1
|
Hillman F, Wang K, Liang CZ, Seng DHL, Zhang S. Breaking The Permeance-Selectivity Tradeoff for Post-Combustion Carbon Capture: A Bio-Inspired Strategy to Form Ultrathin Hollow Fiber Membranes. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2305463. [PMID: 37672561 DOI: 10.1002/adma.202305463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 08/24/2023] [Indexed: 09/08/2023]
Abstract
Thin film composite (TFC) hollow fiber membranes with ultrathin selective layer are desirable to maximize the gas permeance for practical applications. Herein, a bio-inspired strategy is proposed to fabricate sub-100-nm membranes via a tree-mimicking polymer network with amphipathic components featuring multifunctionalities. The hydrophobic polydimethylsiloxane (PDMS) brushes act as the roots that can strongly cling to the gutter layer, the PDMS crosslinkers function as the xylems to enable fast gas transport, and the hydrophilic ethylene-oxide moieties (brushes and mobile molecules) resemble tree leaves that selectively attract CO2 molecules. As a result, a ≈27 nm-thick selective layer can be attached to the hollow fiber-supported PDMS gutter layer through a simple dip-coating method without any modification. Furthermore, a CO2 permeance of ≈2700 GPU and a CO2 /N2 selectivity of ≈21 that is beyond the permeance-selectivity upper bound for hollow fiber membranes is achieved. This bio-inspired concept can potentially open the possibility of scalable hollow fiber membranes production for commercial applications in post-combustion carbon capture and beyond.
Collapse
Affiliation(s)
- Febrian Hillman
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore, 117576, Singapore
| | - Kaiyu Wang
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore, 117576, Singapore
| | - Can Zeng Liang
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore, 117576, Singapore
| | - Debbie Hwee Leng Seng
- Institute of Material Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), Singapore, 138634, Singapore
| | - Sui Zhang
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore, 117576, Singapore
| |
Collapse
|
2
|
Wang L, Li Y, Pu L, Yang M, Lu H, Gu X, Wang X. Copolyimide membranes fabricated by nonsolvent-induced phase separation for helium extraction from natural gas. Sep Purif Technol 2023. [DOI: 10.1016/j.seppur.2023.123455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
|
3
|
Kunalan S, Palanivelu K. Polymeric composite membranes in carbon dioxide capture process: a review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:38735-38767. [PMID: 35275372 DOI: 10.1007/s11356-022-19519-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 02/25/2022] [Indexed: 06/14/2023]
Abstract
Carbon dioxide (CO2) emission to the atmosphere is the prime cause of certain environmental issues like global warming and climate change, in the present day scenario. Capturing CO2 from various stationary industrial emission sources is one of the initial steps to control the aforementioned problems. For this concern, a variety of resources, such as liquid absorbents, solid adsorbents, and membranes, have been utilized for CO2 capturing from various emission sources. Focused on membrane-based CO2 capture, polymeric membranes with composite structure (polymeric composite membrane) offer a better performance in CO2 capturing process than other membranes, due to the composite structure it offers higher gas flux and less material usage, thus facile to use high performed expensive material for membrane fabrication and achieved good efficacy in CO2 capture. This compressive review delivers the utilization of different polymeric composite membranes in CO2 capturing applications. Further, the types of polymeric materials used and the different physicochemical modifications of those membrane materials and their CO2 capturing ability are briefly discussed in the text. In conclusion, the current status and possible perspective ways to improve the CO2 capture process in industrial CO2 gas separation applications are described in this review.
Collapse
Affiliation(s)
- Shankar Kunalan
- Centre for Environmental Studies, Anna University, Chennai, 600 025, India
| | - Kandasamy Palanivelu
- Centre for Environmental Studies, Anna University, Chennai, 600 025, India.
- Centre for Climate Change and Disaster Management, Anna University, Chennai, 600 025, India.
| |
Collapse
|
4
|
Lau HS, Lau SK, Soh LS, Hong SU, Gok XY, Yi S, Yong WF. State-of-the-Art Organic- and Inorganic-Based Hollow Fiber Membranes in Liquid and Gas Applications: Looking Back and Beyond. MEMBRANES 2022; 12:539. [PMID: 35629866 PMCID: PMC9144028 DOI: 10.3390/membranes12050539] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 05/19/2022] [Accepted: 05/20/2022] [Indexed: 11/16/2022]
Abstract
The aggravation of environmental problems such as water scarcity and air pollution has called upon the need for a sustainable solution globally. Membrane technology, owing to its simplicity, sustainability, and cost-effectiveness, has emerged as one of the favorable technologies for water and air purification. Among all of the membrane configurations, hollow fiber membranes hold promise due to their outstanding packing density and ease of module assembly. Herein, this review systematically outlines the fundamentals of hollow fiber membranes, which comprise the structural analyses and phase inversion mechanism. Furthermore, illustrations of the latest advances in the fabrication of organic, inorganic, and composite hollow fiber membranes are presented. Key findings on the utilization of hollow fiber membranes in microfiltration (MF), nanofiltration (NF), reverse osmosis (RO), forward osmosis (FO), pervaporation, gas and vapor separation, membrane distillation, and membrane contactor are also reported. Moreover, the applications in nuclear waste treatment and biomedical fields such as hemodialysis and drug delivery are emphasized. Subsequently, the emerging R&D areas, precisely on green fabrication and modification techniques as well as sustainable materials for hollow fiber membranes, are highlighted. Last but not least, this review offers invigorating perspectives on the future directions for the design of next-generation hollow fiber membranes for various applications. As such, the comprehensive and critical insights gained in this review are anticipated to provide a new research doorway to stimulate the future development and optimization of hollow fiber membranes.
Collapse
Affiliation(s)
- Hui Shen Lau
- School of Energy and Chemical Engineering, Xiamen University Malaysia, Sepang 43900, Selangor, Malaysia; (H.S.L.); (S.K.L.); (L.S.S.); (S.U.H.); (X.Y.G.)
| | - Siew Kei Lau
- School of Energy and Chemical Engineering, Xiamen University Malaysia, Sepang 43900, Selangor, Malaysia; (H.S.L.); (S.K.L.); (L.S.S.); (S.U.H.); (X.Y.G.)
| | - Leong Sing Soh
- School of Energy and Chemical Engineering, Xiamen University Malaysia, Sepang 43900, Selangor, Malaysia; (H.S.L.); (S.K.L.); (L.S.S.); (S.U.H.); (X.Y.G.)
| | - Seang Uyin Hong
- School of Energy and Chemical Engineering, Xiamen University Malaysia, Sepang 43900, Selangor, Malaysia; (H.S.L.); (S.K.L.); (L.S.S.); (S.U.H.); (X.Y.G.)
| | - Xie Yuen Gok
- School of Energy and Chemical Engineering, Xiamen University Malaysia, Sepang 43900, Selangor, Malaysia; (H.S.L.); (S.K.L.); (L.S.S.); (S.U.H.); (X.Y.G.)
| | - Shouliang Yi
- U.S. Department of Energy, National Energy Technology Laboratory, 626 Cochrans Mill Rd, Pittsburgh, PA 15236, USA;
| | - Wai Fen Yong
- School of Energy and Chemical Engineering, Xiamen University Malaysia, Sepang 43900, Selangor, Malaysia; (H.S.L.); (S.K.L.); (L.S.S.); (S.U.H.); (X.Y.G.)
- College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| |
Collapse
|
5
|
León NE, Liu Z, Irani M, Koros WJ. How to Get the Best Gas Separation Membranes from State-of-the-Art Glassy Polymers. Macromolecules 2022. [DOI: 10.1021/acs.macromol.1c01758] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Nicholas E. León
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, 311 Ferst Drive, Atlanta, Georgia 30332, United States
| | - Zhongyun Liu
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, 311 Ferst Drive, Atlanta, Georgia 30332, United States
| | - Maryam Irani
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, 311 Ferst Drive, Atlanta, Georgia 30332, United States
| | - William J. Koros
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, 311 Ferst Drive, Atlanta, Georgia 30332, United States
| |
Collapse
|
6
|
|
7
|
Taghizadeh M, Taghizadeh A, Vatanpour V, Ganjali MR, Saeb MR. Deep eutectic solvents in membrane science and technology: Fundamental, preparation, application, and future perspective. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2020.118015] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
8
|
Ye L, Jie X, Wang L, Xu G, Sun Y, Kang G, Cao Y. Preparation and gas separation performance of thermally rearranged poly(benzoxazole-co-amide) (TR-PBOA) hollow fiber membranes deriving from polyamides. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2020.117870] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
9
|
|
10
|
Lee WH, Bae JY, Yushkin A, Efimov M, Jung JT, Volkov A, Lee YM. Energy and time efficient infrared (IR) irradiation treatment for preparing thermally rearranged (TR) and carbon molecular sieve (CMS) membranes for gas separation. J Memb Sci 2020. [DOI: 10.1016/j.memsci.2020.118477] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
11
|
Iyer GM, Liu L, Zhang C. Hydrocarbon separations by glassy polymer membranes. JOURNAL OF POLYMER SCIENCE 2020. [DOI: 10.1002/pol.20200128] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Gaurav M. Iyer
- Department of Chemical and Biomolecular Engineering University of Maryland College Park MD USA
| | - Lu Liu
- Department of Chemical and Biomolecular Engineering University of Maryland College Park MD USA
| | - Chen Zhang
- Department of Chemical and Biomolecular Engineering University of Maryland College Park MD USA
| |
Collapse
|
12
|
Huang L, Liu J, Lin H. Thermally stable, homogeneous blends of cross-linked poly(ethylene oxide) and crown ethers with enhanced CO2 permeability. J Memb Sci 2020. [DOI: 10.1016/j.memsci.2020.118253] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|