1
|
Thangarasu S, Oh TH. Recent Developments on Bioinspired Cellulose Containing Polymer Nanocomposite Cation and Anion Exchange Membranes for Fuel Cells (PEMFC and AFC). Polymers (Basel) 2022; 14:polym14235248. [PMID: 36501640 PMCID: PMC9738973 DOI: 10.3390/polym14235248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 11/23/2022] [Accepted: 11/24/2022] [Indexed: 12/03/2022] Open
Abstract
Hydrogen fuel cell (FC) technologies are being worked on as a possible replacement for fossil fuels because they produce a lot of energy and do not pollute the air. In FC, ion-exchange membranes (IEMs) are the vital components for ion transport between two porous electrodes. However, the high production cost of commercialized membranes limits their benefits. Various research has focused on cellulose-based membranes such as IEM with high proton conductivity, and mechanical, chemical, and thermal stabilities to replace the high cost of synthetic polymer materials. In this review, we focus on and explain the recent progress (from 2018 to 2022) of cellulose-containing hybrid membranes as cation exchange membranes (CEM) and anion exchange membranes (AEM) for proton exchange membrane fuel cells (PEMFC) and alkaline fuel cells (AFC). In this account, we focused primarily on the effect of cellulose materials in various membranes on the functional properties of various polymer membranes. The development of hybrid membranes with cellulose for PEMFC and AFC has been classified based on the combination of other polymers and materials. For PEMFC, the sections are associated with cellulose with Nafion, polyaryletherketone, various polymeric materials, ionic liquid, inorganic fillers, and natural materials. Moreover, the cellulose-containing AEM for AFC has been summarized in detail. Furthermore, this review explains the significance of cellulose and cellulose derivative-modified membranes during fuel cell performance. Notably, this review shows the vital information needed to improve the ion exchange membrane in PEMFC and AFC technologies.
Collapse
|
2
|
Molecular dynamics insight into phase separation and transport in anion-exchange membranes: Effect of hydrophobicity of backbones. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.120922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
3
|
Mechanically flexible bulky imidazolium-based anion exchange membranes by grafting PEG pendants for alkaline fuel cells. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.120820] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
4
|
Liang M, Peng J, Cao K, Shan C, Liu Z, Wang P, Hu W, Liu B. Multiply quaternized poly(phenylene oxide)s bearing β-cyclodextrin pendants as “assisting moiety” for high-performance anion exchange membranes. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.120881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
|
5
|
Chu X, Miao S, Zhou A, Liu S, Liu L, Li N. A strategy to design quaternized poly(2,6-dimethyl-1,4-phenylene oxide) anion exchange membranes by atom transfer radical coupling. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.120397] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
6
|
Wei X, Wu J, Jiang H, Zhao X, Zhu Y. Improving the conductivity and dimensional stability of anion exchange membranes by grafting of quaternized dendrons. JOURNAL OF POLYMER SCIENCE 2022. [DOI: 10.1002/pol.20220045] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Xiangtai Wei
- School of Chemistry and Chemical Engineering Guangxi Key Laboratory of Electrochemical Energy Materials, Guangxi University Nanning P. R. China
| | - Jianrong Wu
- School of Chemistry and Chemical Engineering Guangxi Key Laboratory of Electrochemical Energy Materials, Guangxi University Nanning P. R. China
| | - Hao Jiang
- School of Chemistry and Chemical Engineering Guangxi Key Laboratory of Electrochemical Energy Materials, Guangxi University Nanning P. R. China
| | - Xinsheng Zhao
- School of Physics and Electronic Engineering Jiangsu Normal University Xuzhou P. R. China
| | - Yuanqin Zhu
- School of Chemistry and Chemical Engineering Guangxi Key Laboratory of Electrochemical Energy Materials, Guangxi University Nanning P. R. China
| |
Collapse
|
7
|
Li L, Zhang N, Wang JA, Ma L, Bai L, Zhang A, Chen Y, Hao C, Yan X, Zhang F, He G. Stable alkoxy chain enhanced anion exchange membrane and its fuel cell. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2021.120179] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
8
|
Liu M, Hu X, Hu B, Liu L, Li N. Soluble poly(aryl piperidinium) with extended aromatic segments as anion exchange membranes for alkaline fuel cells and water electrolysis. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2021.119966] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
9
|
Polynorbornene-based anion exchange membranes with hydrophobic large steric hindrance arylene substituent. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2021.119938] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
10
|
Han J, Song W, Cheng X, Cheng Q, Zhang Y, Liu C, Zhou X, Ren Z, Hu M, Ning T, Xiao L, Zhuang L. Conductivity and Stability Properties of Anion Exchange Membranes: Cation Effect and Backbone Effect. CHEMSUSCHEM 2021; 14:5021-5031. [PMID: 34498428 DOI: 10.1002/cssc.202101446] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 09/03/2021] [Indexed: 06/13/2023]
Abstract
The rise of heterocycle cations, a new class of stable cations, has fueled faster growth of research interest in heterocycle cation-attached anion exchange membranes (AEMs). However, once cations are grafted onto backbones, the effect of backbones on properties of AEMs must also be taken into account. In order to comprehensively study the influence of cations effect and backbones effect on AEMs performance, a series of AEMs were prepared by grafting spacer cations, heterocycles cations, and aromatic cations onto brominated poly(2,6-dimethyl-1,4-phenylene oxide) (BPPO) or poly(vinylbenzyl chloride) (PVB) backbones, respectively. Spacer cation [trimethylamine (TMA), N,N-dimethylethylamine (DMEA)]-attached AEMs showed general ion transportation and stability behaviors, but exhibited high cationic reaction efficiency. Heterocycle cation [1-methylpyrrolidine (MPY), 1-methylpiperidine (MPrD)]-attached AEMs showed excellent chemical stability, but their ion conduction properties were unimpressive. Aromatic cation [1-methylimidazole (MeIm), N,N-dimethylaniline (DMAni)]-attached AEMs exhibited superior ionic conductivity, while their poor cations stabilities hindered the application of the membranes. Besides, it was found that PVB-based AEMs had excellent backbone stability, but BPPO-based AEMs exhibited higher OH- conductivity and cation stability than those of the same cations grafted PVB-based AEMs due to their higher water uptake (WU). For example, the ionic conductivities (ICs) of BPPO-TMA and PVB-TMA at 80 °C were 53.1 and 38.3 mS cm-1 , and their WU was 152.3 and 95.1 %, respectively. After the stability test, the IC losses of BPPO-TMA and PVB-TMA were 21.4 and 32.2 %, respectively. The result demonstrated that the conductivity and stability properties of the AEMs could be enhanced by increasing the WU of the membranes. These findings allowed the matching of cations to the appropriate backbones and reasonable modification of the AEM structure. In addition, these results helped to fundamentally understand the influence of cation effect and backbone effect on AEM performance.
Collapse
Affiliation(s)
- Juanjuan Han
- School of Chemical and Environmental Engineering, Wuhan Polytechnic University, Wuhan, 430023, P. R. China
| | - Wenfeng Song
- School of Chemical and Environmental Engineering, Wuhan Polytechnic University, Wuhan, 430023, P. R. China
| | - Xueqi Cheng
- School of Chemical and Environmental Engineering, Wuhan Polytechnic University, Wuhan, 430023, P. R. China
| | - Qiang Cheng
- Early Warning Simulation Training Center, People's Liberation Army Air Force Early Warning Academy, Wuhan, 430019, P. R. China
| | - Yangyang Zhang
- School of Chemical and Environmental Engineering, Wuhan Polytechnic University, Wuhan, 430023, P. R. China
| | - Chifeng Liu
- School of Chemical and Environmental Engineering, Wuhan Polytechnic University, Wuhan, 430023, P. R. China
| | - Xiaorong Zhou
- School of Chemical and Environmental Engineering, Wuhan Polytechnic University, Wuhan, 430023, P. R. China
| | - Zhandong Ren
- School of Chemical and Environmental Engineering, Wuhan Polytechnic University, Wuhan, 430023, P. R. China
| | - Meixue Hu
- College of Chemistry and Molecular Sciences Hubei Key Lab of Electrochemical Power Sources, Wuhan University, Wuhan, 430072, P. R. China
| | - Tianshu Ning
- College of Chemistry and Molecular Sciences Hubei Key Lab of Electrochemical Power Sources, Wuhan University, Wuhan, 430072, P. R. China
| | - Li Xiao
- College of Chemistry and Molecular Sciences Hubei Key Lab of Electrochemical Power Sources, Wuhan University, Wuhan, 430072, P. R. China
| | - Lin Zhuang
- College of Chemistry and Molecular Sciences Hubei Key Lab of Electrochemical Power Sources, Wuhan University, Wuhan, 430072, P. R. China
| |
Collapse
|
11
|
Liu Z, Bai L, Miao S, Li C, Pan J, Jin Y, Chu D, Chu X, Liu L. Structure-property relationship of poly(2,6-dimethyl-1,4-phenylene oxide) anion exchange membranes with pendant sterically crowded quaternary ammoniums. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2021.119693] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
12
|
Yang Q, Sun LX, Gao WT, Zhu ZY, Gao X, Zhang QG, Zhu AM, Liu QL. Crown ether-based anion exchange membranes with highly efficient dual ion conducting pathways. J Colloid Interface Sci 2021; 604:492-499. [PMID: 34274712 DOI: 10.1016/j.jcis.2021.07.043] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 07/07/2021] [Accepted: 07/07/2021] [Indexed: 11/30/2022]
Abstract
Anion exchange membranes (AEMs) are a crucial constituent for alkaline fuel cells. As the core component of fuel cells, the low performance AEMs restrict the development and application of the fuel cells. Herein, the trade-off between the OH- conductivity and dimensional stability was solved by constructing AEMs with adequate OH- conductivity and satisfactory alkali resistance using Tröger's base (TB) poly (crown ether)s (PCEs) as the main chain, the embedded quaternary ammonium (QA) and Na+-functionalized crown ether units as the cationic group. Crown ether is an electron donator, and can capture Na+ to form Na+-functionalized crown ether units to conveniently transfer OH- and significantly promote the alkaline stability of the AEMs. The influence of the Na+-functionalized crown ether units on the performance of AEMs was studied in detail. The PCEs based AEMs show an obvious hydrophobic-hydrophilic microphase separation. These features make them ideal platforms for the OH- conduction applications. As expected, the as-prepared PCEs-QA-100% (100% is the degree of cross-linking) AEM with an ionic exchange capacity (IEC) of 2.07 meq g-1 has a high OH- conductivity of 159 mS cm-1 at 80 °C. Furthermore, the membrane electrode assemblies fabricated using the PCEs-QA-100% AEM possess a maximum power density of 291 mW cm-2 under the current density of 500 mA cm-2.
Collapse
Affiliation(s)
- Q Yang
- Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, Department of Chemical & Biochemical Engineering, The College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China; College of Chemistry, Chemical Engineering and Environment, Minnan Normal University, Zhangzhou 363000, China
| | - L X Sun
- Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, Department of Chemical & Biochemical Engineering, The College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - W T Gao
- Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, Department of Chemical & Biochemical Engineering, The College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Z Y Zhu
- Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, Department of Chemical & Biochemical Engineering, The College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - X Gao
- Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, Department of Chemical & Biochemical Engineering, The College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Q G Zhang
- Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, Department of Chemical & Biochemical Engineering, The College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - A M Zhu
- Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, Department of Chemical & Biochemical Engineering, The College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Q L Liu
- Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, Department of Chemical & Biochemical Engineering, The College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China.
| |
Collapse
|
13
|
Wang F, Wang D, Nagao Y. OH - Conductive Properties and Water Uptake of Anion Exchange Thin Films. CHEMSUSCHEM 2021; 14:2694-2697. [PMID: 33928758 DOI: 10.1002/cssc.202100711] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 04/28/2021] [Indexed: 06/12/2023]
Abstract
Several investigations have indicated that proton conduction and hydration properties of acidic ionomers differ from those of membranes. However, relations between the OH- conductivity and water uptake in thin film forms of anion exchange membranes have not been reported yet. For this study, new in situ measurements were established to elucidate the OH- conductivity and water uptake without allowing any influence of CO2 from the air. Poly[(9,9-bis(6'-(N,N,N-trimethylammonium)-hexyl)-9H-fluorene)-alt-(1,4-benzene)], denoted as PFB+ , was synthesized as a model ionomer. The highest OH- conductivity of 273 nm-thick PFB+ film was 5.3×10-2 S cm-1 at 25 °C under 95 % relative humidity (RH), which is comparable to the reported OH- conductivity of PFB+ membrane. Reduced OH- conductivity was found in the thinner film at 95 % RH. The decreased OH- conductivity is explainable by the reduced number of water molecules contained in the thinner film. The OH- conductivity was reduced only slightly under the same water uptake.
Collapse
Affiliation(s)
- Fangfang Wang
- School of Materials Science, Japan Advanced Institute of Science and Technology, 1-1 Asahidai, Nomi, Ishikawa, 923-1292, Japan
| | - Dongjin Wang
- School of Materials Science, Japan Advanced Institute of Science and Technology, 1-1 Asahidai, Nomi, Ishikawa, 923-1292, Japan
| | - Yuki Nagao
- School of Materials Science, Japan Advanced Institute of Science and Technology, 1-1 Asahidai, Nomi, Ishikawa, 923-1292, Japan
| |
Collapse
|
14
|
Crosslinked quaternary phosphonium-functionalized poly(ether ether ketone) polymer-based anion-exchange membranes. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2021.119167] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
15
|
Li L, Wang J, Hussain M, Ma L, Qaisrani NA, Ma S, Bai L, Yan X, Deng X, He G, Zhang F. Side-chain manipulation of poly (phenylene oxide) based anion exchange membrane: Alkoxyl extender integrated with flexible spacer. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2021.119088] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
16
|
He X, Zou J, Guo Y, Wang K, Wu B, Wen Y, Zang X, Chen D. Synthesis of halogenated benzonorbornadiene monomer and preparation of self-crosslinking bisimidazole cationic functionalized benzonorbornadiene triblock copolymer anion exchange membrane. POLYMER 2021. [DOI: 10.1016/j.polymer.2021.123535] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
17
|
Wu L, Zhou X, Zhang G, Zhang N, Huang Y, Dai S, Shen Y. Tunable OH – Transport and Alkaline Stability by Imidazolium-Based Groups of Poly(2,6-dimethyl-1,4-phenylene oxide) Anion Exchange Membranes: A Molecular Dynamics Simulation. Ind Eng Chem Res 2021. [DOI: 10.1021/acs.iecr.1c00230] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Lexuan Wu
- College of Chemistry and Chemical Engineering, Taiyuan University of Technology, Taiyuan 030024, China
| | - Xixing Zhou
- College of Chemistry and Chemical Engineering, Taiyuan University of Technology, Taiyuan 030024, China
| | - Guangxu Zhang
- College of Chemistry and Chemical Engineering, Taiyuan University of Technology, Taiyuan 030024, China
| | - Ning Zhang
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116023, China
- School of Chemical Engineering, Dalian University of Technology, Panjin 124221, China
| | - Yingda Huang
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan 030001, China
| | - Sheng Dai
- Department of Chemical Engineering, Brunel University London, Uxbridge UB8 3PH, U.K
| | - Yinghua Shen
- College of Chemistry and Chemical Engineering, Taiyuan University of Technology, Taiyuan 030024, China
| |
Collapse
|
18
|
Hossain MM, Yang Z, Wu L, Liang X, Xu T. Introducing a new generation of anion conducting membrane using swelling induced fabrication of covalent methanol barrier layer. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2020.118840] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
19
|
Xing Y, Geng K, Chu X, Wang C, Liu L, Li N. Chemically stable anion exchange membranes based on C2-Protected imidazolium cations for vanadium flow battery. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2020.118696] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
20
|
Park HJ, Lee SY, Lee TK, Kim HJ, Lee YM. N3-butyl imidazolium-based anion exchange membranes blended with Poly(vinyl alcohol) for alkaline water electrolysis. J Memb Sci 2020. [DOI: 10.1016/j.memsci.2020.118355] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
21
|
Chu JY, Lee KH, Kim AR, Yoo DJ. Improved electrochemical performance of composite anion exchange membranes for fuel cells through cross linking of the polymer chain with functionalized graphene oxide. J Memb Sci 2020. [DOI: 10.1016/j.memsci.2020.118385] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|