1
|
Xu J, Mu J, Yao Y, Xu Y, Liao J, Ruan H, Shen J. Ion Resource Recovery via Electrodialysis Fabricated with Poly(Arylene Ether Sulfone)-Based Anion Exchange Membrane in Organic Solvent System. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2306313. [PMID: 37948422 DOI: 10.1002/smll.202306313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 09/28/2023] [Indexed: 11/12/2023]
Abstract
Ion resource recovery from organic wastewater is beneficial for achieving emission peaks and carbon neutrality targets. Advanced organic solvent-resistant anion exchange membranes (AEMs) for treating organic wastewater via electrodialysis (ED) are of significant interest. Herein, a kind of 3D network AEM based on poly(arylene ether sulfone) cross-linked with a flexible cross-linker (DBH) for ion resource recovery via ED in organic solvent system is reported. Investigations demonstrate that the as-prepared AEMs show excellent dimensional stability in 60% DMSO (aq.), 60% ethanol (aq.), and 60% acetone (aq.), respectively. For example, the optimized AEM shows very low swelling ratios of 1.04-1.10% in the organic solvents. ED desalination ratio can reach 99.1% after exposure of the AEM to organic solvents for 30 days, and remain > 99% in a mixture solution containing organic solvents and 0.5 m NaCl. Additionally, at a current density of 2.5 mA cm-2, the optimized AEM soaked in organic solvents for 30 days shows a high perm-selectivity (Cl-/SO4 2-) of 133.09 (vs 13.11, Neosepta ACS). The superior ED performance is attributed to the stable continuous sub-nanochannels within AEM confirmed by SAXS, rotational energy barriers, etc. This work shows the potential application of cross-linked AEMs for resource recovery in organic wastewater.
Collapse
Affiliation(s)
- Jingwen Xu
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Junjie Mu
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Yuyang Yao
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Yanqing Xu
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Junbin Liao
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Huimin Ruan
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Jiangnan Shen
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014, China
| |
Collapse
|
2
|
Hu Y, Xing Y, Yue H, Chen T, Diao Y, Wei W, Zhang S. Ionic liquids revolutionizing biomedicine: recent advances and emerging opportunities. Chem Soc Rev 2023; 52:7262-7293. [PMID: 37751298 DOI: 10.1039/d3cs00510k] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/27/2023]
Abstract
Ionic liquids (ILs), due to their inherent structural tunability, outstanding miscibility behavior, and excellent electrochemical properties, have attracted significant research attention in the biomedical field. As the application of ILs in biomedicine is a rapidly emerging field, there is still a need for systematic analyses and summaries to further advance their development. This review presents a comprehensive survey on the utilization of ILs in the biomedical field. It specifically emphasizes the diverse structures and properties of ILs with their relevance in various biomedical applications. Subsequently, we summarize the mechanisms of ILs as potential drug candidates, exploring their effects on various organisms ranging from cell membranes to organelles, proteins, and nucleic acids. Furthermore, the application of ILs as extractants and catalysts in pharmaceutical engineering is introduced. In addition, we thoroughly review and analyze the applications of ILs in disease diagnosis and delivery systems. By offering an extensive analysis of recent research, our objective is to inspire new ideas and pathways for the design of innovative biomedical technologies based on ILs.
Collapse
Affiliation(s)
- Yanhui Hu
- Beijing Key Laboratory of Ionic Liquids Clean Process, CAS Key Laboratory of Green Process and Engineering, State Key Laboratory of Multiphase Complex Systems, State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China.
- Innovation Academy for Green Manufacture, Chinese Academy of Sciences, Beijing 100190, China
- College of Chemical and Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
- Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences, Chengdu 610041, China
| | - Yuyuan Xing
- Beijing Key Laboratory of Ionic Liquids Clean Process, CAS Key Laboratory of Green Process and Engineering, State Key Laboratory of Multiphase Complex Systems, State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China.
- Innovation Academy for Green Manufacture, Chinese Academy of Sciences, Beijing 100190, China
- College of Chemical and Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hua Yue
- Beijing Key Laboratory of Ionic Liquids Clean Process, CAS Key Laboratory of Green Process and Engineering, State Key Laboratory of Multiphase Complex Systems, State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China.
- College of Chemical and Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Tong Chen
- College of Chemical and Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
- Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences, Chengdu 610041, China
| | - Yanyan Diao
- Beijing Key Laboratory of Ionic Liquids Clean Process, CAS Key Laboratory of Green Process and Engineering, State Key Laboratory of Multiphase Complex Systems, State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China.
- Innovation Academy for Green Manufacture, Chinese Academy of Sciences, Beijing 100190, China
- College of Chemical and Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wei Wei
- Beijing Key Laboratory of Ionic Liquids Clean Process, CAS Key Laboratory of Green Process and Engineering, State Key Laboratory of Multiphase Complex Systems, State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China.
- College of Chemical and Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Suojiang Zhang
- Beijing Key Laboratory of Ionic Liquids Clean Process, CAS Key Laboratory of Green Process and Engineering, State Key Laboratory of Multiphase Complex Systems, State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China.
- Innovation Academy for Green Manufacture, Chinese Academy of Sciences, Beijing 100190, China
- College of Chemical and Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
3
|
Cao D, Sun X, Gao H, Pan L, Li N, Li Y. Crosslinked Polynorbornene-Based Anion Exchange Membranes with Perfluorinated Branch Chains. Polymers (Basel) 2023; 15:polym15051073. [PMID: 36904314 PMCID: PMC10007585 DOI: 10.3390/polym15051073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 02/09/2023] [Accepted: 02/17/2023] [Indexed: 02/24/2023] Open
Abstract
To investigate the effect of perfluorinated substituent on the properties of anion exchange membranes (AEMs), cross-linked polynorbornene-based AEMs with perfluorinated branch chains were prepared via ring opening metathesis polymerization, subsequent crosslinking reaction, and quaternization. The crosslinking structure enables the resultant AEMs (CFnB) to exhibit a low swelling ratio, high toughness, and high water uptake, simultaneously. In addition, benefiting from the ion gathering and side chain microphase separation caused by their flexible backbone and perfluorinated branch chain, these AEMs had high hydroxide conductivity up to 106.9 mS cm-1 at 80 °C even at low ion content (IEC < 1.6 meq g-1). This work provides a new approach to achieve improved ion conductivity at low ion content by introducing the perfluorinated branch chains and puts forward a referable way to prepare AEMs with high performance.
Collapse
Affiliation(s)
- Dafu Cao
- Institute of Advanced Polymer Materials, School of Materials Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Xiaowei Sun
- Institute of Advanced Polymer Materials, School of Materials Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Huan Gao
- Institute of Advanced Polymer Materials, School of Materials Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Li Pan
- Institute of Advanced Polymer Materials, School of Materials Science and Engineering, Tianjin University, Tianjin 300350, China
- Correspondence:
| | - Nanwen Li
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan 030001, China
| | - Yuesheng Li
- Institute of Advanced Polymer Materials, School of Materials Science and Engineering, Tianjin University, Tianjin 300350, China
- Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300072, China
| |
Collapse
|
4
|
Ren Y, Zhang A, Li L, Ma L, Jin Q, Yuan M, He G, Zhang F. Hydrogen bonding promoted electrodialysis performance of a novel blend anion exchange membrane. Sep Purif Technol 2023. [DOI: 10.1016/j.seppur.2022.122419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
5
|
Structural optimization and antibacterial property of alkylimidazole salt/carboxymethyl cellulose/starch composite films. Carbohydr Polym 2022; 298:120098. [DOI: 10.1016/j.carbpol.2022.120098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 09/06/2022] [Accepted: 09/07/2022] [Indexed: 11/20/2022]
|
6
|
Anion exchange membranes with high power density and energy efficiency for aqueous organic redox flow batteries. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.141565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
7
|
Designing monovalent selective anion exchange membranes for the simultaneous separation of chloride and fluoride from sulfate in an equimolar ternary mixture. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.121148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
8
|
Cao D, Nie F, Liu M, Sun X, Wang B, Wang F, Li N, Wang B, Ma Z, Pan L, Li Y. Crosslinked anion exchange membranes prepared from highly reactive polyethylene and polypropylene intermediates. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.120921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
9
|
Enhanced monovalent anion selectivity of poly(2,6-dimethyl-1,4-phenylene oxide)-based amphoteric ion exchange membranes having rough surface. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.120911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
10
|
Wang W, Zhang Y, Tan M, Xue C, Zhou W, Bao H, Hon Lau C, Yang X, Ma J, Shao L. Recent advances in monovalent ion selective membranes towards environmental remediation and energy harvesting. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121520] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
11
|
Ruan H, Yu L, Yao Y, Li J, Yan J, Liao J, Shen J. Poly(Vinyl Alcohol)-Based Anion Exchange Membranes with Improved Antifouling Potentials and Reduced Swelling Ratios for Electrodialysis Application. Ind Eng Chem Res 2022. [DOI: 10.1021/acs.iecr.2c01110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Huimin Ruan
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Lu Yu
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Yuyang Yao
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Junhua Li
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Jianlang Yan
- Shaoxing Zhongchang Chemical Co., Ltd., Shaoxing 312000, China
| | - Junbin Liao
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Jiangnan Shen
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, China
| |
Collapse
|
12
|
Zhao Z, Li X, Zhang H, Sheng F, Xu T, Zhu Y, Zhang H, Ge L, Xu T. Polyamide-Based Electronanofiltration Membranes for Efficient Anion Separation. Ind Eng Chem Res 2022. [DOI: 10.1021/acs.iecr.2c01418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Zhang Zhao
- Anhui Provincial Engineering Laboratory of Functional Membrane Materials and Technology, Department of Applied Chemistry, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230026, People’s Republic of China
| | - Xingya Li
- Anhui Provincial Engineering Laboratory of Functional Membrane Materials and Technology, Department of Applied Chemistry, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230026, People’s Republic of China
| | - Hao Zhang
- Anhui Provincial Engineering Laboratory of Functional Membrane Materials and Technology, Department of Applied Chemistry, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230026, People’s Republic of China
- Department of Chemical Engineering, Monash University, Clayton, Victoria 3800, Australia
| | - Fangmeng Sheng
- Anhui Provincial Engineering Laboratory of Functional Membrane Materials and Technology, Department of Applied Chemistry, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230026, People’s Republic of China
| | - Tingting Xu
- Anhui Provincial Engineering Laboratory of Functional Membrane Materials and Technology, Department of Applied Chemistry, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230026, People’s Republic of China
| | - Yanran Zhu
- Anhui Provincial Engineering Laboratory of Functional Membrane Materials and Technology, Department of Applied Chemistry, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230026, People’s Republic of China
| | - Huacheng Zhang
- Chemical and Environmental Engineering, School of Engineering, RMIT University, Melbourne, Victoria 3000, Australia
| | - Liang Ge
- Anhui Provincial Engineering Laboratory of Functional Membrane Materials and Technology, Department of Applied Chemistry, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230026, People’s Republic of China
- Applied Engineering Technology Research Center for Functional Membranes, Institute of Advanced Technology, University of Science and Technology of China, Hefei 230088, People’s Republic of China
| | - Tongwen Xu
- Anhui Provincial Engineering Laboratory of Functional Membrane Materials and Technology, Department of Applied Chemistry, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230026, People’s Republic of China
| |
Collapse
|
13
|
Zhu C, Li J, Liao J, Chen Q, Xu Y, Ruan H, Shen J. Acid enrichment via electrodialyser fabricated with poly(vinyl chloride)-based anion exchange membrane: Effect of hydrophobicity of aliphatic side-chains tethered on imidazolium groups. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.120907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
14
|
Wang S, Wang Z, Xu J, Liu Q, Sui Z, Du X, Cui Y, Yuan Y, Yu J, Wang Y, Chang Y. Construction of N-spirocyclic cationic three-dimensional highly stable transport channels by electrospinning for anion exchange membrane fuel cells. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.120852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
15
|
Pilot-Scale Selective Electrodialysis for the Separation of Chloride and Sulphate from High-Salinity Wastewater. MEMBRANES 2022; 12:membranes12060610. [PMID: 35736317 PMCID: PMC9227537 DOI: 10.3390/membranes12060610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 05/30/2022] [Accepted: 05/31/2022] [Indexed: 11/30/2022]
Abstract
The separation of chloride and sulphate is important for the treatment of high salt wastewater, and monovalent selective electrodialysis (MSED) has advantages in terms of energy consumption and pre-treatment costs compared to nanofiltration salt separation. Most of the research on monovalent anion-selective membranes (MASM) is still on a laboratory scale due to the preparation process, cost, and other reasons. In this study, a low-cost, easy-to-operate modification scheme was used to prepare MASM, which was applied to assemble a pilot-scale electrodialysis device to treat reverse osmosis concentrated water with a salt content of 4% to 5%. The results indicate that the optimum operating conditions for the device are: 250 L/h influent flow rate for the concentration and dilute compartments, 350 L/h influent flow rate for the electrode compartment and a constant voltage of 20 V. The separation effect of the pilot electrodialysis plant at optimal operating conditions was: the Cl− and SO42− transmission rates of 80% and 2.54% respectively, the separation efficiency (S) of 93.85% and the Energy consumption per unit of NaCl (ENaCl) of 0.344 kWh/kg. The analysis of the variation of the three parameters of selective separation performance during electrodialysis indicates that the separation efficiency (S) is a suitable parameter for measuring the selective separation performance of the device compared to the monovalent selectivity coefficient (PSO42−Cl−).
Collapse
|
16
|
Chen Q, Yao Y, Liao J, Li J, Xu J, Wang T, Tang Y, Xu Y, Ruan H, Shen J. Subnanometer Ion Channel Anion Exchange Membranes Having a Rigid Benzimidazole Structure for Selective Anion Separation. ACS NANO 2022; 16:4629-4641. [PMID: 35226457 DOI: 10.1021/acsnano.1c11264] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Ion-conductive polymers having a well-defined phase-separated structure show the potential application of separating mono- and bivalent ion separation. In this work, three side-chain-type poly(arylene ether sulfone)-based anion exchange membranes (AEMs) have been fabricated to investigate the effect of the stiffness of the polymer backbone within AEMs on the Cl-/NO3- and Cl-/SO42- separation performance. Our investigations via small-angle X-ray scattering (SAXS), positron annihilation, and differential scanning calorimetry (DSC) demonstrate that the as-prepared AEM with a rigid benzimidazole structure in the backbone bears subnanometer ion channels resulting from the arrangement of the rigid polymer backbone. In particular, SAXS results demonstrate that the rigid benzimidazole-containing AEM in the wet state has an ion cluster size of 0.548 nm, which is smaller than that of an AEM with alkyl segments in the backbone (0.760 nm). Thus, in the electrodialysis (ED) process, the former exhibits a superior capacity of separating Cl-/SO42- ions relative to latter. Nevertheless, the benzimidazole-containing AEM shows an inability to separate the Cl-/NO3- ions, which is possibly due to the similar ion size of the two. The higher rotational energy barrier (4.3 × 10-3 Hartree) of benzimidazole units and the smaller polymer matrix free-volume (0.636%) in the AEM significantly contribute to the construction of smaller ion channels. As a result, it is believed that the rigid benzimidazole structure of this kind is a benefit to the construction of stable subnanometer ion channels in the AEM that can selectively separate ions with different sizes.
Collapse
Affiliation(s)
- Quan Chen
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Yuyang Yao
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Junbin Liao
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Junhua Li
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Jingwen Xu
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Tongtong Wang
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Yuanyuan Tang
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Yanqing Xu
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Huimin Ruan
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Jiangnan Shen
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, China
| |
Collapse
|
17
|
Yuan Y, Du X, Zhang H, Wang H, Wang Z. Poly (isatin biphenylene) polymer containing ferrocenium derivatives for anion exchange membrane fuel cell. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2021.119986] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
18
|
Tuning the length of aliphatic chain segments in aromatic poly(arylene ether sulfone) to tailor the micro-structure of anion-exchange membrane for improved proton blocking performance. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2021.119860] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
19
|
Zhang D, Wang Y, Wang X, Chen B, Wang Y, Jiang C, Xu T. Physical and chemical synergistic strategy: A facile approach to fabricate monovalent ion permselective membranes. Chem Eng Sci 2021. [DOI: 10.1016/j.ces.2021.116873] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
20
|
Wang C, Liao J, Li J, Chen Q, Ruan H, Shen J. Alkaline enrichment via electrodialysis with alkaline stable side-chain-type polysulfone-based anion exchange membranes. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2021.119075] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
21
|
Zou Z, Wu L, Luo T, Yan Z, Wang X. Assessment of anion exchange membrane selectivity with ionic membrane conductivity, revised with Manning's theory or the Kohlrausch's law. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2021.119496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
22
|
Golubenko D, Yaroslavtsev A. Effect of current density, concentration of ternary electrolyte and type of cations on the monovalent ion selectivity of surface-sulfonated graft anion-exchange membranes: modelling and experiment. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2021.119466] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
23
|
Shen P, Liao J, Chen Q, Ruan H, Shen J. Organic solvent resistant Kevlar nanofiber-based cation exchange membranes for electrodialysis applications. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2021.119300] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
24
|
Yang S, Yu S, Yu L, Liu Y, Liao J, Shen J, Gao C. Cation Exchange Membranes Coated with Polyethyleneimine and Crown Ether to Improve Monovalent Cation Electrodialytic Selectivity. MEMBRANES 2021; 11:membranes11050351. [PMID: 34068766 PMCID: PMC8151526 DOI: 10.3390/membranes11050351] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 05/06/2021] [Accepted: 05/07/2021] [Indexed: 12/03/2022]
Abstract
Developing monovalent cation permselective membranes (MCPMs) with high-efficient permselectivity is the core concern in specific industrial applications. In this work, we have fabricated a series of novel cation exchange membranes (CEMs) based on sulfonated polysulfone (SPSF) surface modification by polyethyleneimine (PEI) and 4′-aminobenzo-12-crown-4 (12C4) codeposited with dopamine (DA) successively, which was followed by the cross-linking of glutaraldehyde (GA). The as-prepared membranes before and after modification were systematically characterized with regard to their structures as well as their physicochemical and electrochemical properties. Particularly, the codeposition sequence of modified ingredients was investigated on galvanostatic permselectivity to cations. The modified membrane (M-12C4-0.50-PEI) exhibits significantly prominent selectivity to Li+ ions (PMg2+Li+ = 5.23) and K+ ions (PMg2+K+ = 13.56) in Li+/Mg2+ and K+/Mg2+ systems in electrodialysis (ED), which is far superior to the pristine membrane (M-0, PMg2+Li+ = 0.46, PMg2+K+ = 1.23) at a constant current density of 5.0 mA·cm−2. It possibly arises from the synergistic effects of electrostatic repulsion (positively charged PEI), pore-size sieving (distribution of modified ingredients), and specific interaction effect (12C4 ~Li+). This facile strategy may provide new insights into developing selective CEMs in the separation of specific cations by ED.
Collapse
Affiliation(s)
- Shanshan Yang
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, China; (S.Y.); (S.Y.); (L.Y.); (J.L.)
| | - Shuaijun Yu
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, China; (S.Y.); (S.Y.); (L.Y.); (J.L.)
| | - Lu Yu
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, China; (S.Y.); (S.Y.); (L.Y.); (J.L.)
| | - Yuanwei Liu
- Department of Chemical Engineering and Safety, Binzhou University, Binzhou 256600, China;
| | - Junbin Liao
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, China; (S.Y.); (S.Y.); (L.Y.); (J.L.)
| | - Jiangnan Shen
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, China; (S.Y.); (S.Y.); (L.Y.); (J.L.)
- Correspondence:
| | - Congjie Gao
- Center for Membrane and Water Science & Technology, Zhejiang University of Technology, Hangzhou 310014, China;
| |
Collapse
|
25
|
Ruan H, Pan N, Wang C, Yu L, Liao J, Shen J. Functional UiO-66 Series Membranes with High Perm Selectivity of Monovalent and Bivalent Anions for Electrodialysis Applications. Ind Eng Chem Res 2021. [DOI: 10.1021/acs.iecr.0c05992] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Huimin Ruan
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Nengxiu Pan
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Chao Wang
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Lu Yu
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Junbin Liao
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Jiangnan Shen
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, China
| |
Collapse
|
26
|
A two-step strategy for the preparation of anion-exchange membranes based on poly(vinylidenefluoride-co-hexafluoropropylene) for electrodialysis desalination. POLYMER 2021. [DOI: 10.1016/j.polymer.2021.123508] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
27
|
Exploring the acid enrichment application of piperidinium-functionalized cross-linked poly(2,6-dimethyl-1,4-phenylene oxide) anion exchange membranes in electrodialysis. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2020.118999] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
28
|
Prepared poly(aryl piperidinium) anion exchange membranes for acid recovery to improve dialysis coefficients and selectivity. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2020.118805] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
29
|
Yu S, Zhu J, Liao J, Ruan H, Sotto A, Shen J. Homogeneous trimethylamine-quaternized polysulfone-based anion exchange membranes with crosslinked structure for electrodialysis desalination. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2020.117874] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
30
|
High conductivity and alkali-resistant stability of imidazole side chain crosslinked anion exchange membrane. POLYMER 2020. [DOI: 10.1016/j.polymer.2020.123085] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
31
|
Liao J, Chen Q, Pan N, Yu X, Gao X, Shen J, Gao C. Amphoteric blend ion-exchange membranes for separating monovalent and bivalent anions in electrodialysis. Sep Purif Technol 2020. [DOI: 10.1016/j.seppur.2020.116793] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|