1
|
Zhang C, Zhou J, Wang Y. Effects of Carbon Spacer Length on Conformational Transitions and Protein Adsorption of Polyzwitterions. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:13365-13374. [PMID: 38904255 DOI: 10.1021/acs.langmuir.4c00456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/22/2024]
Abstract
The properties of polyzwitterions are closely linked to their carbon spacer length (CSL) between oppositely charged groups. A thorough understanding of the effect of CSL on the properties of polyzwitterion-functionalized membranes is important for their fouling resistance and separation performances. In this work, polyzwitterion-functionalized membranes with different CSLs are prepared by coupling selective swelling-induced pore generation with zwitterionization, and the investigation is focused on comprehending the molecular mechanisms underlying protein resistance and conformational transitions within polyzwitterions under varying CSLs. The zwitterionized films show an enhancement in the surface negative potential with the increase of CSL, attributed to the negatively charged groups distanced from the positively charged groups. Quartz crystal microbalance with dissipation (QCM-D) demonstrates that zwitterionized films with different CSLs display distinct levels of resistance to protein adsorption. The trimethylamine N-oxide-derived polymer (PTMAO, CSL = 0) zwitterionized film shows the highest resistance compared to the poly(3-[dimethyl(2'-methacryloyloxyethyl] ammonio) ethanesulfonate (PMAES, CSL = 2) zwitterionized film and the poly(sulfobetaine methacrylate) (PSBMA, CSL = 3) zwitterionized film, owing to its electrical neutrality and pronounced hydrophilicity. Moreover, analysis of the anti-polyelectrolyte behaviors reveals that PTMAO does not undergo a significant conformation transition in deionized water and salt solutions, while the conformations of PMAES and PSBMA display to be more salt-dependent as the CSL increases, attributed to their increased polarization and dipole moment. As a result, the permeability of zwitterionized membranes exhibits enhanced salt responsiveness with the increase in CSL. The findings of this study are expected to facilitate the design of adsorption-resistant surfaces desired in diverse fields.
Collapse
Affiliation(s)
- Chenxu Zhang
- Research Institute of Interdisciplinary Science & School of Materials Science and Engineering, Dongguan University of Technology, Dongguan, Guangdong 523808, China
| | - Jiemei Zhou
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing, Jiangsu 211816, China
| | - Yong Wang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing, Jiangsu 211816, China
- School of Energy and Environment, Southeast University, Nanjing, Jiangsu 210096, China
| |
Collapse
|
2
|
Mao H, Zhou S, Li M, Wang R, Ma Z, Xiao H, Xue A, Zhao Y, Peng W, Chen C. PVDF ultrafiltration membrane with enhanced mechanical and filtration performance by hydrophilic pH-response nanofibers modification. Sep Purif Technol 2023. [DOI: 10.1016/j.seppur.2023.123613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
|
3
|
Zhou MY, Su QW, Yu WH, Fang LF, Zhu BK. Organic solvent nanofiltration with nanoparticles aggregation based on electrostatic interaction for molecular separation. J Memb Sci 2023. [DOI: 10.1016/j.memsci.2023.121409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
4
|
Qiu S, Li Z, Ye X, Ying X, Zhou J, Wang Y. Selective Swelling of Polystyrene (PS)/Poly(dimethylsiloxane) (PDMS) Block Copolymers in Alkanes. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c01903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Shoutian Qiu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing211816, Jiangsu, P. R. China
| | - Zhuo Li
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing211816, Jiangsu, P. R. China
| | - Xiangyue Ye
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing211816, Jiangsu, P. R. China
| | - Xiang Ying
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing211816, Jiangsu, P. R. China
| | - Jiemei Zhou
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing211816, Jiangsu, P. R. China
| | - Yong Wang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing211816, Jiangsu, P. R. China
| |
Collapse
|
5
|
Chen J, Wang H, Liu X, Han X, Liu H. Multiple strategies to control the hydrophilic-hydrophobic balance of P(DMA- co-DMAEMA- co-QDMAEMA) coatings. SOFT MATTER 2022; 18:4913-4922. [PMID: 35726664 DOI: 10.1039/d2sm00521b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The regulation of the hydrophilic-hydrophobic balance of polymers has an important influence not only on their aggregation behavior in aqueous solution, but also on their adhesion properties on the surface of substrates and the applications of the modified surfaces. Based on this, a random copolymer poly(dopamine methacrylamide-co-2-(dimethylamino)ethyl methacrylate) (P(DMA-co-DMAEMA)) was synthesized as a starting polymer to generate P(DMA-co-DMAEMA-co-QDMAEMA) (PDDQ) derivatives by a programmable quaternization of the DMAEMA precursor. By adjusting the pH or temperature, both the aggregation behavior in aqueous solutions and the surface adhesive behavior on the substrate surfaces of PDDQ copolymers were regulated due to the hydrophilic-hydrophobic balance. Specifically, the surface adsorption of PDDQ copolymers on surfaces was enhanced by the increased hydrophobicity of PDDQ. Stainless steel meshes (SSM) modified with the PDDQ0 copolymer without quaternization showed a superoleophobicity in acidic aqueous media, which endowed it with improved oil-water separation performance. In addition, the hydrophilic-hydrophobic balance of PDDQs and their coatings could also be tuned by changing the ratio of DMAEMA to QDMAEMA in the copolymer. From PDDQ0 to PDDQ100, by increasing the hydrophilic QDMAEMA component of PDDQ copolymers, anti-protein properties and oil/water separation efficiency of the modified surfaces were also enhanced gradually. The results provided a reference for designing P(DMA-co-DMAEMA-co-QDMAEMA) coatings in different application environments.
Collapse
Affiliation(s)
- Jiao Chen
- Key Laboratory for Advanced Materials and School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China.
| | - Hanhan Wang
- Key Laboratory for Advanced Materials and School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China.
| | - Xing Liu
- Key Laboratory for Advanced Materials and School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China.
| | - Xia Han
- Key Laboratory for Advanced Materials and School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China.
| | - Honglai Liu
- Key Laboratory for Advanced Materials and School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China.
| |
Collapse
|
6
|
Ko Y, Truong VK, Woo SY, Dickey MD, Hsiao L, Genzer J. Counterpropagating Gradients of Antibacterial and Antifouling Polymer Brushes. Biomacromolecules 2021; 23:424-430. [PMID: 34905339 DOI: 10.1021/acs.biomac.1c01386] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We report on the formation of counterpropagating density gradients in poly([2-dimethylaminoethyl] methacrylate) (PDMAEMA) brushes featuring spatially varying quaternized and betainized units. Starting with PDMAEMA brushes with constant grafting density and degree of polymerization, we first generate a density gradient of quaternized units by directional vapor reaction involving methyl iodide. The unreacted DMAEMA units are then betainized through gaseous-phase betainization with 1,3-propanesultone. The gas reaction of PDMAEMA with 1,3-propanesultone eliminates the formation of byproducts present during the liquid-phase modification. We use the counterpropagating density gradients of quaternized and betainized PDMAEMA brushes in antibacterial and antifouling studies. Completely quaternized and betainized brushes exhibit antibacterial and antifouling behaviors. Samples containing 12% of quaternized and 85% of betainized units act simultaneously as antibacterial and antifouling surfaces.
Collapse
Affiliation(s)
- Yeongun Ko
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina 27695-7905, United States
| | - Vi Khanh Truong
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina 27695-7905, United States.,Nanobiotechnology Laboratory, School of Science, RMIT University, Melbourne, VIC 3000, Australia
| | - Sun Young Woo
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina 27695-7905, United States
| | - Michael D Dickey
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina 27695-7905, United States
| | - Lilian Hsiao
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina 27695-7905, United States
| | - Jan Genzer
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina 27695-7905, United States.,Global Station for Soft Matter, Global Institution for Collaborative Research and Education (GI-CoRE), Hokkaido University, Hokkaido 060-0808, Japan
| |
Collapse
|
7
|
Ma D, Li H, Meng Z, Zhang C, Zhou J, Xia J, Wang Y. Absolute and Fast Removal of Viruses and Bacteria from Water by Spraying-Assembled Carbon-Nanotube Membranes. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:15206-15214. [PMID: 34714066 DOI: 10.1021/acs.est.1c04644] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Membrane separation is able to efficiently remove pathogens like bacteria and viruses from water based on size exclusion. However, absolute and fast removal of pathogens requires highly permeable but selective membranes. Herein, we report the preparation of such advanced membranes using carbon nanotubes (CNTs) as one-dimensional building blocks. We first disperse CNTs with the help of an amphiphilic block copolymer, poly(2-dimethylaminoethyl methacrylate)-block-polystyrene (PDMAEMA-b-PS, abbreviated as BCP). The PS blocks adsorb on the surface of CNTs via the π-π interaction, while the PDMAEMA blocks are solvated, thus forming homogeneous and stable CNT dispersions. We then spray the CNT dispersions on porous substrates, producing composite membranes with assembled CNT layers as the selective layers. We demonstrate that the optimized membrane shows 100% rejection to phage viruses and bacteria (Escherichia coli) while giving a water permeance up to ∼3300 L m-2 h-1 bar-1. The performance of the resultant BCP/CNT membrane outperforms that of state-of-the-art membranes and commercial membranes. The BCP/CNT membrane can be used for multiple runs and regenerated by water rinsing. Membrane modules assembled from large-area membrane sheets sustain the capability of absolute and fast removal of viruses and bacteria.
Collapse
Affiliation(s)
- Dongwei Ma
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 211816, Jiangsu, P. R. China
| | - Hengyi Li
- Beijing OriginWater Membrane Technology Co., Ltd., Beijing 101407, P. R. China
| | - Zixun Meng
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 211816, Jiangsu, P. R. China
| | - Chenxu Zhang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 211816, Jiangsu, P. R. China
| | - Jiemei Zhou
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 211816, Jiangsu, P. R. China
| | - Jianzhong Xia
- Institute for Advanced Study, Shenzhen University, Shenzen 518060, Guangdong, P. R. China
| | - Yong Wang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 211816, Jiangsu, P. R. China
| |
Collapse
|
8
|
Hu J, Zhu X, Xie D, Peng X, Zhu M, Cheng F, Shen X. Antifouling enhancement of polyacrylonitrile-based membrane grafted with poly(sulfobetaine methacrylate) layers. JOURNAL OF POLYMER ENGINEERING 2021. [DOI: 10.1515/polyeng-2021-0112] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Abstract
In this work, zwitterionic polyacrylonitrile (PAN)-based membranes were synthesized via surface grafting strategy for improving the antifouling properties. The copolymer membrane consisting of PAN and poly(hydroxyethyl methacrylate) segments, was cast via nonsolvent induced phase separation, and then treated with acryloyl chloride to tether with carbon-carbon double bonds. Zwitterionic poly(sulfobetaine methacrylate) (PSBMA) layers were grafted onto membrane surface via concerted reactions of radical grafting copolymerization and quaternization with 2-(dimethylamino)ethyl methacrylate) and 1, 3-propanesultone (1, 3-PS) as the monomers. The grafting degree (GD) of PSBMA layers increases with the incremental content of monomers, leading to the enhancement in membranes surface hydrophilicity. The permeation experiments show that the flux of the zwitterionic membrane increases and then decreases with the increasing GD value, because of the surface coverage of PSBMA layers. The zwitterionic membrane has excellent separation efficiency for oil-in-water emulsion, with the rejection of a higher value than 99%. The irreversible membrane fouling caused by oil adsorption has been suppressed, as proved by the cycle-filtration tests. These outcomes confirm that oil-fouling resistances of membranes are improved obviously by the surface grafting of zwitterionic PSBMA layers.
Collapse
Affiliation(s)
- Jianlong Hu
- College of Chemistry and Environmental Science, Qujing Normal University , Qujing , 655011 , China
| | - Xuanren Zhu
- College of Chemistry and Environmental Science, Qujing Normal University , Qujing , 655011 , China
| | - Deqiong Xie
- College of Chemistry and Environmental Science, Qujing Normal University , Qujing , 655011 , China
| | - Xianya Peng
- College of Chemistry and Environmental Science, Qujing Normal University , Qujing , 655011 , China
| | - Meng Zhu
- College of Chemistry and Environmental Science, Qujing Normal University , Qujing , 655011 , China
| | - Feixiang Cheng
- College of Chemistry and Environmental Science, Qujing Normal University , Qujing , 655011 , China
| | - Xiang Shen
- College of Chemistry and Environmental Science, Qujing Normal University , Qujing , 655011 , China
| |
Collapse
|
9
|
Nayak K, Kumar A, Das P, Tripathi BP. Amphiphilic antifouling membranes by polydopamine mediated molecular grafting for water purification and oil/water separation. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2021.119306] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
10
|
Guo L, Wang Y, Steinhart M. Porous block copolymer separation membranes for 21st century sanitation and hygiene. Chem Soc Rev 2021; 50:6333-6348. [PMID: 33890584 DOI: 10.1039/d0cs00500b] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Removing hazardous particulate and macromolecular contaminants as well as viruses with sizes from a few nm up to the 100 nm-range from water and air is crucial for ensuring sufficient sanitation and hygiene for a growing world population. To this end, high-performance separation membranes are needed that combine high permeance, high selectivity and sufficient mechanical stability under operating conditions. However, design features of separation membranes enhancing permeance reduce selectivity and vice versa. Membrane configurations combining high permeance and high selectivity suffer in turn from a lack of mechanical robustness. These problems may be tackled by using block copolymers (BCPs) as a material platform for the design of separation membranes. BCPs are macromolecules that consist of two or more chemically distinct block segments, which undergo microphase separation yielding a wealth of ordered nanoscopic domain structures. Various methods allow the transformation of these nanoscopic domain structures into customized nanopore systems with pore sizes in the sub-100 nm range and with narrow pore size distributions. This tutorial review summarizes design strategies for nanoporous state-of-the-art BCP separation membranes, their preparation, their device integration and their use for water purification.
Collapse
Affiliation(s)
- Leiming Guo
- Institut für Chemie neuer Materialien and CellNanOs, Universität Osnabrück, Barbarastr. 7, 49076 Osnabrück, Germany.
| | | | | |
Collapse
|
11
|
Yu R, Zhu R, Jiang J, Liang R, Liu X, Liu G. Mussel-inspired surface functionalization of polyamide microfiltration membrane with zwitterionic silver nanoparticles for efficient anti-biofouling water disinfection. J Colloid Interface Sci 2021; 598:302-313. [PMID: 33901854 DOI: 10.1016/j.jcis.2021.04.040] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 03/23/2021] [Accepted: 04/09/2021] [Indexed: 12/20/2022]
Abstract
Mature microfiltration (MF) membrane is a low-cost, effective, and promising technology to provide affordable purified water for people living in developing countries. However, the lack of disinfection ability and inherent membrane fouling problems have seriously restricted the large-scale application of conventional MF treatment system in producing safe drinking water. In this work, zwitterionic silver nanoparticles (AgNPs) with surface modification of poly(carboxybetaine acrylate-co-dopamine methacryamide) (PCBDA) copolymers were robustly immobilized onto commercial polyamide MF membrane via mussel-inspired chemistry for water disinfection. The designed microfiltration membrane, named as PCBDA@AgNPs-MF, exhibited integrated properties of high and stable payload of AgNPs, broad-spectrum anti-adhesive and antimicrobial activities, and easy removal of inactivated microbial cells from membrane surface. Ascribing to the synergetic effect of anti-adhesive and antimicrobial features brought by zwitterionic PCBDA@AgNPs, the biofilms growth on polyamide membrane surface was significantly inhibited, which showed potential access to achieve long-term biofouling resistance and maintain water flux for conventional MF membrane. As water disinfection device, these attributes enabled PCBDA@AgNPs-MF to effectively disinfect the model and natural bacteria-contaminated water.
Collapse
Affiliation(s)
- Ruiquan Yu
- National Engineering Research Center of Clean Technology in Leather Industry, College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, China; The Key Laboratory of Leather Chemistry and Engineering of Ministry of Education, Sichuan University, Chengdu 610065, China
| | - Ruixin Zhu
- National Engineering Research Center of Clean Technology in Leather Industry, College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, China
| | - Jing Jiang
- The Key Laboratory of Leather Chemistry and Engineering of Ministry of Education, Sichuan University, Chengdu 610065, China
| | - Ruifeng Liang
- The State Key Laboratory of Hydraulic and Mountain River Engineering, Sichuan University, Chengdu 610065, China.
| | - Xiangsheng Liu
- California NanoSystems Institute, University of California, Los Angeles, CA 90095, United States
| | - Gongyan Liu
- National Engineering Research Center of Clean Technology in Leather Industry, College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, China; The Key Laboratory of Leather Chemistry and Engineering of Ministry of Education, Sichuan University, Chengdu 610065, China.
| |
Collapse
|
12
|
Zhang C, Zhou J, Ye X, Li Z, Wang Y. Zwitterionization of Tertiary Amines in Nanoporous Block Copolymers: toward Fouling-Resistant Ultrafiltration Membranes. Macromolecules 2021. [DOI: 10.1021/acs.macromol.1c00307] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Chenxu Zhang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 211816 Jiangsu, P. R. China
| | - Jiemei Zhou
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 211816 Jiangsu, P. R. China
| | - Xiangyue Ye
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 211816 Jiangsu, P. R. China
| | - Zhuo Li
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 211816 Jiangsu, P. R. China
| | - Yong Wang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 211816 Jiangsu, P. R. China
| |
Collapse
|
13
|
Dizon GV, Lee YS, Venault A, Maggay IV, Chang Y. Zwitterionic PMMA-r-PEGMA-r-PSBMA copolymers for the formation of anti-biofouling bicontinuous membranes by the VIPS process. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2020.118753] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
14
|
Ren Y, Zhou H, Lu J, Huang S, Zhu H, Li L. Theoretical and Experimental Optimization of the Graft Density of Functionalized Anti-Biofouling Surfaces by Cationic Brushes. MEMBRANES 2020; 10:membranes10120431. [PMID: 33348625 PMCID: PMC7766574 DOI: 10.3390/membranes10120431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 12/14/2020] [Accepted: 12/14/2020] [Indexed: 11/30/2022]
Abstract
Diseases and complications related to catheter materials are severe problems in biomedical material applications, increasing the infection risk and medical expenses. Therefore, there is an enormous demand for catheter materials with antibacterial and antifouling properties. Considering this, in this work, we developed an approach of constructing antibacterial surfaces on polyurethane (PU) via surface-initiated atom transfer radical polymerization (SI-ATRP). A variety of cationic polymers were grafted on PU. The biocompatibility and antifouling properties of all resulting materials were evaluated and compared. We also used a theoretical algorithm to investigate the anticoagulant mechanism of our PU-based grafts. The hemocompatibility and anti-biofouling performance improved at a 86–112 μg/cm2 grafting density. The theoretical simulation demonstrated that the in vivo anti-fouling performance and optimal biocompatibility of our PU-based materials could be achieved at a 20% grafting degree. We also discuss the mechanism responsible for the hemocompatibility of the cationic brushes fabricated in this work. The results reported in this paper provide insights and novel ideas on material design for applications related to medical catheters.
Collapse
Affiliation(s)
- Yijie Ren
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, Nanjing Normal University, No. 1 Wenyuan Road, Nanjing 210023, China; (Y.R.); (H.Z.); (J.L.); (S.H.)
- School of Chemistry and Materials Science, Nanjing Normal University, No. 1 Wenyuan Road, Nanjing 210023, China
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, No. 1 Wenyuan Road, Nanjing 210023, China
- Jiangsu Key Laboratory of Biofunctional Materials, Jiangsu Engineering Research Center for Biomedical Function Materials, No. 1 Wenyuan Road, Nanjing 210023, China
| | - Hongxia Zhou
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, Nanjing Normal University, No. 1 Wenyuan Road, Nanjing 210023, China; (Y.R.); (H.Z.); (J.L.); (S.H.)
- School of Chemistry and Materials Science, Nanjing Normal University, No. 1 Wenyuan Road, Nanjing 210023, China
| | - Jin Lu
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, Nanjing Normal University, No. 1 Wenyuan Road, Nanjing 210023, China; (Y.R.); (H.Z.); (J.L.); (S.H.)
- School of Chemistry and Materials Science, Nanjing Normal University, No. 1 Wenyuan Road, Nanjing 210023, China
| | - Sicheng Huang
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, Nanjing Normal University, No. 1 Wenyuan Road, Nanjing 210023, China; (Y.R.); (H.Z.); (J.L.); (S.H.)
- School of Chemistry and Materials Science, Nanjing Normal University, No. 1 Wenyuan Road, Nanjing 210023, China
| | - Haomiao Zhu
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, Nanjing Normal University, No. 1 Wenyuan Road, Nanjing 210023, China; (Y.R.); (H.Z.); (J.L.); (S.H.)
- School of Chemistry and Materials Science, Nanjing Normal University, No. 1 Wenyuan Road, Nanjing 210023, China
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, No. 1 Wenyuan Road, Nanjing 210023, China
- Jiangsu Key Laboratory of Biofunctional Materials, Jiangsu Engineering Research Center for Biomedical Function Materials, No. 1 Wenyuan Road, Nanjing 210023, China
- Correspondence: (H.Z.); (L.L.)
| | - Li Li
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, Nanjing Normal University, No. 1 Wenyuan Road, Nanjing 210023, China; (Y.R.); (H.Z.); (J.L.); (S.H.)
- School of Chemistry and Materials Science, Nanjing Normal University, No. 1 Wenyuan Road, Nanjing 210023, China
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, No. 1 Wenyuan Road, Nanjing 210023, China
- Jiangsu Key Laboratory of Biofunctional Materials, Jiangsu Engineering Research Center for Biomedical Function Materials, No. 1 Wenyuan Road, Nanjing 210023, China
- Correspondence: (H.Z.); (L.L.)
| |
Collapse
|
15
|
Zhou J, Wang Y. Selective Swelling of Block Copolymers: An Upscalable Greener Process to Ultrafiltration Membranes? Macromolecules 2019. [DOI: 10.1021/acs.macromol.9b01747] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Affiliation(s)
- Jiemei Zhou
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing, Jiangsu 211816, P. R. China
| | - Yong Wang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing, Jiangsu 211816, P. R. China
| |
Collapse
|