1
|
Mahajan S, Li Y. Toward Molecular Simulation Guided Design of Next-Generation Membranes: Challenges and Opportunities. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2025; 41:12388-12402. [PMID: 40375598 DOI: 10.1021/acs.langmuir.4c05181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2025]
Abstract
Membranes provide energy-efficient solutions for separating ions from water, ion-ion separation, neutral or charged molecules, and mixed gases. Understanding the fundamental mechanisms and design principles for these separation challenges has significant applications in the food and agriculture, energy, pharmaceutical, and electronics industries and environmental remediation. In situ experimental probes to explore Angstrom-nanometer length-scale and pico-nanosecond time-scale phenomena remain limited. Currently, molecular simulations such as density functional theory, ab initio molecular dynamics (MD), all-atom MD, and coarse-grained MD provide physics-based predictive models to study these phenomena. The status of molecular simulations to study transport mechanisms and state-of-the-art membrane separation is discussed. Furthermore, limitations and open challenges in molecular simulations are discussed. Finally, the importance of molecular simulations in generating data sets for machine learning and exploration of membrane design space is addressed.
Collapse
Affiliation(s)
- Subhamoy Mahajan
- Department of Mechanical Engineering, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Ying Li
- Department of Mechanical Engineering, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| |
Collapse
|
2
|
Zhang C, Bu G, Meng L, Lu D, Tong S, Yao Z, Zheng D, Zhang L. Molecular Dynamics Insights into Water Transport Mechanisms in Polyamide Membranes: Influence of Cross-Linking Degree. J Phys Chem B 2025; 129:1697-1706. [PMID: 39871475 DOI: 10.1021/acs.jpcb.4c06566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2025]
Abstract
Polyamide (PA) membranes are widely utilized in desalination and water treatment applications, yet the mechanisms underlying water transport within these amorphous polymer materials remain insufficiently understood. To gain more insight into these problems on a microscopic scale, we employ molecular dynamics (MD) simulations to analyze the relationship between the structural properties and the water permeation behavior of PA membranes. Two distinct atomistic models of PA membranes are developed by controlling their degrees of cross-linking (DC). We then conducted a comparative analysis on their microscopic structural properties and configurations of water inside the membranes and investigated how these differences lead to different water diffusion coefficients. Our results reveal that the membrane with a lower DC exhibits higher polymer mobility and a more orderly microscopic structure, allowing the formation of pores that can hold larger water clusters as well as more transient passages between pores, both contributing to an increased water diffusion coefficient. From these observations, we can conclude that water permeability within PA membranes is governed by both the morphology of semirigid pores and the oscillatory movements of the polymer chains. Overall, these findings contribute to a deeper understanding of the intricate mechanisms governing water permeation in PA membranes and may inform the design of more efficient membranes for reverse osmosis and other water treatment technologies.
Collapse
Affiliation(s)
- Chi Zhang
- Engineering Research Center of Membrane and Water Treatment of MOE, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, P. R. China
| | - Guangle Bu
- Engineering Research Center of Membrane and Water Treatment of MOE, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, P. R. China
- Future Environment Laboratory, Innovation Center of Yangtze River Delta, Zhejiang University, Jiaxing 314100, P. R. China
| | - Lida Meng
- Engineering Research Center of Membrane and Water Treatment of MOE, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, P. R. China
| | - Dan Lu
- Engineering Research Center of Membrane and Water Treatment of MOE, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, P. R. China
- Future Environment Laboratory, Innovation Center of Yangtze River Delta, Zhejiang University, Jiaxing 314100, P. R. China
| | - Sirui Tong
- College of Energy, Environment and Safety Engineering, China Jiliang University, Hangzhou, Zhejiang 310018, China
| | - Zhikan Yao
- Engineering Research Center of Membrane and Water Treatment of MOE, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, P. R. China
- Future Environment Laboratory, Innovation Center of Yangtze River Delta, Zhejiang University, Jiaxing 314100, P. R. China
| | - Danjun Zheng
- Engineering Research Center of Membrane and Water Treatment of MOE, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, P. R. China
| | - Lin Zhang
- Engineering Research Center of Membrane and Water Treatment of MOE, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, P. R. China
- Zhejiang Ecological Civilization Academy, Zhejiang University, Huzhou 313300, P. R. China
| |
Collapse
|
3
|
Shimura H. Development of an advanced reverse osmosis membrane based on detailed nanostructure analysis. Polym J 2022. [DOI: 10.1038/s41428-022-00627-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
4
|
Multiblock poly(ether-b-amide) copolymers comprised of PA1212 and PPO-PEO-PPO with specific moisture-responsive and antistatic properties. Chin J Chem Eng 2022. [DOI: 10.1016/j.cjche.2022.01.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
5
|
Fujimoto K, Nagai T, Yamaguchi T. Momentum removal to obtain the position-dependent diffusion constant in constrained molecular dynamics simulation. J Comput Chem 2021; 42:2136-2144. [PMID: 34406659 DOI: 10.1002/jcc.26742] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 07/26/2021] [Accepted: 07/28/2021] [Indexed: 11/12/2022]
Abstract
The position-dependent diffusion coefficient along with free energy profile are important parameters needed to study mass transport in heterogeneous systems such as biological and polymer membranes, and molecular dynamics (MD) calculation is a popular tool to obtain them. Among many methodologies, the Marrink-Berendsen (MB) method is often employed to calculate the position-dependent diffusion coefficient, in which the autocorrelation function of the force on a fixed molecule is related to the friction on the molecule. However, the diffusion coefficient is shown to be affected by the period of the removal of the center-of-mass velocity, τ v 0 , which is necessary when performing MD calculations using the Ewald method for Coulombic interaction. We have clarified theoretically in this study how this operation affects the diffusion coefficient calculated by the MB method, and the theoretical predictions are proven by MD calculations. Therefore, we succeeded in providing guidance on how to select an appropriate τ v 0 value in estimating the position-dependent diffusion coefficient by the MB method. This guideline is applicable also to the Woolf-Roux method.
Collapse
Affiliation(s)
- Kazushi Fujimoto
- Department of Materials Chemistry, Graduate School of Engineering, Nagoya University, Nagoya, Japan
| | - Tetsuro Nagai
- Department of Advanced Materials Science, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Japan
| | - Tsuyoshi Yamaguchi
- Department of Materials Process Engineering, Graduate School of Engineering, Nagoya University, Nagoya, Japan
| |
Collapse
|
6
|
Yagi K, Re S, Mori T, Sugita Y. Weight average approaches for predicting dynamical properties of biomolecules. Curr Opin Struct Biol 2021; 72:88-94. [PMID: 34592697 DOI: 10.1016/j.sbi.2021.08.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 08/21/2021] [Accepted: 08/24/2021] [Indexed: 11/16/2022]
Abstract
Recent advances in atomistic molecular dynamics (MD) simulations of biomolecules allow us to explore their conformational spaces widely, observing large-scale conformational fluctuations or transitions between distinct structures. To reproduce or refine experimental data using MD simulations, structure ensembles, which are characterized by multiple structures and their statistical weights on the rugged free-energy landscapes, are often used. Here, we summarize weight average approaches for various experimental measurements. Weight average approaches are now applied to hybrid quantum mechanics/molecular mechanics MD simulations to predict fast vibrational motions in a protein with a high accuracy for better understanding of molecular functions from atomic structures.
Collapse
Affiliation(s)
- Kiyoshi Yagi
- RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Suyong Re
- RIKEN Center for Biosystems Dynamics Research, 1-6-5 Minatojima-Minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan; Artificial Intelligence Center for Health and Biomedical Research, National Institutes of Biomedical Innovation, Health, and Nutrition 7-6-8, Saito-Asagi, Ibaraki, Osaka, 567-0085, Japan
| | - Takaharu Mori
- RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Yuji Sugita
- RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan; RIKEN Center for Biosystems Dynamics Research, 1-6-5 Minatojima-Minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan; RIKEN Center for Computational Science, 7-1-26 Minatojima-minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan.
| |
Collapse
|
7
|
Nagai T, Tsurumaki S, Urano R, Fujimoto K, Shinoda W, Okazaki S. Position-Dependent Diffusion Constant of Molecules in Heterogeneous Systems as Evaluated by the Local Mean Squared Displacement. J Chem Theory Comput 2020; 16:7239-7254. [DOI: 10.1021/acs.jctc.0c00448] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Tetsuro Nagai
- Department of Advanced Materials Science, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba 277-8561, Japan
- Department of Materials Chemistry, Graduate School of Engineering, Nagoya University, Nagoya, Aichi 464-8603, Japan
| | - Shuhei Tsurumaki
- Department of Materials Chemistry, Graduate School of Engineering, Nagoya University, Nagoya, Aichi 464-8603, Japan
| | - Ryo Urano
- Department of Materials Chemistry, Graduate School of Engineering, Nagoya University, Nagoya, Aichi 464-8603, Japan
| | - Kazushi Fujimoto
- Department of Materials Chemistry, Graduate School of Engineering, Nagoya University, Nagoya, Aichi 464-8603, Japan
| | - Wataru Shinoda
- Department of Materials Chemistry, Graduate School of Engineering, Nagoya University, Nagoya, Aichi 464-8603, Japan
| | - Susumu Okazaki
- Department of Advanced Materials Science, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba 277-8561, Japan
- Department of Materials Chemistry, Graduate School of Engineering, Nagoya University, Nagoya, Aichi 464-8603, Japan
| |
Collapse
|