1
|
Zhang W, Luo J, Ling H, Huang L, Xue S. Carbon-Doped TiO 2 Nanofiltration Membranes Prepared by Interfacial Reaction of Glycerol with TiCl 4 Vapor. MEMBRANES 2024; 14:233. [PMID: 39590619 PMCID: PMC11596831 DOI: 10.3390/membranes14110233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2024] [Revised: 11/05/2024] [Accepted: 11/06/2024] [Indexed: 11/28/2024]
Abstract
In the pursuit of developing advanced nanofiltration membranes with high permeation flux for organic solvents, a TiO2 nanofilm was synthesized via a vapor-liquid interfacial reaction on a flat-sheet α-Al2O3 ceramic support. This process involves the reaction of glycerol, an organic precursor with a structure featuring 1,2-diol and 1,3-diol groups, with TiCl4 vapor to form organometallic hybrid films. Subsequent calcination in air at 250 °C transforms these hybrid films into carbon-doped titanium oxide nanofilms. The unique structure of glycerol plays a crucial role in determining the properties of the resulting nanopores, which exhibit high solvent permeance and effective solute rejection. The synthesized carbon-doped TiO2 nanofiltration membranes demonstrated impressive performance, achieving a pure methanol permeability as high as 90.9 L·m-2·h -1·bar-1. Moreover, these membranes exhibited a rejection rate of 93.2% for Congo Red in a methanol solution, underscoring their efficacy in separating solutes from solvents. The rigidity of the nanopores within these nanofilms, when supported on ceramic materials, confers high chemical stability even in the presence of polar solvents. This robustness makes the carbon-doped TiO2 nanofilms suitable for applications in the purification and recovery of organic solvents.
Collapse
Affiliation(s)
| | - Jiangzhou Luo
- Tianjin Key Laboratory of Organic Solar Cells and Photochemical Conversion, School of Chemistry & Chemical Engineering, Tianjin University of Technology, Tianjin 300384, China; (W.Z.); (H.L.); (L.H.)
| | | | | | - Song Xue
- Tianjin Key Laboratory of Organic Solar Cells and Photochemical Conversion, School of Chemistry & Chemical Engineering, Tianjin University of Technology, Tianjin 300384, China; (W.Z.); (H.L.); (L.H.)
| |
Collapse
|
2
|
Sengupta B, Dong Q, Khadka R, Behera DK, Yang R, Liu J, Jiang J, Keblinski P, Belfort G, Yu M. Carbon-doped metal oxide interfacial nanofilms for ultrafast and precise separation of molecules. Science 2023; 381:1098-1104. [PMID: 37676942 DOI: 10.1126/science.adh2404] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Accepted: 08/11/2023] [Indexed: 09/09/2023]
Abstract
Membranes with molecular-sized, high-density nanopores, which are stable under industrially relevant conditions, are needed to decrease energy consumption for separations. Interfacial polymerization has demonstrated its potential for large-scale production of organic membranes, such as polyamide desalination membranes. We report an analogous ultrafast interfacial process to generate inorganic, nanoporous carbon-doped metal oxide (CDTO) nanofilms for precise molecular separation. For a given pore size, these nanofilms have 2 to 10 times higher pore density (assuming the same tortuosity) than reported and commercial organic solvent nanofiltration membranes, yielding ultra-high solvent permeance, even if they are thicker. Owing to exceptional mechanical, chemical, and thermal stabilities, CDTO nanofilms with designable, rigid nanopores exhibited long-term stable and efficient organic separation under harsh conditions.
Collapse
Affiliation(s)
- Bratin Sengupta
- Department of Chemical and Biological Engineering and RENEW Institute, University at Buffalo, Buffalo, NY 14260, USA
| | - Qiaobei Dong
- Department of Chemical and Biological Engineering and RENEW Institute, University at Buffalo, Buffalo, NY 14260, USA
| | - Rajan Khadka
- Department of Materials Science and Engineering, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | - Dinesh Kumar Behera
- Department of Chemical and Biological Engineering and RENEW Institute, University at Buffalo, Buffalo, NY 14260, USA
| | - Ruizhe Yang
- Department of Mechanical and Aerospace Engineering, University at Buffalo, Buffalo, NY 14260, USA
| | - Jun Liu
- Department of Mechanical and Aerospace Engineering, University at Buffalo, Buffalo, NY 14260, USA
| | - Ji Jiang
- Howard P. Isermann Department of Chemical and Biological Engineering and the Center of Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | - Pawel Keblinski
- Department of Materials Science and Engineering, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | - Georges Belfort
- Howard P. Isermann Department of Chemical and Biological Engineering and the Center of Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | - Miao Yu
- Department of Chemical and Biological Engineering and RENEW Institute, University at Buffalo, Buffalo, NY 14260, USA
| |
Collapse
|
3
|
Ye Y, Han Q, Zhao C, Ke W, Qiu M, Chen X, Fan Y. Improved negative charge of tight ceramic ultrafiltration membranes for protein-resistant and easy-cleaning performance. Sep Purif Technol 2023. [DOI: 10.1016/j.seppur.2022.123082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
4
|
Gan N, Lin Y, Zhang Y, Gitis V, Lin Q, Matsuyama H. Surface Mineralization of the TiO 2-SiO 2/PES Composite Membrane with Outstanding Separation Property via Facile Vapor-Ventilated In Situ Chemical Deposition. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:12951-12960. [PMID: 36242562 DOI: 10.1021/acs.langmuir.2c02178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Conventional polymeric membranes are broadly employed in water treatment processes; however, most of them suffer from relatively low water permeance and severe membrane fouling phenomena owing to their relatively hydrophobic nature. In this work, a novel class of inorganic-organic composite membranes was developed through a newly developed vapor-ventilated in situ chemical deposition method, where the Ti and Si precursors were first hydrolyzed and then conferred into metal oxides to form a continuous TiO2-SiO2 modification layer. Owing to the distinct physicochemical properties, the Ti and Si precursors were leveraged as quasi-molecular regulators to tune the membrane surface chemistry and pore aperture (within the nanoscale) to benefit highly efficient water purification by underpinning the rapid transport of water molecules and featuring an excellent fouling-resistant and fouling-releasing property against typical pollutants. The as-developed TiO2-SiO2/PES composite membrane showed a high water permeance of 187.4 L·m-2·h-1·bar-1, together with a relatively small mean pore aperture of 4.2 nm, showing an outstanding permeating efficiency among state-of-the-art membranes with a similar separation accuracy. This study provides a paradigm shift in membrane materials that could open avenues for developing high-performance inorganic-organic composite membranes for complex wastewater treatment.
Collapse
Affiliation(s)
- Ning Gan
- School of Chemistry and Chemical Engineering, Guizhou University, Guiyang550025, Guizhou, China
- School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai200237, China
| | - Yuqing Lin
- School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai200237, China
| | - Yiren Zhang
- School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai200237, China
| | - Vitaly Gitis
- Unit of Environmental Engineering, The Faculty of Engineering Science, Ben-Gurion University of the Negev, P.O. Box 653, Beer-Sheva84105, Israel
| | - Qian Lin
- School of Chemistry and Chemical Engineering, Guizhou University, Guiyang550025, Guizhou, China
- School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai200237, China
| | - Hideto Matsuyama
- Research Center for Membrane and Film Technology, Department of Chemical Science and Engineering, Kobe University, Kobe657-8501, Japan
| |
Collapse
|
5
|
Ag-based nanocapsule-regulated interfacial polymerization Enables synchronous nanostructure towards high-performance nanofiltration membrane for sustainable water remediation. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2021.120196] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
6
|
Qi T, Chen X, Shi W, Wang T, Qiu M, Da X, Wen J, Fan Y. Fouling behavior of nanoporous ceramic membranes in the filtration of oligosaccharides at different temperatures. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2021.119589] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
7
|
Effective and efficient fabrication of high-flux tight ZrO2 ultrafiltration membranes using a nanocrystalline precursor. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2021.119378] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
8
|
Eder S, Zueblin P, Diener M, Peydayesh M, Boulos S, Mezzenga R, Nyström L. Effect of Polysaccharide Conformation on Ultrafiltration Separation Performance. Carbohydr Polym 2021; 260:117830. [PMID: 33712169 DOI: 10.1016/j.carbpol.2021.117830] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 02/12/2021] [Accepted: 02/13/2021] [Indexed: 11/18/2022]
Abstract
The manifold array of saccharide linkages leads to a great variety of polysaccharide architectures, comprising three conformations in aqueous solution: compact sphere, random coil, and rigid rod. This conformational variation limits the suitability of the commonly applied molecular weight cut-off (MWCO) as selection criteria for polysaccharide ultrafiltration membranes, as it is based on globular marker proteins with narrow Mw and hydrodynamic volume relation. Here we show the effect of conformation on ultrafiltration performance using randomly coiled pullulan and rigid rod-like scleroglucan as model polysaccharides for membrane rejection and molecular weight distribution. Ultrafiltration with a 10 kDa polyethersulfone membrane yielded significant different recoveries for pullulan and scleroglucan showing 1% and 71%, respectively. We found deviations greater than 77-fold between nominal MWCO and apparent Mw of pullulan and scleroglucan, while recovering over 90% polysaccharide with unchanged Mw. We anticipate our work as starting point towards an optimized membrane selection for polysaccharide applications.
Collapse
Affiliation(s)
- Severin Eder
- ETH Zurich, Department of Health Science and Technology, Institute of Food, Nutrition and Health, Laboratory of Food Biochemistry, Schmelzbergstrasse 9, 8092 Zurich, Switzerland
| | - Patrick Zueblin
- ETH Zurich, Department of Health Science and Technology, Institute of Food, Nutrition and Health, Laboratory of Food Biochemistry, Schmelzbergstrasse 9, 8092 Zurich, Switzerland
| | - Michael Diener
- ETH Zurich, Department of Health Science and Technology, Institute of Food, Nutrition and Health, Laboratory of Food and Soft Materials, Schmelzbergstrasse 9, 8092 Zurich, Switzerland
| | - Mohammad Peydayesh
- ETH Zurich, Department of Health Science and Technology, Institute of Food, Nutrition and Health, Laboratory of Food and Soft Materials, Schmelzbergstrasse 9, 8092 Zurich, Switzerland
| | - Samy Boulos
- ETH Zurich, Department of Health Science and Technology, Institute of Food, Nutrition and Health, Laboratory of Food Biochemistry, Schmelzbergstrasse 9, 8092 Zurich, Switzerland
| | - Raffaele Mezzenga
- ETH Zurich, Department of Health Science and Technology, Institute of Food, Nutrition and Health, Laboratory of Food and Soft Materials, Schmelzbergstrasse 9, 8092 Zurich, Switzerland
| | - Laura Nyström
- ETH Zurich, Department of Health Science and Technology, Institute of Food, Nutrition and Health, Laboratory of Food Biochemistry, Schmelzbergstrasse 9, 8092 Zurich, Switzerland.
| |
Collapse
|
9
|
|