3 group demonstrated better gas transport properties with values of P (CO2) = 1121 barrer and αCO2/CH4 = 29 for 3Ph-OAc derived membrane, which positioned it beyond the 2008 upper limit.
Collapse
Affiliation(s)
- Mario Rojas-Rodriguez
- Instituto
de Investigaciones en Materiales, Universidad
Nacional Autónoma de Mexico, Circuito Exterior S/N, Ciudad Universitaria, 04510 Ciudad de Mexico, Mexico
| | - Sandra Rico-Martínez
- Instituto
Universitario CINQUIMA, University of Valladolid, Paseo Belén 5, 47011 Valladolid, Spain
| | - Pedro Prádanos
- SMAP, Associated
Research Unit to CSIC, Faculty of Science, University of Valladolid, Paseo Belén 7, 47011 Valladolid, Spain
| | - Cristina Álvarez
- Instituto
de Ciencia y Tecnología de Polímeros, ICTP-CSIC, Juan de la Cierva 3, E-28006 Madrid, Spain
| | - Larissa Alexandrova
- Instituto
de Investigaciones en Materiales, Universidad
Nacional Autónoma de Mexico, Circuito Exterior S/N, Ciudad Universitaria, 04510 Ciudad de Mexico, Mexico
| | - Young Moo Lee
- Department
of Energy Engineering, College of Engineering, Hanyang University, Seoul 04763, Republic
of Korea
| | - Ángel E. Lozano
- Instituto
Universitario CINQUIMA, University of Valladolid, Paseo Belén 5, 47011 Valladolid, Spain
- SMAP, Associated
Research Unit to CSIC, Faculty of Science, University of Valladolid, Paseo Belén 7, 47011 Valladolid, Spain
- Instituto
de Ciencia y Tecnología de Polímeros, ICTP-CSIC, Juan de la Cierva 3, E-28006 Madrid, Spain
| | - Carla Aguilar-Lugo
- Instituto
de Investigaciones en Materiales, Universidad
Nacional Autónoma de Mexico, Circuito Exterior S/N, Ciudad Universitaria, 04510 Ciudad de Mexico, Mexico
- Instituto
de Ciencia y Tecnología de Polímeros, ICTP-CSIC, Juan de la Cierva 3, E-28006 Madrid, Spain
| |
Collapse
|
2
|
Mizrahi Rodriguez K, Lin S, Wu AX, Storme KR, Joo T, Grosz AF, Roy N, Syar D, Benedetti FM, Smith ZP. Penetrant-induced plasticization in microporous polymer membranes. Chem Soc Rev 2024; 53:2435-2529. [PMID: 38294167 DOI: 10.1039/d3cs00235g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2024]
Abstract
Penetrant-induced plasticization has prevented the industrial deployment of many polymers for membrane-based gas separations. With the advent of microporous polymers, new structural design features and unprecedented property sets are now accessible under controlled laboratory conditions, but property sets can often deteriorate due to plasticization. Therefore, a critical understanding of the origins of plasticization in microporous polymers and the development of strategies to mitigate this effect are needed to advance this area of research. Herein, an integrative discussion is provided on seminal plasticization theory and gas transport models, and these theories and models are compared to an exhaustive database of plasticization characteristics of microporous polymers. Correlations between specific polymer properties and plasticization behavior are presented, including analyses of plasticization pressures from pure-gas permeation tests and mixed-gas permeation tests for pure polymers and composite films. Finally, an evaluation of common and current state-of-the-art strategies to mitigate plasticization is provided along with suggestions for future directions of fundamental and applied research on the topic.
Collapse
Affiliation(s)
- Katherine Mizrahi Rodriguez
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Sharon Lin
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| | - Albert X Wu
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| | - Kayla R Storme
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Taigyu Joo
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| | - Aristotle F Grosz
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| | - Naksha Roy
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| | - Duha Syar
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| | - Francesco M Benedetti
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| | - Zachary P Smith
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| |
Collapse
|
3
|
Astorino C, De Nardo E, Lettieri S, Ferraro G, Pirri CF, Bocchini S. Advancements in Gas Separation for Energy Applications: Exploring the Potential of Polymer Membranes with Intrinsic Microporosity (PIM). MEMBRANES 2023; 13:903. [PMID: 38132907 PMCID: PMC10744731 DOI: 10.3390/membranes13120903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 11/27/2023] [Accepted: 11/30/2023] [Indexed: 12/23/2023]
Abstract
Membrane-based Polymers of Intrinsic Microporosity (PIMs) are promising candidates for energy-efficient industrial gas separations, especially for the separation of carbon dioxide over methane (CO2/CH4) and carbon dioxide over nitrogen (CO2/N2) for natural gas/biogas upgrading and carbon capture from flue gases, respectively. Compared to other separation techniques, membrane separations offer potential energy and cost savings. Ultra-permeable PIM-based polymers are currently leading the trade-off between permeability and selectivity for gas separations, particularly in CO2/CH4 and CO2/N2. These membranes show a significant improvement in performance and fall within a linear correlation on benchmark Robeson plots, which are parallel to, but significantly above, the CO2/CH4 and CO2/N2 Robeson upper bounds. This improvement is expected to enhance the credibility of polymer membranes for CO2 separations and stimulate further research in polymer science and applied engineering to develop membrane systems for these CO2 separations, which are critical to energy and environmental sustainability. This review aims to highlight the state-of-the-art strategies employed to enhance gas separation performances in PIM-based membranes while also mitigating aging effects. These strategies include chemical post-modification, crosslinking, UV and thermal treatment of PIM, as well as the incorporation of nanofillers in the polymeric matrix.
Collapse
Affiliation(s)
- Carmela Astorino
- Center for Sustainable Future Technologies (CSFT), Istituto Italiano di Tecnologia (IIT), Via Livorno, 60, 10144 Torino, Italy; (C.A.); (E.D.N.); (C.F.P.)
- Department of Applied Science and Technology, Politecnico di Torino, Corso Duca Degli Abruzzi, 24, 10129 Torino, Italy;
| | - Eugenio De Nardo
- Center for Sustainable Future Technologies (CSFT), Istituto Italiano di Tecnologia (IIT), Via Livorno, 60, 10144 Torino, Italy; (C.A.); (E.D.N.); (C.F.P.)
- Department of Applied Science and Technology, Politecnico di Torino, Corso Duca Degli Abruzzi, 24, 10129 Torino, Italy;
| | - Stefania Lettieri
- Department of Applied Science and Technology, Politecnico di Torino, Corso Duca Degli Abruzzi, 24, 10129 Torino, Italy;
| | - Giuseppe Ferraro
- Department of Applied Science and Technology, Politecnico di Torino, Corso Duca Degli Abruzzi, 24, 10129 Torino, Italy;
| | - Candido Fabrizio Pirri
- Center for Sustainable Future Technologies (CSFT), Istituto Italiano di Tecnologia (IIT), Via Livorno, 60, 10144 Torino, Italy; (C.A.); (E.D.N.); (C.F.P.)
- Department of Applied Science and Technology, Politecnico di Torino, Corso Duca Degli Abruzzi, 24, 10129 Torino, Italy;
| | - Sergio Bocchini
- Center for Sustainable Future Technologies (CSFT), Istituto Italiano di Tecnologia (IIT), Via Livorno, 60, 10144 Torino, Italy; (C.A.); (E.D.N.); (C.F.P.)
- Department of Applied Science and Technology, Politecnico di Torino, Corso Duca Degli Abruzzi, 24, 10129 Torino, Italy;
| |
Collapse
|
4
|
Mobili R, La Cognata S, Monteleone M, Longo M, Fuoco A, Serapian SA, Vigani B, Milanese C, Armentano D, Jansen JC, Amendola V. Gas Permeation through Mechanically Resistant Self-Standing Membranes of a Neat Amorphous Organic Cage. Chemistry 2023; 29:e202301437. [PMID: 37433050 DOI: 10.1002/chem.202301437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 06/27/2023] [Accepted: 07/11/2023] [Indexed: 07/13/2023]
Abstract
The synthesis and characterization of a novel film-forming organic cage and of its smaller analogue are here described. While the small cage produced single crystals suitable for X-ray diffraction studies, the large one was isolated as a dense film. Due to its remarkable film-forming properties, this latter cage could be solution processed into transparent thin-layer films and mechanically stable dense self-standing membranes of controllable thickness. Thanks to these peculiar features, the membranes were also successfully tested for gas permeation, reporting a behavior similar to that found with stiff glassy polymers such as polymers of intrinsic microporosity or polyimides. Given the growing interest in the development of molecular-based membranes, for example for separation technologies and functional coatings, the properties of this organic cage were investigated by thorough analysis of their structural, thermal, mechanical and gas transport properties, and by detailed atomistic simulations.
Collapse
Affiliation(s)
- Riccardo Mobili
- Department of Chemistry, University of Pavia, viale Torquato Taramelli 12, 27100, Pavia, Italy
| | - Sonia La Cognata
- Department of Chemistry, University of Pavia, viale Torquato Taramelli 12, 27100, Pavia, Italy
| | - Marcello Monteleone
- Institute on Membrane Technology, National Research Council of Italy (CNR-ITM), via P. Bucci 17/C, Rende (CS), 87036, Italy
| | - Mariagiulia Longo
- Institute on Membrane Technology, National Research Council of Italy (CNR-ITM), via P. Bucci 17/C, Rende (CS), 87036, Italy
| | - Alessio Fuoco
- Institute on Membrane Technology, National Research Council of Italy (CNR-ITM), via P. Bucci 17/C, Rende (CS), 87036, Italy
| | - Stefano A Serapian
- Department of Chemistry, University of Pavia, viale Torquato Taramelli 12, 27100, Pavia, Italy
| | - Barbara Vigani
- Department of Drug Sciences, University of Pavia, viale Torquato Taramelli 12, 27100, Pavia, Italy
| | - Chiara Milanese
- Department of Chemistry, University of Pavia, viale Torquato Taramelli 12, 27100, Pavia, Italy
| | - Donatella Armentano
- Department of Chemistry & Chemical Technologies, University of Calabria, Via P. Bucci, 13/C, 87036, Rende (CS), Italy
| | - Johannes C Jansen
- Institute on Membrane Technology, National Research Council of Italy (CNR-ITM), via P. Bucci 17/C, Rende (CS), 87036, Italy
| | - Valeria Amendola
- Department of Chemistry, University of Pavia, viale Torquato Taramelli 12, 27100, Pavia, Italy
| |
Collapse
|
5
|
Xiao Y, Lei X, Liu Y, Zhang Y, Ma X, Zhang Q. Double-Decker-Shaped Phenyl-Substituted Silsesquioxane (DDSQ)-Based Nanocomposite Polyimide Membranes with Tunable Gas Permeability and Good Aging Resistance. Sep Purif Technol 2023. [DOI: 10.1016/j.seppur.2023.123725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
|
6
|
Zhang S, Xu Z, Weng Y, Cai M, Wang Y, Zhu W, Min Y, Ma X. Remarkable gas separation performance of a thermally rearranged membrane derived from an alkynyl self-crosslinkable precursor. J Memb Sci 2023. [DOI: 10.1016/j.memsci.2023.121464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
7
|
Xiao P, He X, Ye C, Zhang S, Zheng F, Lu Q, Ma X. Tailoring the microporosity and gas separation property of soluble polybenzoxazole membranes derived from different regioisomer monomers. Sep Purif Technol 2023. [DOI: 10.1016/j.seppur.2023.123340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
8
|
Chehrazi E. Theoretical models for gas separation prediction of mixed matrix membranes: effects of the shape factor of nanofillers and interface voids. JOURNAL OF POLYMER ENGINEERING 2023. [DOI: 10.1515/polyeng-2022-0193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Abstract
In this work, a new model is developed by modifying the existing Maxwell–Wagner–Sillars (MWS) model to predict the gas separation properties of mixed matrix membranes (MMMs). The new modified MWS model, for the first time, provides the simultaneous exploration of the role of nanofillers/matrix interface voids and the exact geometrical shape of nanofillers in predicting the gas separation properties of MMMs. To unveil the crucial role of nanofillers/matrix interface voids, a mixed matrix membrane is considered a three-component system composed of the polymer matrix as the continuous component, nanofillers as the dispersed component and the interface voids between the two components. Moreover, the new model elucidates the role of the exact ellipsoidal shape of nanofillers within the membrane on the gas separation of MMMs by considering the shape factor of nanofillers. The newly developed modified MWS model is accurately able to predict the gas permeation of MMMs with a lower average absolute relative error (%AARE) of around 8% compared with the around 30% for conventional models such as the Maxwell model, Bruggeman model, Lewis–Nielsen model and Pal model and even compared with the modified Maxwell model (∼24%).
Collapse
Affiliation(s)
- Ehsan Chehrazi
- Department of Polymer Chemistry and Materials, Faculty of Chemistry and Petroleum Sciences , Shahid Beheshti University , Tehran 1983969411 , Iran
| |
Collapse
|
9
|
Abdulhamid MA. Tröger's base-derived dianhydride as a promising contorted building block for polyimide-based membranes for gas separation. Sep Purif Technol 2023. [DOI: 10.1016/j.seppur.2023.123208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
10
|
Zhao M, Zhang C, Weng Y, Li P. Synergistic improvement of CO2/CH4 separation performance of phenolphthalein-based polyimide membranes by thermal decomposition and thermal-oxidative crosslinking. POLYMER 2022. [DOI: 10.1016/j.polymer.2022.125528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
11
|
Feng Y, Chen S, Hua K, Li H, Jiang D, Sheng L, Zhao D, Ren J. High-performance gas separation membranes derived from thermal-oxidative block poly(benzoxazole-co-imide). Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
12
|
Tanis I, Brown D, Neyertz S, Vaidya M, Ballaguet JP, Duval S, Bahamdan A. Single-gas and mixed-gas permeation of N 2/CH 4 in thermally-rearranged TR-PBO membranes and their 6FDA-bisAPAF polyimide precursor studied by molecular dynamics simulations. Phys Chem Chem Phys 2022; 24:18667-18683. [PMID: 35894847 DOI: 10.1039/d1cp05511a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
High-performance polymers with polybenzoxazole (PBO) structures, formed via thermal rearrangement (TR) of aromatic polyimide precursors, have been developed for gas separation applications. The present work compares the transport of N2 and CH4 in a 6FDA-bisAPAF polyimide precursor and in its TR-PBO derivative using molecular dynamics (MD) simulations. The modelling closely mimicked the experimental approach by transforming a 6FDA-bisAPAF atomistic model into its corresponding TR-PBO structure via a specific algorithm. The densities and void spaces of both precursor and TR polymers were found to compare well to experimental data. An iterative technique was used to obtain the single-gas sorption isotherms of N2 and CH4 at 338.5 K in both polymers over a range of feed pressures up to and exceeding 65 bar. CH4 was systematically found to be more soluble than N2. Solubilities in both matrices were quite similar with those in TR-PBO being slightly higher due to its larger fraction of significant volume. Volume dilation analyses confirmed a higher resistance to plasticization for TR-PBO. Extended single-gas N2 and CH4 simulations and 2 : 1 binary CH4/N2 mixed-gas simulations were then conducted in both matrices at 338.5 K and at a pressure of ∼65 bar corresponding to natural gas processing conditions. Mixed-gas sorption was modelled using a modification of the aforementioned iterative method, which fixed the pressure and iterated to convergence the number of molecules of each type of penetrant. The gas diffusion coefficients were estimated using the Trajectory-Extending Kinetic Monte Carlo (TEKMC) procedure. As found experimentally, significantly higher diffusivities and permeabilities were observed in the TR polymer, which led to a slightly lower ideal N2/CH4 permselectivity for TR-PBO (∼2.6) when compared to its 6FDA-bisAPAF precursor (∼3.8). However, both models showed a reduced N2/CH4 separation efficiency under 2 : 1 binary CH4/N2 mixed-gas conditions bordering on the loss of selectivity. For 6FDA-bisAPAF, both permeabilities decreased in the mixed-gas case, but more for N2 than for CH4. For TR-PBO, the permeability of the faster N2 decreased while the permeability of the slower CH4 increased under mixed-gas conditions. This confirms that single-gas simulations are not sufficient for the prediction of the actual mixed-gas permselectivity behaviour in such polymers.
Collapse
Affiliation(s)
- Ioannis Tanis
- Univ. Grenoble Alpes, Univ. Savoie Mont Blanc, CNRS, Grenoble INP (Institute of Engineering and Management Univ. Grenoble Alpes), LEPMI, 38000 Grenoble, France.
| | - David Brown
- Univ. Grenoble Alpes, Univ. Savoie Mont Blanc, CNRS, Grenoble INP (Institute of Engineering and Management Univ. Grenoble Alpes), LEPMI, 38000 Grenoble, France.
| | - Sylvie Neyertz
- Univ. Grenoble Alpes, Univ. Savoie Mont Blanc, CNRS, Grenoble INP (Institute of Engineering and Management Univ. Grenoble Alpes), LEPMI, 38000 Grenoble, France.
| | - Milind Vaidya
- Saudi Aramco, Research & Development Center, Po. Box 62, Dhahran 31311, Saudi Arabia
| | - Jean-Pierre Ballaguet
- Saudi Aramco, Research & Development Center, Po. Box 62, Dhahran 31311, Saudi Arabia
| | - Sebastien Duval
- Saudi Aramco, Research & Development Center, Po. Box 62, Dhahran 31311, Saudi Arabia
| | - Ahmad Bahamdan
- Saudi Aramco, Research & Development Center, Po. Box 62, Dhahran 31311, Saudi Arabia
| |
Collapse
|
13
|
Ogieglo W, Puspasari T, Alabdulaaly A, Nga Nguyen TP, Lai Z, Pinnau I. Gas separation performance and physical aging of tubular thin-film composite carbon molecular sieve membranes based on a polyimide of intrinsic microporosity precursor. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.120497] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
14
|
Synergistic effect of thermal crosslinking and thermal rearrangement on free volume and gas separation properties of 6FDA based polyimide membranes studied by positron annihilation. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2021.120163] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
15
|
A Rigid and Planar Aza-Based Ternary Anhydride for the Preparation of Cross-Linked Polyimide Membrane Displaying High CO2/CH4 Separation Performance. Polymers (Basel) 2022; 14:polym14030389. [PMID: 35160379 PMCID: PMC8838019 DOI: 10.3390/polym14030389] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 01/06/2022] [Accepted: 01/10/2022] [Indexed: 02/04/2023] Open
Abstract
In this study, based on the preparation of hexaazatriphenylene-ternary-anhydride (HAT-T), polyimide membranes were prepared by reaction of 4,4′-(hexafluoroisopropylidene)diphthalic anhydride (6FDA), 4,4′-diaminodiphenyl sulfide (SDA), 2,2′-bis (trifluoromethyl)diaminobiphenyl (TFDB) and 5-amino-2-(4-aminophenyl) benzimidazole (PABZ). Polyimide films with a hexazobenzo structure have good film-forming properties, high molecular weight (Mn = 0.79–11.79 × 106, Mw = 1.03–16.60 × 106) and narrow molecular weight distribution (polymer dispersity index = 1.17–1.54). With the introduction of rigid HAT-T, the tensile strength and elongation at break of polyimide films are 195.63–510.37 MPa and 4.00–9.70%, respectively, with excellent mechanical properties. The gas separation performance test shows that hexaazatriphenylene-containing polyimide films have good gas selectivity for CO2/CH4. In particular, the separation performance of PIc-t (6FDA/PABZ/HAT-T) surpasses the “2008 Robeson Upper Bound”. The selectivity of 188.43 for CO2/CH4 gas reveals its potential value in the separation and purification of methane gas.
Collapse
|
16
|
|
17
|
Chehrazi E. Determination of the Thickness of Interfacial Voids in a Spherical Nanoparticles - Polymer Membrane: Fundamental Insight from the Gas Permeation Modeling. Chem Eng Res Des 2022. [DOI: 10.1016/j.cherd.2021.10.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
18
|
Feng Y, Chen S, Jiang D, Li H, Hua K, Zhao D, Deng M, Ren J. Thermal-Oxidative Membranes Based on Block Hydroxyl Polyimide for H2 Separation. Macromolecules 2021. [DOI: 10.1021/acs.macromol.1c01888] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Yuxuan Feng
- National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, P.R. China
- University of Chinese Academy of Sciences, Beijing 100049, P.R. China
| | - Shuhui Chen
- National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, P.R. China
- University of Chinese Academy of Sciences, Beijing 100049, P.R. China
| | - Dong Jiang
- National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, P.R. China
| | - Hui Li
- National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, P.R. China
| | - Kaisheng Hua
- National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, P.R. China
| | - Dan Zhao
- National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, P.R. China
| | - Maicun Deng
- National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, P.R. China
| | - Jizhong Ren
- National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, P.R. China
| |
Collapse
|
19
|
Bandehali S, Ebadi Amooghin A, Sanaeepur H, Ahmadi R, Fuoco A, Jansen JC, Shirazian S. Polymers of intrinsic microporosity and thermally rearranged polymer membranes for highly efficient gas separation. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2021.119513] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
20
|
Xu M, Jiang B, Dou H, Yang N, Xiao X, Tantai X, Sun Y, Zhang L. Double-salt ionic liquid derived facilitated transport membranes for ethylene/ethane separation. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2021.119773] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
21
|
Lu Y, Hu X, Lee WH, Bae JY, Zhao J, Nie W, Wang Z, Yan J, Lee YM. Effects of bulky 2,2′-substituents in dianhydrides on the microstructures and gas transport properties of thermally rearranged polybenzoxazoles. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2021.119777] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
22
|
Wu AX, Lin S, Mizrahi Rodriguez K, Benedetti FM, Joo T, Grosz AF, Storme KR, Roy N, Syar D, Smith ZP. Revisiting group contribution theory for estimating fractional free volume of microporous polymer membranes. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2021.119526] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
23
|
Abstract
In the next decade, separation science will be an important research topic in addressing complex challenges like reducing carbon footprint, lowering energy cost, and making industrial processes simpler. In industrial chemical processes, particularly in petrochemical operations, separation and product refining steps are responsible for up to 30% of energy use and 30% of the capital cost. Membranes and adsorption technologies are being actively studied as alternative and partial replacement opportunities for the state-of-the-art cryogenic distillation systems. This paper provides an industrial perspective on the application of membranes in industrial petrochemical cracker operations. A gas separation performance figure of merit for propylene/propane separation for different classes of materials ranging from inorganic, carbon, polymeric, and facilitated transport membranes is also reported. An in-house-developed model provided insights into the importance of operational parameters on the overall membrane design.
Collapse
|
24
|
Pulyalina A, Goikhman M, Podeshvo I, Faykov I, Polotskaya G. Highly selective polybenzoxazinoneimide vs. its nonselective prepolymer in separation of water-ethanol mixture: Role of sorption parameters in pervaporation performance. SEP SCI TECHNOL 2021. [DOI: 10.1080/01496395.2021.1969581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Alexandra Pulyalina
- Saint Petersburg State University, Institute of Chemistry, Saint Petersburg, Russia
| | - Mikhail Goikhman
- Institute of Macromolecular Compounds, Russian Academy of Sciences, Saint Petersburg, Russia
| | - Irina Podeshvo
- Institute of Macromolecular Compounds, Russian Academy of Sciences, Saint Petersburg, Russia
| | - Ilya Faykov
- Saint Petersburg State University, Institute of Chemistry, Saint Petersburg, Russia
| | - Galina Polotskaya
- Saint Petersburg State University, Institute of Chemistry, Saint Petersburg, Russia
- Institute of Macromolecular Compounds, Russian Academy of Sciences, Saint Petersburg, Russia
| |
Collapse
|
25
|
Iyer GM, Liu L, Zhang C. Hydrocarbon separations by glassy polymer membranes. JOURNAL OF POLYMER SCIENCE 2020. [DOI: 10.1002/pol.20200128] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Gaurav M. Iyer
- Department of Chemical and Biomolecular Engineering University of Maryland College Park MD USA
| | - Lu Liu
- Department of Chemical and Biomolecular Engineering University of Maryland College Park MD USA
| | - Chen Zhang
- Department of Chemical and Biomolecular Engineering University of Maryland College Park MD USA
| |
Collapse
|
26
|
Tuning 6FDA-DABA membrane performance for CO2 removal by physical densification and decarboxylation cross-linking during simple thermal treatment. J Memb Sci 2020. [DOI: 10.1016/j.memsci.2020.118195] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
27
|
Multifunctional ternary deep eutectic solvent-based membranes for the cost-effective ethylene/ethane separation. J Memb Sci 2020. [DOI: 10.1016/j.memsci.2020.118243] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
28
|
Multifunctional polyimides by direct silyl ether reaction of pendant hydroxy groups: Toward low dielectric constant, high optical transparency and fluorescence. Eur Polym J 2020. [DOI: 10.1016/j.eurpolymj.2020.109742] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
29
|
Recent progress in microporous polymers from thermally rearranged polymers and polymers of intrinsic microporosity for membrane gas separation: Pushing performance limits and revisiting trade‐off lines. JOURNAL OF POLYMER SCIENCE 2020. [DOI: 10.1002/pol.20200110] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
30
|
Visible-Light Active Photocatalytic Dual Layer Hollow Fiber (DLHF) Membrane and Its Potential in Mitigating the Detrimental Effects of Bisphenol A in Water. MEMBRANES 2020; 10:membranes10020032. [PMID: 32098156 PMCID: PMC7073679 DOI: 10.3390/membranes10020032] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 02/17/2020] [Accepted: 02/18/2020] [Indexed: 12/11/2022]
Abstract
The presence of bisphenol A (BPA) in various water sources has potentially led to numerous adverse effects in human such as increased in blood pressure and derangement in liver function. Thus, a reliable treatment for the removing BPA is highly required. This present work aimed to study the efficiency of visible light driven photocatalytic dual-layer hollow fiber (DLHF) membrane for the removal of BPA from water and further investigated its detrimental effects by using an in-vivo model. The prepared membranes were characterized for their morphology, particles distribution, surface roughness, crystallinity and light absorption spectra. The removal of 81.6% and 86.7% in BPA concentration was achieved for N-doped TiO2 DLHF after 360 min of visible and UV light irradiation, respectively. No significant changes for all three groups were observed in liver function test meanwhile the rats-exposed to untreated BPA water shows significance blood pressure increment contrary to rats-exposed to treated BPA water. Similarly, the normal morphology in both jejunum and ileum were altered in rats-exposed to untreated BPA water group. Altogether, the presence of N-doped TiO2 in DLHF are shown to significantly enhance the photocatalytic degradation activity under visible irradiation, which effectively mitigates the effect of BPA in an in-vivo model.
Collapse
|
31
|
Abd-Elmageed AAI, Ibrahim SM, Bourezgui A, Al-Hossainy AF. Synthesis, DFT studies, fabrication, and optical characterization of the [ZnCMC] TF polymer (organic/inorganic) as an optoelectronic device. NEW J CHEM 2020. [DOI: 10.1039/d0nj01719a] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
A novel carboxymethyl cellulose zinc thin film [ZnCMC]TF was fabricated using the sol–gel technique.
Collapse
Affiliation(s)
| | - S. M. Ibrahim
- Chemistry Department
- Faculty of Science
- New Valley University
- Al-Kharga
- Egypt
| | - A. Bourezgui
- Physics Department
- Faculty of Science
- Northern border University
- Arar
- Saudi Arabia
| | - A. F. Al-Hossainy
- Chemistry Department
- Faculty of Science
- New Valley University
- Al-Kharga
- Egypt
| |
Collapse
|