1
|
Majid-Nateri B, Abedini R, Amiri A. Mixed matrix membrane of poly(4-methyl-1-pentyne) and ZIF-8 for enhanced CO 2 separation over H 2 and CH 4. Sci Rep 2025; 15:14418. [PMID: 40280969 PMCID: PMC12032124 DOI: 10.1038/s41598-025-95237-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2024] [Accepted: 03/19/2025] [Indexed: 04/29/2025] Open
Abstract
Carbon dioxide (CO2) generally exists as the main impurity in natural gas, whose main component is methane. The presence of CO2 reduces the energy content of natural gas and also causes the corrosion of pipelines. To prevent such problems, natural gas must contain a small concentration of CO2 (less than 2% by weight). Membrane technology is an attractive separation method that has been widely studied due to its advantages such as high efficiency, low operating costs, and low energy requirements. However, in the last decade, Mixed Matrix Membranes (MMMs) have attracted the attention of many researchers due to their suitable capabilities in separating polar from non-polar gases. In this research, a new MMMs was obtained by adding imidazole zeolite nanoparticle (ZIF-8) to the poly methyl pentene (PMP) polymer matrix. The polymer part of this membrane can provide high permeability and suitable mechanical and thermal stability. In addition, ZIF-8 particles enhance CO2 separation by offering high CO2 adsorption capacity and molecular sieving, improving selectivity. The gas permeability test was performed on pure and mixed matrix membranes at 30 ℃ and pressures of 2, 6 and 10 bar. In addition, the fabricated membranes were evaluated by FESEM, FTIR-ATR, BET, DMA and TGA tests. The results indicated that in the MMMs containing 30 wt% of nanoparticles in the polymer, the permeability of CO2 gas improved by more than 180% and reached about 278.95 barrer, compared to the pure polymer membrane at a pressure of 10 bar. Moreover, the selectivity of CO₂/CH₄ and CO₂/H₂ increased by 142% and 155%, respectively, primarily due to the preferential sorption of CO₂ over H₂ and CH₄ facilitated by ZIF-8 particles.
Collapse
Affiliation(s)
- Behnam Majid-Nateri
- Enhanced Oil Recovery and Gas Processing Research Lab, Faculty of Chemical Engineering, Babol Noshirvani University of Technology, Babol, Iran
| | - Reza Abedini
- Enhanced Oil Recovery and Gas Processing Research Lab, Faculty of Chemical Engineering, Babol Noshirvani University of Technology, Babol, Iran.
| | - Alireza Amiri
- Enhanced Oil Recovery and Gas Processing Research Lab, Faculty of Chemical Engineering, Babol Noshirvani University of Technology, Babol, Iran
| |
Collapse
|
2
|
Yang Z, Yang J, Yang H, Gao F, Nan C, Chen R, Zhang Y, Gao X, Yuan Y, Jia Y, Yang Y. Photoelectrocatalytic CO 2 Reduction to Formate Using a BiVO 4/ZIF-8 Heterojunction. Chempluschem 2025; 90:e202400452. [PMID: 39307837 DOI: 10.1002/cplu.202400452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 09/18/2024] [Indexed: 11/09/2024]
Abstract
Converting CO2 into high-value chemical fuels through green photoelectrocatalytic reaction path is considered as a potential strategy to solve energy and environmental problems. In this work, BiVO4/ZIF-8 heterojunctions are prepared by in-situ synthesis of ZIF-8 nanocrystals with unique pore structure on the surface of BiVO4. The experimental results show that the silkworm pupa-like BiVO4 is successfully combined with porous ZIF-8, and the introduction of ZIF-8 can provide more sites for CO2 capture. The optimal composite ratio of 4 : 1-BiVO4/ZIF-8 exhibits excellent CO2 reduction activity and the lowest electrochemical transport resistance. In the electrocatalytic system, the formate Faraday efficiency of 4 : 1-BiVO4/ZIF-8 at -1.0 V vs. RHE is 82.60 %. Furthermore, in the photoelectrocatalytic system, the Faraday efficiency increases to 91.24 % at -0.9 V vs. RHE, which is 10.8 times higher than the pristine BiVO4. The results show that photoelectric synergism can not only reduce energy consumption, but also improve the Faraday efficiency of formate. In addition, the current density did not decrease during 34 h electrolysis, showing long-term stability. This work highlights the importance of the construction of heterojunction to improve the performance of photoelectrocatalytic CO2 reduction.
Collapse
Affiliation(s)
- Zhi Yang
- College of Chemistry, Taiyuan University of Technology, Taiyuan, 030024, China
- Shanxi Academy of Building Sciences Group Co.,LTD., Taiyuan, China
| | - Jiaqi Yang
- College of Chemistry, Taiyuan University of Technology, Taiyuan, 030024, China
| | - Huimin Yang
- College of Chemistry, Taiyuan University of Technology, Taiyuan, 030024, China
| | - Fanfan Gao
- College of Chemistry, Taiyuan University of Technology, Taiyuan, 030024, China
| | - Cheng Nan
- College of Chemistry, Taiyuan University of Technology, Taiyuan, 030024, China
| | - Rui Chen
- College of Chemistry, Taiyuan University of Technology, Taiyuan, 030024, China
| | - Yi Zhang
- College of Chemistry, Taiyuan University of Technology, Taiyuan, 030024, China
| | - Xuemei Gao
- College of Chemistry, Taiyuan University of Technology, Taiyuan, 030024, China
| | - Yue Yuan
- College of Chemistry, Taiyuan University of Technology, Taiyuan, 030024, China
| | - Yibo Jia
- College of Chemistry, Taiyuan University of Technology, Taiyuan, 030024, China
| | - Yuanjing Yang
- College of Chemistry, Taiyuan University of Technology, Taiyuan, 030024, China
| |
Collapse
|
3
|
Chen X, Zhou Q, Zhang Y, Chen L, Li N. Incorporating Mixed-Ligand Zeolitic Imidazolate Framework into Polydimethyldiethoxysilane (PDMDES) Membrane for Enhancing Alcohol Pervaporation Recovery. ACS APPLIED MATERIALS & INTERFACES 2024. [PMID: 39560999 DOI: 10.1021/acsami.4c17781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2024]
Abstract
In the present study, a zeolitic imidazolate framework with mixed ligands, ZIF-8-90, was synthesized and embedded into an ultrathin polydimethyldiethoxysilane (PDMDES) matrix to prepare a ZIF-8-90/PDMDES mixed matrix membrane (MMM) for the enhanced recovery of alcohols from dilute aqueous solutions via pervaporation, using a facile solution coating method. The synthesized ZIF-8-90 particles demonstrated superior hydrophobicity and thermal stability compared to those of both ZIF-8 and ZIF-90 particles. Furthermore, the hydrophobicity, thermal stability, and sorption ability for alcohols of the ZIF-8-90/PDMDES MMM were significantly improved, attributed to the incorporation of mixed-ligand ZIF-8-90. Notably, the MMMs displayed two distinct cross-sectional morphologies: (1) ZIF-8-90 particles enveloped by PDMDES polymer forming filler bulges and (2) an accumulation of ZIF-8-90 particles resembling a brick-wall-like structure. The MMM incorporating 2.5 wt % ZIF-8-90 exhibited the optimal performance among the fabricated MMMs with various ZIF-8-90 loadings, spanning from 0 to 3.2 wt %. The effects of feed concentrations and operation temperatures were systematically investigated. The best pervaporation performance was achieved using the 2.5 wt % ZIF-8-90-filled MMM, effectively separating a 5.0 wt % ethanol/water mixture at 60 °C, yielding a distinguished total flux of 7.70 kg·m-2·h-1, an improved separation factor of 9.96, and an extraordinarily high PSI of 68.99 kg·m-2·h-1. Comparative analyses highlighted the superior pervaporation performance of the ZIF-8-90/PDMDES MMM over ZIF-8/PDMDES MMM, ZIF-90/PDMDES MMM, and other MMMs, underscoring its potential for practical applications in alcohol recovery.
Collapse
Affiliation(s)
- Xiaole Chen
- College of Mechanical Engineering, Xi'an Shiyou University, Xi'an 710000, China
- State Key Laboratory of Multiphase Flow in Power Engineering, School of Energy and Power Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| | - Qulan Zhou
- State Key Laboratory of Multiphase Flow in Power Engineering, School of Energy and Power Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| | - Yafei Zhang
- College of Mechanical Engineering, Xi'an Shiyou University, Xi'an 710000, China
| | - Linyu Chen
- State Key Laboratory of Multiphase Flow in Power Engineering, School of Energy and Power Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| | - Na Li
- State Key Laboratory of Multiphase Flow in Power Engineering, School of Energy and Power Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| |
Collapse
|
4
|
Pang S, Ma L, Yang Y, Chen H, Lu L, Yang S, Baeyens J, Si Z, Qin P. A High-Quality Mixed Matrix Membrane with Nanosheets Assembled and Uniformly Dispersed Fillers for Ethanol Recovery. Macromol Rapid Commun 2024; 45:e2400384. [PMID: 39096156 DOI: 10.1002/marc.202400384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 07/12/2024] [Indexed: 08/05/2024]
Abstract
A high-quality filler within mixed matrix membranes, coupled with uniform dispersity, endows a high-efficiency transfer pathway for the significant improvement on separation performance. In this work, a zeolite-typed MCM-22 filler is reported that is doped into polydimethylsiloxane (PDMS) matrix by ultrafast photo-curing technique. The unique structure of nanosheets assembly layer by layer endows the continuous transfer channels towards penetrate molecules because of the inter-connective nanosheets within PDMS matrix. Furthermore, an ultrafast freezing effect produced by fast photo-curing is used to overcome the key issue, namely filler aggregation, and further eliminates defects. When pervaporative separating a 5 wt% ethanol aqueous solution, the resulting MCM-22/PDMS membrane exhibits an excellent membrane flux of 1486 g m-2 h-1 with an ethanol separation factor of 10.2. Considering a biobased route for ethanol production, the gas stripping and vapor permeation through this membrane also shows a great enrichment performance, and the concentrated ethanol is up to 65.6 wt%. Overall, this MCM-22/PDMS membrane shows a high separation ability for ethanol benefited from a unique structure deign of fillers and ultrafast curing speed of PDMS, and has a great potential for bioethanol separation from cellulosic ethanol fermentation.
Collapse
Affiliation(s)
- Siyu Pang
- National Energy R&D Center for Biorefinery, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Liang Ma
- State Key Laboratory of Green Chemical Engineering and Industrial Catalysis, SINOPEC Shanghai Research Institute of Petrochemical Technology Co., Ltd., Shanghai, 201208, P. R. China
| | - Yongfu Yang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, and School of Life Sciences, Hubei University, Wuhan, 430062, P. R. China
| | - Huidong Chen
- High-Tech Reacher Institute, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Lu Lu
- Paris Curie Engineer School, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Shihui Yang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, and School of Life Sciences, Hubei University, Wuhan, 430062, P. R. China
| | - Jan Baeyens
- Department of Chemical Engineering, Sint-Katelijne-Waver, Ku Leuven, 2860, Belgium
| | - Zhihao Si
- National Energy R&D Center for Biorefinery, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Peiyong Qin
- National Energy R&D Center for Biorefinery, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| |
Collapse
|
5
|
Yang T, Liang Y, Liu G, Wang Z, Tong Y, Li W. Glycine-Modified Co-MOF Pervaporation Membrane to Enhance Water Transporting. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:12035-12044. [PMID: 38814169 DOI: 10.1021/acs.langmuir.4c00825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2024]
Abstract
Cobalt-based metal-organic frameworks (Co-MOFs) with a two-dimensional layered morphology have received increasing attention for pervaporation due to their stability and hydrophilic properties. Using amino glycine (Gly) as a cross-linking agent, the Co-MOF ultrathin two-dimensional membrane doped with organic filler sodium alginate (SA) with the "brick-mixed-sand" structure was proposed. Polyacrylonitrile (PAN) was selected as the support layer of the hybrid membrane. The introduction of Gly efficiently solved the nanomaterial stacking problem and controllably adjusted the interlayer spacing between the nanosheets, which demonstrated good performance for ethanol dehydration. The results of this experimental research showed that the total flux of alcohol/water (9:1) separation by Gly-Co-MOF-SA/PAN hybrid membranes reached 1902 g m-2 h-1, which was 67% higher than that of the pure SA membranes. The "brick-mixed-sand" lamellar dense morphology of Gly-Co-MOF not only enhances membrane hydrophilicity but also provides effective channels for the rapid transport of water, which is expected to be used for the dehydration of organic solvents.
Collapse
Affiliation(s)
- Ting Yang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Yao Liang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Guijuan Liu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Ziye Wang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Yujia Tong
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 211816, China
- NJTU Membrane Application Institute Co., Ltd, Nanjing 211816, China
| | - Weixing Li
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 211816, China
| |
Collapse
|
6
|
Imad M, Castro-Muñoz R. Ongoing Progress on Pervaporation Membranes for Ethanol Separation. MEMBRANES 2023; 13:848. [PMID: 37888020 PMCID: PMC10608438 DOI: 10.3390/membranes13100848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 10/04/2023] [Accepted: 10/19/2023] [Indexed: 10/28/2023]
Abstract
Ethanol, a versatile chemical extensively employed in several fields, including fuel production, food and beverage, pharmaceutical and healthcare industries, and chemical manufacturing, continues to witness expanding applications. Consequently, there is an ongoing need for cost-effective and environmentally friendly purification technologies for this organic compound in both diluted (ethanol-water-) and concentrated solutions (water-ethanol-). Pervaporation (PV), as a membrane technology, has emerged as a promising solution offering significant reductions in energy and resource consumption during the production of high-purity components. This review aims to provide a panorama of the recent advancements in materials adapted into PV membranes, encompassing polymeric membranes (and possible blending), inorganic membranes, mixed-matrix membranes, and emerging two-dimensional-material membranes. Among these membrane materials, we discuss the ones providing the most relevant performance in separating ethanol from the liquid systems of water-ethanol and ethanol-water, among others. Furthermore, this review identifies the challenges and future opportunities in material design and fabrication techniques, and the establishment of structure-performance relationships. These endeavors aim to propel the development of next-generation pervaporation membranes with an enhanced separation efficiency.
Collapse
Affiliation(s)
- Muhammad Imad
- Department of Process and Systems Engineering, Otto-von-Guericke University, 39106 Magdeburg, Germany
- Department of Chemical and Energy Engineering, Pak-Austria Fachhochschule, Haripur 22620, Pakistan
| | - Roberto Castro-Muñoz
- Tecnologico de Monterrey, Campus Toluca, Avenida Eduardo Monroy Cárdenas 2000 San Antonio Buenavista, Toluca de Lerdo 50110, Mexico
- Department of Sanitary Engineering, Faculty of Civil and Environmental Engineering, Gdansk University of Technology, G. Narutowicza St. 11/12, 80-233 Gdansk, Poland
| |
Collapse
|
7
|
Shen L, Liu W, Lu Y, Fang C, Zhang S. Superoleophilic conjugated microporous polymer nano-surfactants for realizing unprecedented fast recovery of volatile organic compounds. MATERIALS HORIZONS 2023; 10:4562-4570. [PMID: 37565567 DOI: 10.1039/d3mh00798g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/12/2023]
Abstract
A pervaporation membrane with fast and selective permeation is key to improving the recovery efficiency of volatile organic compounds from water. Here, we synthesize a new type of nanofiller-conjugated microporous polymer (CMP) to fabricate polydimethylsiloxane (PDMS)-based mixed matrix membranes (MMMs) and explore their application in the recovery of organic solvents from water via pervaporation. Due to their good dispersibility in the dope solvent and compatibility with PDMS, uniform MMMs without discrete particle phases or aggregates are prepared. Interestingly, CMP nanosheets play a unique role as a nano-surfactant in enhancing both the sorption and diffusion coefficients, realizing unprecedented fast recovery of organic solvents from water. The total flux of the as-fabricated membranes can be enhanced from 74.8 to 406.2 kg μm-2 h-1 and the separation factor αethyl acetate/water is increased from 118.7 to 526.6 when using 5 wt% ethyl acetate aqueous solution as the feed at 50 °C. In addition, the CMP-incorporated PDMS membranes are also effective in recovering a wide range of organic compounds from water, including ethanol, acetone, tetrahydrofuran and acetonitrile.
Collapse
Affiliation(s)
- Liang Shen
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore, 117576, Singapore.
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, College of Resources and Environment, Southwest University, Chongqing, 400715, China
- Interdisciplinary Research Center for Agriculture Green Development in Yangtze River Basin, College of Resources and Environment, Southwest University, Chongqing, 400715, China
| | - Wei Liu
- Frontiers Science Center for Mobile Information Communication and Security, Quantum Information Research Center, School of Physics, Southeast University, Nanjing, 211189, China
- Purple Mountain Laboratories, Nanjing, 211111, China
| | - Yanqiu Lu
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore, 117576, Singapore.
| | - Chenyi Fang
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore, 117576, Singapore.
| | - Sui Zhang
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore, 117576, Singapore.
| |
Collapse
|
8
|
Kim K, Jung H, Cho KM. ZIF-8/Graphene Oxide Hybrid Membranes as Breathable and Protective Barriers against Chemical Warfare Agents. ACS APPLIED MATERIALS & INTERFACES 2023; 15:41755-41762. [PMID: 37608744 DOI: 10.1021/acsami.3c08964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/24/2023]
Abstract
Personal protective equipment against chemical warfare agents and other toxic chemicals must be protective, be breathable, and have a low thermal burden. Selectively permeable membranes are promising candidates for such equipment. In this study, a hybrid membrane consisting of a continuous and thin zeolitic imidazolate framework (ZIF)-8 layer on an oxygen-rich small-flake graphene oxide layer was produced using a simple and scalable synthesis method. The small intrinsic pores of ZIF-8 allow it to selectively separate chemicals via size exclusion while permitting water vapor to permeate out. The ZIF-8/graphene oxide membrane had high selectivity for the penetration of water vapor over nerve agent simulants (ratio of dimethyl methylphosphonate to water vapor transmittance rates of ∼312) with a high water vapor transmittance rate of 3000 g m-2 day-1. This protective barrier layer is a promising material for next-generation protective clothing with enhanced comfort and operability.
Collapse
Affiliation(s)
- Kyubo Kim
- Protection and Decontamination Team, Chem-Bio Technology Center, Agency for Defense Development (ADD), Daejeon 34186, Republic of Korea
| | - Heesoo Jung
- Protection and Decontamination Team, Chem-Bio Technology Center, Agency for Defense Development (ADD), Daejeon 34186, Republic of Korea
| | - Kyeong Min Cho
- Protection and Decontamination Team, Chem-Bio Technology Center, Agency for Defense Development (ADD), Daejeon 34186, Republic of Korea
| |
Collapse
|
9
|
Zhu T, Dong J, Liu H, Wang Y. Controllable hydrogen-bonded poly(dimethylsiloxane) (PDMS) membranes for ultrafast alcohol recovery. MATERIALS HORIZONS 2023; 10:3024-3033. [PMID: 37194492 DOI: 10.1039/d3mh00250k] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
The lack of efficient separation membranes limits the development of bio-alcohol purification via a pervaporation process. In this work, novel controllable hydrogen-bonded poly(dimethylsiloxane) (PDMS) membranes are prepared from self-synthesized supramolecular elastomers for alcohol recovery. Different from the conventional covalently-bonded PDMS membranes, the hydrogen-bonding content and therefore the crosslinking degree in the as-synthesized PDMS membranes can be exactly regulated, by the suitable molecular design of the supramolecular elastomers. The effects of hydrogen-bonding content on the flexibility of the polymer chains and the separation performance of the resultant supramolecular membranes are investigated in detail. In comparison with the state-of-the-art polymeric membranes, the novel controllable hydrogen-bonded supramolecular PDMS membrane exhibits ultrahigh fluxes for ethanol (4.1 kg m-2 h-1) and n-butanol (7.7 kg m-2 h-1) recovery from 5 wt% alcohol aqueous solutions at 80 °C, with comparable separation factors. The designed supramolecular elastomer is therefore believed to provide valuable insights into the design of next-generation separation membrane materials for molecular separations.
Collapse
Affiliation(s)
- Tengyang Zhu
- Key Laboratory of Material Chemistry for Energy Conversion and Storage (Huazhong University of Science and Technology), Ministry of Education, Wuhan, 430074, P. R. China.
- Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science & Technology, Wuhan, 430074, P. R. China
| | - Jiayu Dong
- Key Laboratory of Material Chemistry for Energy Conversion and Storage (Huazhong University of Science and Technology), Ministry of Education, Wuhan, 430074, P. R. China.
- Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science & Technology, Wuhan, 430074, P. R. China
| | - Huan Liu
- Key Laboratory of Material Chemistry for Energy Conversion and Storage (Huazhong University of Science and Technology), Ministry of Education, Wuhan, 430074, P. R. China.
- Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science & Technology, Wuhan, 430074, P. R. China
| | - Yan Wang
- Key Laboratory of Material Chemistry for Energy Conversion and Storage (Huazhong University of Science and Technology), Ministry of Education, Wuhan, 430074, P. R. China.
- Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science & Technology, Wuhan, 430074, P. R. China
| |
Collapse
|
10
|
Zamani A, Thibault J, Tezel FH. Separation of n-Butanol from Aqueous Solutions via Pervaporation Using PDMS/ZIF-8 Mixed-Matrix Membranes of Different Particle Sizes. MEMBRANES 2023; 13:632. [PMID: 37504998 PMCID: PMC10385397 DOI: 10.3390/membranes13070632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 05/29/2023] [Accepted: 06/19/2023] [Indexed: 07/29/2023]
Abstract
The use of mixed matrix membranes (MMMs) to facilitate the production of biofuels has attracted significant research interest in the field of renewable energy. In this study, the pervaporation separation of butanol from aqueous solutions was studied using a series of MMMs, including zeolitic imidazolate frameworks (ZIF-8)-polydimethylsiloxane (PDMS) and zinc oxide-PDMS mixed matrix membranes. Although several studies have reported that mixed matrix membranes incorporating ZIF-8 nanoparticles showed improved pervaporation performances attributed to their intrinsic microporosity and high specific surface area, an in-depth study on the role of ZIF-8 nanoparticle size in MMMs has not yet been reported. In this study, different average sizes of ZIF-8 nanoparticles (30, 65, and 80 nm) were synthesized, and the effects of particle size and particle loading content on the performance of butanol separation using MMMs were investigated. Furthermore, zinc oxide nanoparticles, as non-porous fillers with the same metalcore as ZIF-8 but with a very different geometric shape, were used to illustrate the importance of the particle geometry on the membrane performance. Results showed that small-sized ZIF-8 nanoparticles have better permeability and selectivity than medium and large-size ZIF-8 MMMs. While the permeation flux increased continuously with an increase in the loading of nanoparticles, the selectivity reached a maximum for MMM with 8 wt% smaller-size ZIF-8 nanoparticle loading. The flux and butanol selectivity increased by 350% and 6%, respectively, in comparison to those of neat PDMS membranes prepared in this study.
Collapse
Affiliation(s)
- Ali Zamani
- Department of Chemical and Biological Engineering, University of Ottawa, Ottawa, ON K1N 6N5, Canada
| | - Jules Thibault
- Department of Chemical and Biological Engineering, University of Ottawa, Ottawa, ON K1N 6N5, Canada
| | - Fatma Handan Tezel
- Department of Chemical and Biological Engineering, University of Ottawa, Ottawa, ON K1N 6N5, Canada
| |
Collapse
|
11
|
Gupta I, Gupta O. Recent Advancements in the Recovery and Reuse of Organic Solvents Using Novel Nanomaterial-Based Membranes for Renewable Energy Applications. MEMBRANES 2023; 13:membranes13010108. [PMID: 36676915 PMCID: PMC9862370 DOI: 10.3390/membranes13010108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 01/09/2023] [Accepted: 01/10/2023] [Indexed: 05/12/2023]
Abstract
The energy crisis in the world is increasing rapidly owing to the shortage of fossil fuel reserves. Climate change and an increase in global warming necessitates a change in focus from petroleum-based fuels to renewable fuels such as biofuels. The remodeling of existing separation processes using various nanomaterials is of a growing interest to industrial separation methods. Recently, the design of membrane technologies has been the most focused research area concerning fermentation broth to enhance performance efficiency, while recovering those byproducts to be used as value added fuels. Specifically, the use of novel nano material membranes, which brings about a selective permeation of the byproducts, such as organic solvent, from the fermentation broth, positively affects the fermentation kinetics by eliminating the issue of product inhibition. In this review, which and how membrane-based technologies using novel materials can improve the separation performance of organic solvents is considered. In particular, technical approaches suggested in previous studies are discussed with the goal of emphasizing benefits and problems faced in order to direct research towards an optimized membrane separation performance for renewable fuel production on a commercial scale.
Collapse
Affiliation(s)
- Indrani Gupta
- Department of Chemistry and Environmental Science, New Jersey Institute of Technology, Newark, NJ 07102, USA
| | - Oindrila Gupta
- Vertex Pharmaceuticals Inc., Boston, MA 02210, USA
- Correspondence: ; Tel.: +1-201-467-1138
| |
Collapse
|
12
|
Liu Q, Wang X, Guo Y, Liu G, Zhou KG. Mechanism of ethanol/water reverse separation through a functional graphene membrane: a molecular simulation investigation. Front Chem Sci Eng 2022. [DOI: 10.1007/s11705-022-2246-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
13
|
Yang W, Cao M. Synthesis of ZIF-8@GO-COOH and its adsorption for Cu(II) and Pb(II) from water: capability and mechanism. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.122957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
14
|
Zhang X, Ren X, Wang Y, Li J. ZIF-8@NENP-NH2 embedded mixed matrix composite membranes utilized as CO2 capture. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.122195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
15
|
Li R, Fu X, Liu G, Li J, Zhou G, Liu G, Jin W. Room-temperature in situ synthesis of MOF@MXene membrane for efficient hydrogen purification. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.121097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
16
|
Pang S, Si Z, Li G, Wu H, Cui Y, Zhang C, Ren C, Yang S, Pang S, Qin P. A fluorinated, defect-free ZIF-8/PDMS mixed matrix membrane for enhancing ethanol pervaporation. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.120920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
17
|
Sun Y, Geng C, Zhang Z, Qiao Z, Zhong C. Two-dimensional basic cobalt carbonate supported ZIF-67 composites towards mixed matrix membranes for efficient CO2/N2 separation. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.120928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
18
|
Xu LH, Li SH, Mao H, Li Y, Zhang AS, Wang S, Liu WM, Lv J, Wang T, Cai WW, Sang L, Xie WW, Pei C, Li ZZ, Feng YN, Zhao ZP. Highly flexible and superhydrophobic MOF nanosheet membrane for ultrafast alcohol-water separation. Science 2022; 378:308-313. [PMID: 36264816 DOI: 10.1126/science.abo5680] [Citation(s) in RCA: 70] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
High-performance pervaporation membranes have potential in industrial separation applications, but overcoming the permeability-selectivity trade-off is a challenge. We report a strategy to create highly flexible metal-organic framework nanosheet (MOF-NS) membranes with a faveolate structure on polymer substrates for alcohol-water separation. The controlled growth followed by a surface-coating method effectively produced flexible and defect-free superhydrophobic MOF-NS membranes. The reversible deformation of the flexible MOF-NS and the vertical interlamellar pathways were captured with electron microscopy. Molecular simulations confirmed the structure and revealed transport mechanism. The ultrafast transport channels in MOF-NS exhibited an ultrahigh flux and a separation factor of 8.9 in the pervaporation of 5 weight % ethanol-water at 40°C, which can be used for biofuel recovery. MOF-NS and polydimethylsiloxane synergistically contribute to the separation performance.
Collapse
Affiliation(s)
- Li-Hao Xu
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 102488, P.R. China
| | - Shen-Hui Li
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 102488, P.R. China
| | - Heng Mao
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 102488, P.R. China
| | - Yan Li
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 102488, P.R. China
| | - Ao-Shuai Zhang
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 102488, P.R. China
| | - Sen Wang
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 102488, P.R. China
| | - Wei-Min Liu
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 102488, P.R. China
| | - Jing Lv
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 102488, P.R. China
| | - Tao Wang
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 102488, P.R. China
| | - Wei-Wei Cai
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 102488, P.R. China
| | - Le Sang
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 102488, P.R. China
| | - Wen-Wen Xie
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 102488, P.R. China
| | - Chan Pei
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 102488, P.R. China
| | - Zheng-Zheng Li
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 102488, P.R. China
| | - Ying-Nan Feng
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 102488, P.R. China
| | - Zhi-Ping Zhao
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 102488, P.R. China
| |
Collapse
|
19
|
Xu LH, Li Y, Li SH, Lv MY, Zhao ZP. Space-confined growth of 2D MOF sheets between GO layers at room temperature for superior PDMS membrane-based ester/water separation. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.120605] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
20
|
Xue YX, Dai FF, Yang Q, Chen JH, Lin QJ, Fang LJ, Lin WW. Fabrication of PEBA/HZIF-8 Pervaporation Membranes for High Efficiency Phenol Recovery. ACS OMEGA 2022; 7:23467-23478. [PMID: 35847335 PMCID: PMC9280946 DOI: 10.1021/acsomega.2c01847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Phenol and its chemical derivatives serve as essential chemical materials are indispensable for the synthesis of many kinds of polymers. However, they are highly toxic, carcinogenic, difficult to be degraded biologically, and often found in aqueous effluents. Recovery of hazardous phenol from wastewater remains a daunting challenge. Herein, we prepared a hybrid membrane containing polyether block amide (PEBA) matrix and HZIF-8 fillers. To improve the compatibility between ZIF-8 and PEBA, ZIF-8 was modified by using polystyrene (PS) as a template to prepare porous HZIF-8. ZIF-8, composed of zinc nodes linked by the imidazole ring skeleton, is a kind of inorganic material with high hydrothermal stability, ordered pores, and hydrophobic microporous surfaces, which has a wide range of applications in membrane separation. The separation performance of the PEBA/HZIF-8 based membranes for phenol/water is improved due to the presence of PS on the surface of HZIF-8 and the imidazole ring skeleton in ZIF-8, which enhance the π-π interaction between HZIF-8 and phenol molecules. The effects of HZIF-8 content, feed phenol concentration, and feed temperature on the pervaporation performance of PEBA/HZIF-8 membranes were further investigated. The results showed that the pervaporation performance of the PEBA/HZIF-8-10 membrane was promising with a separation factor of 80.89 and permeate flux of 247.70 g/m2·h under the feed phenol concentration of 0.2 wt % at 80 °C. In addition, the PEBA/HZIF-8-10 membrane presented excellent stability, which has great prospect for practical application in phenol recovery from waste water.
Collapse
Affiliation(s)
- Yan Xue Xue
- College
of Chemistry, Chemical Engineering and Environment, Minnan Normal University, Zhangzhou 363000, China
| | - Fei Fei Dai
- College
of Chemistry, Chemical Engineering and Environment, Minnan Normal University, Zhangzhou 363000, China
| | - Qian Yang
- College
of Chemistry, Chemical Engineering and Environment, Minnan Normal University, Zhangzhou 363000, China
- Fujian
Province University Key Laboratory of Modern Analytical Science and
Separation Technology, Minnan Normal University, Zhangzhou 363000, China
| | - Jian Hua Chen
- College
of Chemistry, Chemical Engineering and Environment, Minnan Normal University, Zhangzhou 363000, China
- Fujian
Province University Key Laboratory of Modern Analytical Science and
Separation Technology, Minnan Normal University, Zhangzhou 363000, China
| | - Qiao Jing Lin
- College
of Chemistry, Chemical Engineering and Environment, Minnan Normal University, Zhangzhou 363000, China
| | - Li Jun Fang
- College
of Chemistry, Chemical Engineering and Environment, Minnan Normal University, Zhangzhou 363000, China
| | - Wei Wei Lin
- College
of Chemistry, Chemical Engineering and Environment, Minnan Normal University, Zhangzhou 363000, China
| |
Collapse
|
21
|
Zarak M, Atif S, Meng X, Tian M. Enhancing interfacial interaction of PDMS matrix with ZIF-8 via embedding TiO2@ZIF-8 composites for phenol extraction in aqueous-aqueous membrane extractive process. Chem Eng Res Des 2022. [DOI: 10.1016/j.cherd.2022.05.047] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
22
|
Zhang X, Liu F, Xu L, Xu Z, Shen C, Zhang G, Meng Q, Gao C. Heterostructured ZIF-8/lamellar talc composites incorporated polydimethylsiloxane membrane with enhanced separation performance for butanol recovery. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.120433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
23
|
Fang LJ, Chen JH, Yang Q, Lin WW, Lin QJ, He YS, Zhuo YZ. S-ZIF-8/PEBA/ZIF-8 pervaporation membrane with in situ growing of ZIF-8 active layer on the surface owing outstanding phenol enrichment performance. J Taiwan Inst Chem Eng 2022. [DOI: 10.1016/j.jtice.2022.104356] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
24
|
Feng X, Peng D, Shan M, Niu X, Zhang Y. Facilitated propylene transport in mixed matrix membranes containing
ZIF
‐8@Agmim core‐shell hybrid material. AIChE J 2022. [DOI: 10.1002/aic.17707] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Xiaoquan Feng
- School of Chemical Engineering Zhengzhou University Zhengzhou China
| | - Donglai Peng
- School of Chemical Engineering Zhengzhou University Zhengzhou China
- School of Material & Chemical Engineering Zhengzhou University of Light Industry Zhengzhou China
| | - Meixia Shan
- School of Chemical Engineering Zhengzhou University Zhengzhou China
| | - Xinpu Niu
- School of Chemical Engineering Zhengzhou University Zhengzhou China
| | - Yatao Zhang
- School of Chemical Engineering Zhengzhou University Zhengzhou China
| |
Collapse
|
25
|
Liang F, Liu D, Dong S, Zhao J, Cao X, Jin W. Facile construction of polyzwitterion membrane via assembly of graphene oxide-based core-brush nanosheet for high-efficiency water permeation. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2021.120150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
26
|
Ren C, Si Z, Qu Y, Li S, Wu H, Meng F, Zhang X, Wang Y, Liu C, Qin P. CF3-MOF enhanced pervaporation selectivity of PDMS membranes for butanol separation. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2021.120255] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
27
|
Zhang AS, Li SH, Xu LH, Mao H, Zhao ZP. 1D continuous ZIF-8 tubes incorporated PDMS mixed matrix membrane for superior ethyl acetate pervaporation separation. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2021.120127] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
28
|
Wang Z, Wang T, Zhang Z, Ji L, Pan L, Wang S. ZIF-67 grown on a fibrous substrate via a sacrificial template method for efficient PM2.5 capture and enhanced antibacterial performance. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2021.119814] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
29
|
Bindini E, Lüdtke T, Otaegui D, Möller M, Haddad R, Boissière C, Moya SE. Mind the gap! tailoring sol–gel ceramic mesoporous coatings on labile metal–organic frameworks through kinetic control. Inorg Chem Front 2022. [DOI: 10.1039/d1qi01128f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Kinetic control allows for the synthesis of mesoporous silica shells on top of labile ZIF-8 cores without compromising MOF stability.
Collapse
Affiliation(s)
- Elisa Bindini
- Soft Matter Nanotechnology Group, CIC biomaGUNE, Basque Research and Technology Alliance (BRTA), Paseo Miramón 182, 20014 San Sebastián, Guipúzcoa, Spain
| | - Tanja Lüdtke
- Soft Matter Nanotechnology Group, CIC biomaGUNE, Basque Research and Technology Alliance (BRTA), Paseo Miramón 182, 20014 San Sebastián, Guipúzcoa, Spain
| | - Dorleta Otaegui
- Mass spectrometry platform, CIC biomaGUNE, Basque Research and Technology Alliance (BRTA), Paseo Miramón 182, 20014 San Sebastián, Guipúzcoa, Spain
| | - Marco Möller
- Electron microscopy platform, CIC biomaGUNE, Basque Research and Technology Alliance (BRTA), Paseo Miramón 182, 20014 San Sebastián, Guipúzcoa, Spain
| | - Ryma Haddad
- 4 Laboratoire de Chimie de la Matière Condensée de Paris, Sorbonne University, Place Jussieu 4, 75005 Paris, France
| | - Cédric Boissière
- 4 Laboratoire de Chimie de la Matière Condensée de Paris, Sorbonne University, Place Jussieu 4, 75005 Paris, France
| | - Sergio E. Moya
- Soft Matter Nanotechnology Group, CIC biomaGUNE, Basque Research and Technology Alliance (BRTA), Paseo Miramón 182, 20014 San Sebastián, Guipúzcoa, Spain
| |
Collapse
|
30
|
Zhan X, Zhao X, Gao Z, Ge R, Lu J, Wang L, Li J. Breakthroughs on tailoring membrane materials for ethanol recovery by pervaporation. Chin J Chem Eng 2021. [DOI: 10.1016/j.cjche.2021.12.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
31
|
|
32
|
Lv X, Huang L, Ding S, Wang J, Li L, Liang C, Li X. Mixed matrix membranes comprising dual-facilitated bio-inspired filler for enhancing CO2 separation. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2021.119347] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
33
|
|
34
|
Shao DD, Wang L, Yan XY, Cao XL, Shi T, Sun SP. Amine–carbon quantum dots (CQDs–NH2) tailored polymeric loose nanofiltration membrane for precise molecular separation. Chem Eng Res Des 2021. [DOI: 10.1016/j.cherd.2021.04.031] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
35
|
Alkhouzaam A, Qiblawey H. Functional GO-based membranes for water treatment and desalination: Fabrication methods, performance and advantages. A review. CHEMOSPHERE 2021; 274:129853. [PMID: 33581397 DOI: 10.1016/j.chemosphere.2021.129853] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Revised: 01/27/2021] [Accepted: 01/31/2021] [Indexed: 06/12/2023]
Abstract
Graphene oxide (GO) and GO-based materials have gained a significant interest in the membrane synthesis and functionalization sector in the recent years. Inspired by their unique and tuneable properties, several GO-based nanomaterials have been investigated and utilized as effective nanofillers for various membranes in the water treatment, purification and desalination sectors. This paper comprehensively reviews the recent advances of GO utilization in pressure, concentration and thermal-driven membrane processes. A brief overview on GO particles, properties, synthesis and functionalization methods was provided. The conventional and the state-of-art fabrication methods of GO-based membranes were summarized and discussed, and consequently the GO-based membranes were classified into different categories. The applications, types, and the performance in terms of flux and rejection were summarized and reviewed. The advantages of GO-based membranes in terms of antifouling properties, bactericidal effects, mechanical strength and stability have been reviewed, too. The review gives insights on the future perspectives of GO functional materials and their potential use in the various membrane processes discussed herein.
Collapse
Affiliation(s)
- Abedalkader Alkhouzaam
- Department of Chemical Engineering, College of Engineering, Qatar University, P. O. Box, 2713, Doha, Qatar
| | - Hazim Qiblawey
- Department of Chemical Engineering, College of Engineering, Qatar University, P. O. Box, 2713, Doha, Qatar.
| |
Collapse
|
36
|
Goyal P, Sundarrajan S, Ramakrishna S. A Review on Mixed Matrix Membranes for Solvent Dehydration and Recovery Process. MEMBRANES 2021; 11:membranes11060441. [PMID: 34208292 PMCID: PMC8230825 DOI: 10.3390/membranes11060441] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 05/24/2021] [Accepted: 06/08/2021] [Indexed: 11/16/2022]
Abstract
Solvent separation and dehydration are important operations for industries and laboratories. Processes such as distillation and extraction are not always effective and are energy-consuming. An alternate approach is offered by pervaporation, based on the solution-diffusion transport mechanism. Polymer-based membranes such as those made of Polydimethylsiloxane (PDMS) have offered good pervaporation performance. Attempts have been made to improve their performance by incorporating inorganic fillers into the PDMS matrix, in which metal-organic frameworks (MOFs) have proven to be the most efficient. Among the MOFs, Zeolitic imidazolate framework (ZIF) based membranes have shown an excellent performance, with high values for flux and separation factors. Various studies have been conducted, employing ZIF-PDMS membranes for pervaporation separation of mixtures such as aqueous-alcoholic solutions. This paper presents an extensive review of the pervaporation performance of ZIF-based mixed matrix membranes (MMMs), novel synthesis methods, filler modifications, factors affecting membrane performance as well as studies based on polymers other than PDMS for the membrane matrix. Some suggestions for future studies have also been provided, such as the use of biopolymers and self-healing membranes.
Collapse
Affiliation(s)
- Priyanka Goyal
- Birla Institute of Technology and Science-Pilani, Hyderabad Campus, Telangana 500078, India;
| | - Subramanian Sundarrajan
- Center for Nanofibers and Nanotechnology, Department of Mechanical Engineering, National University of Singapore, Blk E3 05-12, 2 Engineering Drive 3, Singapore 117581, Singapore;
- Correspondence:
| | - Seeram Ramakrishna
- Center for Nanofibers and Nanotechnology, Department of Mechanical Engineering, National University of Singapore, Blk E3 05-12, 2 Engineering Drive 3, Singapore 117581, Singapore;
| |
Collapse
|
37
|
Liu X, Fu J, Wang L, Wang C. Polydimethylsiloxane/ZIF-8@GO sponge headspace solid-phase extraction followed by GC-MS for the analysis of lavender essential oil. Anal Biochem 2021; 622:114167. [PMID: 33722580 DOI: 10.1016/j.ab.2021.114167] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 03/03/2021] [Accepted: 03/04/2021] [Indexed: 10/21/2022]
Abstract
A novel microwave-assisted (MA) headspace solid-phase extraction (HS-SPE) based on polydimethylsiloxane (PDMS)/ZIF-8@GO sponge was developed for the simultaneous extraction and determination of essential oil constituents in lavender. The PDMS/ZIF-8@GO sponge with a high surface area and excellent adsorption capacity was successfully applied in the HS-SPE process. Microwave-assisted coupled with PDMS/ZIF-8@GO sponge headspace solid-phase extraction followed by GC-MS was proposed. Different experimental parameters were investigated. The optimal conditions were found to be as follows: 2:1 as the quality ratio of ZIF-8 to GO, ZIF-8@GO dosage of 30 mg, microwave power of 600 W, extraction time of 10 min and desorption solvent of n-hexane. This method was successfully applied to the analysis of 11 samples of lavender in different varieties. A total of 52 compounds were identified by the proposed method. A good linearity was observed from 14 to 800 ng with a correlation coefficient (R2) value of >0.99. Multivariate statistical analysis was used to establish the relationship between the varieties and the volatile components for further discriminant analysis. These results demonstrated that the MA-PDMS/ZIF-8@GO is an efficient, sensitive and small sample consumption method for the determination of the essential oil in dried plant materials.
Collapse
Affiliation(s)
- Xin Liu
- Key Laboratory of Oil & Gas Fine Chemicals Ministry of Education & Xinjiang Uyghur Autonomous Region, Xinjiang University, Urumqi, 830046, Xinjiang, China
| | - Jihong Fu
- Key Laboratory of Oil & Gas Fine Chemicals Ministry of Education & Xinjiang Uyghur Autonomous Region, Xinjiang University, Urumqi, 830046, Xinjiang, China.
| | - Lili Wang
- Key Laboratory of Oil & Gas Fine Chemicals Ministry of Education & Xinjiang Uyghur Autonomous Region, Xinjiang University, Urumqi, 830046, Xinjiang, China
| | - Caijuan Wang
- Key Laboratory of Oil & Gas Fine Chemicals Ministry of Education & Xinjiang Uyghur Autonomous Region, Xinjiang University, Urumqi, 830046, Xinjiang, China
| |
Collapse
|
38
|
Ansari-Asl Z, Darvish Pour-Mogahi S, Darabpour E. Zeolitic imidazolate frameworks/polyacrylonitile composites for oil sorption and antibacterial applications. APPLIED NANOSCIENCE 2021. [DOI: 10.1007/s13204-021-01745-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
39
|
Liu Z, He W, Zhang Q, Shapour H, Bakhtari MF. Preparation of a GO/MIL-101(Fe) Composite for the Removal of Methyl Orange from Aqueous Solution. ACS OMEGA 2021; 6:4597-4608. [PMID: 33644567 PMCID: PMC7905816 DOI: 10.1021/acsomega.0c05091] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Accepted: 01/27/2021] [Indexed: 05/28/2023]
Abstract
The composite material graphene oxide (GO)/MIL-101(Fe) was prepared by a simple one-pot reaction method. MIL-101(Fe) grown on the surface of a GO layer was confirmed by scanning electron microscopy (SEM), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), and thermogravimetric analysis (TGA). The adsorption performance and the mechanism of MIL-101(Fe) and GO/MIL-101(Fe) for methyl orange (MO) were studied. The results have shown that the adsorption capacity of GO/MIL-101(Fe) for MO was significantly better than that of MIL-101(Fe), and its capacity was the highest when 10% GO was added. The Langmuir specific surface areas of MIL-101(Fe) and GO/MIL-101(Fe) were 1003.47 and 888.289 m2·g-1, respectively. The maximum adsorption capacities of MO on MIL-101 (Fe) and 10% GO/MIL-101 (Fe) were 117.74 and 186.20 mg·g-1, respectively. The adsorption isotherms were described by the Langmuir model, and the adsorption kinetic data suggested the pseudo-second order to be the best fit model. GO/MIL-101(Fe) can be reused at least three times.
Collapse
|
40
|
Lashgari SM, Yari H, Mahdavian M, Ramezanzadeh B, Bahlakeh G, Ramezanzadeh M. Synthesis of graphene oxide nanosheets decorated by nanoporous zeolite-imidazole (ZIF-67) based metal-organic framework with controlled-release corrosion inhibitor performance: Experimental and detailed DFT-D theoretical explorations. JOURNAL OF HAZARDOUS MATERIALS 2021; 404:124068. [PMID: 33129182 DOI: 10.1016/j.jhazmat.2020.124068] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Revised: 09/05/2020] [Accepted: 09/19/2020] [Indexed: 06/11/2023]
Abstract
For the first time, the zeolite-imidazole (ZIF-67) framework, a new subfamily of metal-organic frameworks (MOFs), is synthesized on the graphene oxide (GO) platform. Co2+ (as a central atom) and 2-methylimidazole (as organic ligands) were assembled to fabricate ZIF-67/GO NPs for providing epoxy-based anti-corrosion coatings with both active (self-healing) and passive (barrier) performance. Also, the ZIF-67/GO NPs were modified by 3-Aminopropyl triethoxysilane (APS) to improve the particles compatibility with the epoxy matrix and control their solubility in saline media. The FE-SEM, FT-IR, UV-Vis, Raman, TGA, and low-angle XRD techniques were used to prove the successful ZIF-67 particles growth onto the GO platforms. Tafel (potentiodynamic) polarization test demonstrated that the ZIF-67/GO@APS NPs could protect the surface of steel through mixed anodic/cathodic type (O2 reduction/Fe oxidation) mechanisms and the corrosion current density of the iron sample decreased to 1.41 µA·cm-2. Interestingly, the epoxy coatings containing ZIF-67/GO and ZIF-67/GO@APS particles revealed long-term corrosion protection durability and outstanding self-healing anti-corrosion performance, which were well studied via EIS, salt spray, cathodic delamination, and pull-off techniques. The impedance value at the lowest frequency for the coating containing ZIF-67/GO@APS after 50 days decreased from 10.7 Ω·cm2 to 10.2 Ω·cm2 that showed the lowest reduction among the studied samples.
Collapse
Affiliation(s)
- Seyed Mohammad Lashgari
- Department of Surface Coatings and Corrosion, Institute for Color Science and Technology, P.O. Box 16765-654, Tehran, Iran
| | - Hossain Yari
- Department of Surface Coatings and Corrosion, Institute for Color Science and Technology, P.O. Box 16765-654, Tehran, Iran
| | - Mohammad Mahdavian
- Department of Surface Coatings and Corrosion, Institute for Color Science and Technology, P.O. Box 16765-654, Tehran, Iran
| | - Bahram Ramezanzadeh
- Department of Surface Coatings and Corrosion, Institute for Color Science and Technology, P.O. Box 16765-654, Tehran, Iran.
| | - Ghasem Bahlakeh
- Department of Chemical Engineering, Faculty of Engineering, Golestan University, Aliabad Katoul, Iran
| | - Mohammad Ramezanzadeh
- Department of Surface Coatings and Corrosion, Institute for Color Science and Technology, P.O. Box 16765-654, Tehran, Iran
| |
Collapse
|
41
|
Bermudez Jaimes JH, Torres Alvarez ME, Bannwart de Moraes E, Wolf Maciel MR, Maciel Filho R. Separation and Semi-Empiric Modeling of Ethanol-Water Solutions by Pervaporation Using PDMS Membrane. Polymers (Basel) 2020; 13:E93. [PMID: 33383641 PMCID: PMC7795344 DOI: 10.3390/polym13010093] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 11/20/2020] [Accepted: 11/27/2020] [Indexed: 11/18/2022] Open
Abstract
High energy demand, competitive fuel prices and the need for environmentally friendly processes have led to the constant development of the alcohol industry. Pervaporation is seen as a separation process, with low energy consumption, which has a high potential for application in the fermentation and dehydration of ethanol. This work presents the experimental ethanol recovery by pervaporation and the semi-empirical model of partial fluxes. Total permeate fluxes between 15.6-68.6 mol m-2 h-1 (289-1565 g m-2 h-1), separation factor between 3.4-6.4 and ethanol molar fraction between 16-171 mM (4-35 wt%) were obtained using ethanol feed concentrations between 4-37 mM (1-9 wt%), temperature between 34-50 ∘C and commercial polydimethylsiloxane (PDMS) membrane. From the experimental data a semi-empirical model describing the behavior of partial-permeate fluxes was developed considering the effect of both the temperature and the composition of the feed, and the behavior of the apparent activation energy. Therefore, the model obtained shows a modified Arrhenius-type behavior that calculates with high precision the partial-permeate fluxes. Furthermore, the versatility of the model was demonstrated in process such as ethanol recovery and both ethanol and butanol dehydration.
Collapse
Affiliation(s)
- John Hervin Bermudez Jaimes
- School of Chemical Engineering, Separation Process Development Laboratory, State University of Campinas, Albert Einstein 500, Campinas 13083-582, Brazil; (M.E.T.A.); (E.B.d.M.); (M.R.W.M.); (R.M.F.)
| | | | | | | | | |
Collapse
|
42
|
Castro-Muñoz R, Galiano F, Figoli A. Recent advances in pervaporation hollow fiber membranes for dehydration of organics. Chem Eng Res Des 2020. [DOI: 10.1016/j.cherd.2020.09.028] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
43
|
Liu LJ, Chen GE, Mao HF, Wang Y, Wan JJ. High performance polyvinylidene fluoride (PVDF) mixed matrix membrane (MMM) doped by various zeolite imidazolate frameworks. HIGH PERFORM POLYM 2020. [DOI: 10.1177/0954008320952525] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Zeolitic imidazolate framework (ZIF-8) in three particle sizes (40, 70 and 100 nm) was prepared through both solvothermal and hydrothermal methods and employed to decorate polyvinylidene fluoride (PVDF). The finger-like macro-voids, sponge-like poly-porous morphology and surface roughness of prepared membranes were characterized by SEM and AFM microscopy. The FTIR spectrum and XPS analysis bear out the chemical component. ZIF-8 has the characteristics of higher porosity and appropriate pore size, which is a condition for improving the permeability and pollution resistance of the modified membrane. Results indicated that different ZIF-8s have different enhancement effects on PVDF MMM. 100 nm ZIF-8 membrane possessed pure water flux (PWF) of 350 L m−2h−1, which was 10 times more than the bare membrane (30 L m−2h−1), and OVA flux recovery ration (FRR%) is 98%. 40 nm ZIF-8 membrane owned BSA FRR% of 98.4%. The 70 nm ZIF-8 showed the best mechanical properties. The dynamic contact angles of UP-Z70 ranged from 104.5° to 62.5° within 180 s. Furthermore, pore size distribution, molecular weight cut-off (MWCO) and porosity were also researched to evaluate the MMM. The dislodge of Reactive Black KN-B, Reactive Red 3BS and Reactive Brilliant Blue KN-R dyes by MMM were studied under different dye concentrations and transmembrane pressures. The membrane can provide selective separation methods for dyes and Reactive Brilliant Blue KN-R up to 99%. Overall, the permeability, hydrophilicy, anti-fouling performance and wastewater treatment of modified membranes were regulated by the ZIF-8 in a steerable blending reaction modification process.
Collapse
Affiliation(s)
- Lian-Jing Liu
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai, China
| | - Gui-E Chen
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai, China
| | - Hai-Fang Mao
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai, China
| | - Yang Wang
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai, China
| | - Jia-Jun Wan
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai, China
| |
Collapse
|
44
|
Constructing high-efficiency facilitated transport pathways via embedding heterostructured Ag+@MOF/GO laminates into membranes for pervaporative desulfurization. Sep Purif Technol 2020. [DOI: 10.1016/j.seppur.2020.116858] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
45
|
Liu G, Liu S, Ma K, Wang H, Wang X, Liu G, Jin W. Polyelectrolyte Functionalized Ti2CTx MXene Membranes for Pervaporation Dehydration of Isopropanol/Water Mixtures. Ind Eng Chem Res 2020. [DOI: 10.1021/acs.iecr.9b06881] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Affiliation(s)
- Guozhen Liu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, 30 Puzhu Road, Nanjing 211816, P. R. China
| | - Song Liu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, 30 Puzhu Road, Nanjing 211816, P. R. China
| | - Kang Ma
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, 30 Puzhu Road, Nanjing 211816, P. R. China
| | - Haoyu Wang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, 30 Puzhu Road, Nanjing 211816, P. R. China
| | - Xiaoyue Wang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, 30 Puzhu Road, Nanjing 211816, P. R. China
| | - Gongping Liu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, 30 Puzhu Road, Nanjing 211816, P. R. China
| | - Wanqin Jin
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, 30 Puzhu Road, Nanjing 211816, P. R. China
| |
Collapse
|