1
|
AlJaberi FY, Ahmed SA, Makki HF, Naje AS, Zwain HM, Salman AD, Juzsakova T, Viktor S, Van B, Le PC, La DD, Chang SW, Um MJ, Ngo HH, Nguyen DD. Recent advances and applicable flexibility potential of electrochemical processes for wastewater treatment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 867:161361. [PMID: 36610626 DOI: 10.1016/j.scitotenv.2022.161361] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 12/23/2022] [Accepted: 12/30/2022] [Indexed: 06/17/2023]
Abstract
This study examined >140 relevant publications from the last few years (2018-2021). In this study, classification was reviewed depending on the operation's progress. Electrocoagulation (EC), electrooxidation (EO), electroflotation (EF), electrodialysis (ED), and electro-Fenton (EFN) processes have received considerable attention. The type of action (individual or hybrid) for each electrochemical procedure was evaluated, and statistical analysis was performed to compare them as a new manner of reviewing cited papers providing a massive amount of information efficiently to the readers. Individual or hybrid operation progress of the electrochemical techniques is critical issues. Their design, operation, and maintenance costs vary depending on the in-situ conditions, as evidenced by surveyed articles and statistical analyses. This work also examines the variables affecting the elimination efficacy, such as the applied current, reaction time, pH, type of electrolyte, initial pollutant concentration, and energy consumption. In addition, owing to its efficacy in removing toxins, the hybrid activity showed a good percentage among the studies reviewed. The promise of each wastewater treatment technology depends on the type of contamination. In some cases, EO requires additives to oxidise the pollutants. EF and EFN eliminated lightweight organic pollutants. ED has been used to treat saline water. Compared to other methods, EC has been extensively employed to remove a wide variety of contaminants.
Collapse
Affiliation(s)
- Forat Yasir AlJaberi
- Chemical Engineering Department, College of Engineering, Al-Muthanna University, Al-Muthanna, Iraq.
| | - Shaymaa A Ahmed
- Chemical Engineering Department, College of Engineering, University of Baghdad, Baghdad, Iraq
| | - Hasan F Makki
- Chemical Engineering Department, College of Engineering, University of Baghdad, Baghdad, Iraq
| | - Ahmed Samir Naje
- College of Engineering, Al-Qasim Green University, Al-Qasim Province, 51001 Babylon, Iraq
| | - Haider M Zwain
- College of Engineering, Al-Qasim Green University, Al-Qasim Province, 51001 Babylon, Iraq
| | - Ali Dawood Salman
- Sustainability Solutions Research Lab, University of Pannonia, Veszprém, Hungary; Department of Chemical and Petroleum Refining Engineering, College of Oil and Gas Engineering, Basra University, Iraq
| | - Tatjána Juzsakova
- Sustainability Solutions Research Lab, University of Pannonia, Veszprém, Hungary
| | - Sebestyen Viktor
- Sustainability Solutions Research Lab, University of Pannonia, Veszprém, Hungary
| | - B Van
- Institute of Research and Development, Duy Tan University, 550000 Danang, Viet Nam; School of Medicine and Pharmacy, Duy Tan University, 550000 Danang, Viet Nam.
| | - Phuoc-Cuong Le
- The University of Danang-University of Science and Technology, 54 Nguyen Luong Bang, Danang 550000, Viet Nam.
| | - D Duong La
- Institute of Chemistry and Materials, Nghia Do, Cau Giay, Hanoi 100000, Viet Nam
| | - S Woong Chang
- Department of Environmental Energy Engineering, Kyonggi University, Suwon 442-760, Republic of Korea
| | - Myoung-Jin Um
- Department of Civil Engineering, Kyonggi University, Suwon 442-760, Republic of Korea
| | - Huu Hao Ngo
- School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NSW 2007, Australia
| | - D Duc Nguyen
- Department of Environmental Energy Engineering, Kyonggi University, Suwon 442-760, Republic of Korea; Faculty of Environmental and Food Engineering, Nguyen Tat Thanh University, 300A Nguyen Tat Thanh, District 4, HCM City 755414, Viet Nam.
| |
Collapse
|
2
|
Carmona B, Abejón R. Innovative Membrane Technologies for the Treatment of Wastewater Polluted with Heavy Metals: Perspective of the Potential of Electrodialysis, Membrane Distillation, and Forward Osmosis from a Bibliometric Analysis. MEMBRANES 2023; 13:385. [PMID: 37103812 PMCID: PMC10145262 DOI: 10.3390/membranes13040385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 03/20/2023] [Accepted: 03/26/2023] [Indexed: 06/19/2023]
Abstract
A bibliometric analysis, using the Scopus database as a source, was carried out in order to study the scientific documents published up to 2021 regarding the use of electrodialysis, membrane distillation, and forward osmosis for the removal of heavy metals from wastewater. A total of 362 documents that fulfilled the search criteria were found, and the results from the corresponding analysis revealed that the number of documents greatly increased after the year 2010, although the first document was published in 1956. The exponential evolution of the scientific production related to these innovative membrane technologies confirmed an increasing interest from the scientific community. The most prolific country was Denmark, which contributed 19.3% of the published documents, followed by the two main current scientific superpowers: China and the USA (with 17.4% and 7.5% contributions, respectively). Environmental Science was the most common subject (55.0% of contributions), followed by Chemical Engineering (37.3% of contributions) and Chemistry (36.5% of contribution). The prevalence of electrodialysis over the other two technologies was clear in terms of relative frequency of the keywords. An analysis of the main hot topics identified the main advantages and drawbacks of each technology, and revealed that examples of their successful implementation beyond the lab scale are still scarce. Therefore, complete techno-economic evaluation of the treatment of wastewater polluted with heavy metals via these innovative membrane technologies must be encouraged.
Collapse
Affiliation(s)
- Benjamín Carmona
- Departamento de Ingeniería Química y Bioprocesos, Universidad de Santiago de Chile (USACH), Av. Libertador Bernardo O'Higgins 3363, Estación Central, Santiago 9170019, Chile
| | - Ricardo Abejón
- Departamento de Ingeniería Química y Bioprocesos, Universidad de Santiago de Chile (USACH), Av. Libertador Bernardo O'Higgins 3363, Estación Central, Santiago 9170019, Chile
| |
Collapse
|
3
|
Mir N, Bicer Y. Integration of electrodialysis with renewable energy sources for sustainable freshwater production: A review. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 289:112496. [PMID: 33839606 DOI: 10.1016/j.jenvman.2021.112496] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 03/16/2021] [Accepted: 03/25/2021] [Indexed: 06/12/2023]
Abstract
There is an increasing demand for clean water as the population of the earth is exponentially increasing. Many countries are facing water shortage problems, which are bound to become more prevalent in upcoming years. Therefore, it is necessary to investigate sustainable methods to produce clean water for drinking, irrigation, agriculture and domestic use. Electrodialysis uses electricity and specialized membranes to separate ionic substances from water. This practice can be used for desalination and wastewater treatment. To make the process more sustainable, electrodialysis can be coupled with renewable sources of energy such as solar and wind power. Photo-electrodialysis and photovoltaic-electrodialysis are two methods commonly used to couple solar energy with the electrodialysis process. However, these processes are dependent on the availability of sunlight and wind as weather conditions and the positioning of the sun vary by time. Electrodialysis is more favourable for brackish water desalination instead of seawater desalination as it has a lower energy requirement. Desalinating brackish water (1000-5000 ppm) has an energy requirement in the range of 0.4-4 kWh/m3. This review paper summarizes the fundamental concepts of electrodialysis technology and its integration with renewable energy sources such as photo electrodialysis, photovoltaic assisted electrodialysis, reversible electrodialysis/electrodialysis and wind energy-driven electrodialysis. Some aspects that have been considered are the freshwater capacity, specific energy and costs of the hybrid systems.
Collapse
Affiliation(s)
- Namra Mir
- Division of Sustainable Development (DSD), College of Science and Engineering (CSE), Hamad Bin Khalifa University (HBKU), Education City, Qatar Foundation (QF), Doha, Qatar.
| | - Yusuf Bicer
- Division of Sustainable Development (DSD), College of Science and Engineering (CSE), Hamad Bin Khalifa University (HBKU), Education City, Qatar Foundation (QF), Doha, Qatar.
| |
Collapse
|
4
|
Gurreri L, Tamburini A, Cipollina A, Micale G. Electrodialysis Applications in Wastewater Treatment for Environmental Protection and Resources Recovery: A Systematic Review on Progress and Perspectives. MEMBRANES 2020; 10:E146. [PMID: 32660014 PMCID: PMC7408617 DOI: 10.3390/membranes10070146] [Citation(s) in RCA: 109] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 07/02/2020] [Accepted: 07/04/2020] [Indexed: 12/19/2022]
Abstract
This paper presents a comprehensive review of studies on electrodialysis (ED) applications in wastewater treatment, outlining the current status and the future prospect. ED is a membrane process of separation under the action of an electric field, where ions are selectively transported across ion-exchange membranes. ED of both conventional or unconventional fashion has been tested to treat several waste or spent aqueous solutions, including effluents from various industrial processes, municipal wastewater or salt water treatment plants, and animal farms. Properties such as selectivity, high separation efficiency, and chemical-free treatment make ED methods adequate for desalination and other treatments with significant environmental benefits. ED technologies can be used in operations of concentration, dilution, desalination, regeneration, and valorisation to reclaim wastewater and recover water and/or other products, e.g., heavy metal ions, salts, acids/bases, nutrients, and organics, or electrical energy. Intense research activity has been directed towards developing enhanced or novel systems, showing that zero or minimal liquid discharge approaches can be techno-economically affordable and competitive. Despite few real plants having been installed, recent developments are opening new routes for the large-scale use of ED techniques in a plethora of treatment processes for wastewater.
Collapse
Affiliation(s)
| | - Alessandro Tamburini
- Dipartimento di Ingegneria, Università degli Studi di Palermo, viale delle Scienze Ed. 6, 90128 Palermo, Italy; (L.G.); (A.C.); (G.M.)
| | | | | |
Collapse
|