1
|
Wen J, Cheng W, Zhang Y, Zhou Y, Zhang Y, Yang L. Highly efficient removal of Cr(VI) from wastewater using electronegative SA/EGCG@Ti/SA/PVDF sandwich membrane. JOURNAL OF HAZARDOUS MATERIALS 2023; 459:132073. [PMID: 37467613 DOI: 10.1016/j.jhazmat.2023.132073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 07/02/2023] [Accepted: 07/14/2023] [Indexed: 07/21/2023]
Abstract
The use of green, non-toxic raw materials is of great significance to the sustainable development of the environment, among which epigallocatechin gallate (EGCG) is a renewable carbon source from plants. At present, there is a lack of research on the metal-polyphenol nanomaterials their use in water decontamination. In this study, a novel SA/EGCG@Ti/SA/PVDF (SESP) sandwich membrane was prepared to effectively solve the problems of difficult recovery of nanomaterials and the leaching of metal ions. The membrane was made by scraping SA on the surface of the PVDF substrate as the bottom protective layer, depositing EGCG@Ti NPs as the functional layer, then coating SA as the surface isolation layer, and finally cross-linking with anhydrous calcium chloride. Results showed that EGCG@Ti NPs dispersed well on the surface of the SA/PVDF basement membrane. SESP sandwich membrane had good hydrothermal and acid-base stability, and it can be applied to wastewater with multiple co-existing heavy metals (e.g., Cu, Pb, Cd, and Ni). The contact angle and pure water flux of the SESP sandwich membrane with a negatively charged surface were 14.0-15.6° and 171.40 L/m2 h, respectively. The pure water flux of the regenerated membrane after BSA pollution recovered to 98.68 L/m2 h, and the interception efficiency and the interception flux of Cr(VI) were 100 % and 72.92 L/m2 h at 40 min of interception, respectively. Additionally, the removal efficiency of Cr(VI) by SESP sandwich membrane was maintained above 83 % for simulated wastewater and 100 % for actual wastewater after five adsorption-desorption cycles. Cr(VI) and Cr(III) can be removed simultaneously with the negatively charged SESP sandwich membrane. EDS and XPS analysis showed that the removal of Cr(VI) was controlled by the Donnan effect, anion exchange, chelation/complexation, and reduction mechanism. In contrast, Cr(III) was mainly influenced by electrostatic attraction and chelation/complexation mechanisms. In conclusion, the newly prepared sandwich membrane has good application potential in treating Cr(VI) wastewater.
Collapse
Affiliation(s)
- Jia Wen
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China; Research Institute of Hunan University in Chongqing, Chongqing, PR China.
| | - Wenxing Cheng
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Yaxin Zhang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Yichen Zhou
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Yuru Zhang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Lisha Yang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| |
Collapse
|
2
|
Wang X, Gao N, Wang L, Liao Y. Polyelectrolyte interlayer assisted interfacial polymerization fabrication of a dual-charged composite nanofiltration membrane on ceramic substrate with high performance. J Memb Sci 2023. [DOI: 10.1016/j.memsci.2023.121506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2023]
|
3
|
Jankowski W, Li G, Kujawski W, Kujawa J. Recent development of membranes modified with natural compounds: Preparation methods and applications in water treatment. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.122101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
4
|
N-methylglucamine modified poly (vinyl chloride) support assists the construction of uniform dually charged nanofiltration membrane via interfacial polymerization. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.122674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
5
|
Zhao X, Wang X, Dong Y, Zhang H, Zhao W, Wang J, Wang L. New graphitic carbon nitride-based composite membranes: Fast water transport through the synergistic effect of tannic acid and tris(hydroxymethyl) aminomethane. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.120736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
6
|
Cascading in-situ generation of H2O2 and Fenton-like reaction in photocatalytic composite ultrafiltration membrane for high self-cleaning performance in wastewater treatment. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.120866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
7
|
Cao Y, Wan Y, Chen C, Luo J. Preparation of acid-resistant nanofiltration membrane with dually charged separation layer for enhanced salts removal. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.120974] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
8
|
Luo X, Feng S, Zhang Z, Liu L, Wu L, Zhang C. Fabrication of nanofiltration membranes via covalent layer-by-layer self-assembly for charged organic pollutants treatment. JOURNAL OF MATERIALS SCIENCE 2022; 57:9002-9017. [DOI: 10.1007/s10853-022-07218-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2022] [Accepted: 04/09/2022] [Indexed: 01/15/2025]
|
9
|
Tong Y, Chen J, Ding W, Shi L, Li W. Fabrication of a Superhydrophilic and Underwater Superoleophobic Membrane via One-Step Strategy for High-Efficiency Semicoking Wastewater Separation. Ind Eng Chem Res 2022. [DOI: 10.1021/acs.iecr.2c00297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Yujia Tong
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Jinbo Chen
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Wenlong Ding
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Lijian Shi
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Weixing Li
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 211816, China
| |
Collapse
|
10
|
Wang XL, Dong SQ, Qin W, Xue YX, Wang Q, Zhang J, Liu HY, Zhang H, Wang W, Wei JF. Fabrication of highly permeable CS/NaAlg loose nanofiltration membrane by ionic crosslinking assisted layer-by-layer self-assembly for dye desalination. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2021.120202] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
11
|
Dually charged polyamide nanofiltration membranes fabricated by microwave-assisted grafting for heavy metals removal. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2021.119834] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
12
|
Tiruneh Adugna A. Development in nanomembrane-based filtration of emerging contaminants. PHYSICAL SCIENCES REVIEWS 2021. [DOI: 10.1515/psr-2021-0057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
Recently, the concentration of emerging contaminants is increasing in drinking water sources, industrial wastewater, and reclaimed water. It is not possible to remove the emerging contaminants using conventional methods, and the interest to use nanomembrane-based filtration is getting attention. A nanomembrane-based filtration can be manipulated without the use of any special equipment. Different research findings reported better removal of emerging contaminants has been achieved using nanomembrane-based filtration. Moreover, new developments have been examined and implemented at different levels and are expected to continue. Therefore, this chapter provides a brief overview of recent developments on nanomembrane-based filtration processes in the removal of emerging contaminants from drinking water sources, industrial wastewater, and reclaimed water.
Collapse
Affiliation(s)
- Amare Tiruneh Adugna
- Department of Environmental Engineering , Addis Ababa Science and Technology University, College of Biological and Chemical Engineering , Addis Ababa , Ethiopia
| |
Collapse
|
13
|
Cao Y, Zhang H, Guo S, Luo J, Wan Y. A robust dually charged membrane prepared via catechol-amine chemistry for highly efficient dye/salt separation. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2021.119287] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
14
|
Cao Y, Chen G, Wan Y, Luo J. Nanofiltration membrane for bio-separation: Process-oriented materials innovation. Eng Life Sci 2021; 21:405-416. [PMID: 34140851 PMCID: PMC8182275 DOI: 10.1002/elsc.202000100] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 02/20/2021] [Accepted: 03/03/2021] [Indexed: 12/21/2022] Open
Abstract
Nanofiltration (NF) with advantages of high efficiency and low-cost has attracted increasing attentions in bio-separation. However, the large-scale application is limited by the inferior molecular selectivity, low chemical stability and serious membrane fouling. Many efforts, thus, have been devoted in NF materials design for specific applications to enhance the separation efficiency of bio-products and increase membrane life-time, as well as reduce the operating cost. This review summarized the recent progress of NF applications in bio-separation, discussed various demands for NF membrane in the bio-products purification and corresponding material innovations, finally proposed several practical suggestions for future research, which provided directions and guidance toward further product development and process industrialization.
Collapse
Affiliation(s)
- Yang Cao
- State Key Laboratory of Biochemical EngineeringInstitute of Process EngineeringChinese Academy of SciencesBeijingP. R. China
- School of Chemical EngineeringUniversity of Chinese Academy of SciencesBeijingP. R. China
| | - Guoqiang Chen
- State Key Laboratory of Biochemical EngineeringInstitute of Process EngineeringChinese Academy of SciencesBeijingP. R. China
| | - Yinhua Wan
- State Key Laboratory of Biochemical EngineeringInstitute of Process EngineeringChinese Academy of SciencesBeijingP. R. China
- School of Chemical EngineeringUniversity of Chinese Academy of SciencesBeijingP. R. China
| | - Jianquan Luo
- State Key Laboratory of Biochemical EngineeringInstitute of Process EngineeringChinese Academy of SciencesBeijingP. R. China
- School of Chemical EngineeringUniversity of Chinese Academy of SciencesBeijingP. R. China
| |
Collapse
|
15
|
Sridhar A, Ponnuchamy M, Kumar PS, Kapoor A, Vo DVN, Prabhakar S. Techniques and modeling of polyphenol extraction from food: a review. ENVIRONMENTAL CHEMISTRY LETTERS 2021; 19:3409-3443. [PMID: 33753968 PMCID: PMC7968578 DOI: 10.1007/s10311-021-01217-8] [Citation(s) in RCA: 82] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Accepted: 03/04/2021] [Indexed: 05/18/2023]
Abstract
There is a growing demand for vegetal food having health benefits such as improving the immune system. This is due in particular to the presence of polyphenols present in small amounts in many fruits, vegetables and functional foods. Extracting polyphenols is challenging because extraction techniques should not alter food quality. Here, we review technologies for extracting polyphenolic compounds from foods. Conventional techniques include percolation, decoction, heat reflux extraction, Soxhlet extraction and maceration, whereas advanced techniques are ultrasound-assisted extraction, microwave-assisted extraction, supercritical fluid extraction, high-voltage electric discharge, pulse electric field extraction and enzyme-assisted extraction. Advanced techniques are 32-36% more efficient with approximately 15 times less energy consumption and producing higher-quality extracts. Membrane separation and encapsulation appear promising to improve the sustainability of separating polyphenolic compounds. We present kinetic models and their influence on process parameters such as solvent type, solid and solvent ratio, temperature and particle size.
Collapse
Affiliation(s)
- Adithya Sridhar
- Department of Chemical Engineering, Faculty of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu 603203 India
| | - Muthamilselvi Ponnuchamy
- Department of Chemical Engineering, Faculty of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu 603203 India
| | - Ponnusamy Senthil Kumar
- Department of Chemical Engineering, Sri Sivasubramaniya Nadar College of Engineering, Chennai, India
| | - Ashish Kapoor
- Department of Chemical Engineering, Faculty of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu 603203 India
| | - Dai-Viet N. Vo
- Center of Excellence for Green Energy and Environmental Nanomaterials (CE@GrEEN), Nguyen Tat Thanh University, Ho Chi Minh City, Vietnam
| | - Sivaraman Prabhakar
- Department of Chemical Engineering, Faculty of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu 603203 India
| |
Collapse
|
16
|
Wang X, Chen X, Zhou R, Hu P, Huang K, Chen P. Filter-Assisted Separation of Multiple Nanomaterials: Mechanism and Application in Atomic/Mass Spectrometry/Fluorescence Label-Free Multimode Bioassays. Anal Chem 2021; 93:3889-3897. [PMID: 33595278 DOI: 10.1021/acs.analchem.0c04562] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Atomic spectrometry (AS) has been widely used in bioassay, but it requires steps to immobilize or separate the signal molecules. In this work, based on the phenomenon that the filter membrane can selectively separate multiple nanomaterials (nanoparticles (NPs) and quantum dots (QDs)) and its related ions, including poly(thymine)-templated Cu NPs and free Cu2+, Ag NPs and free Ag+, CdTe QDs and Cd2+, we constructed multimode and label-free biosensors by chemical vapor generation-atomic fluorescence spectrometry (CVG-AFS), inductively coupled plasma mass spectrometry (ICP-MS), and fluorescence. In this strategy, terminal deoxynucleotidyl transferase (TdT) and polynucleotide kinase (PNK), H2O2, and mucin 1 can be sensitively detected using Cu2+, Ag+, and Cd2+ as the signal probe, respectively. As a result, TdT and T4 PNK in single cells level can be accurately quantified. In addition, the possible separation mechanism of filter membrane was proposed, both Donnan repulsion by charged functional layer and entrapment effect by nanomaterials size contributed to the outstanding separation performance. Subsequently, on the basis that CdTe QDs can selectively identify Cu NPs/Cu2+, Ag NPs/Ag+, and C-Ag+-C/Ag+, cation-exchange reaction (CER) was introduced in this platform due to its unique advantages, including improving the sensitivity of the above system (an order of magnitude), converting the non-CVG metal elements into CVG elements, and using low-cost AFS to substitute the high-cost ICP-MS. In addition, we performed theoretical calculations of the selective CER using density functional theory (DFT). Therefore, this label-free and simple separation AS/ICP-MS sensing platform shows great potential for biomarker analysis.
Collapse
Affiliation(s)
- Xiu Wang
- College of Chemistry and Material Science, Sichuan Normal University, Chengdu, Sichuan 610068, China
| | - Xin Chen
- College of Chemistry and Material Science, Sichuan Normal University, Chengdu, Sichuan 610068, China
| | - Ronghui Zhou
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Pingyue Hu
- College of Chemistry and Material Science, Sichuan Normal University, Chengdu, Sichuan 610068, China
| | - Ke Huang
- College of Chemistry and Material Science, Sichuan Normal University, Chengdu, Sichuan 610068, China
| | - Piaopiao Chen
- Department of Laboratory Medicine, State Key Laboratory of Biotherapy and Cancer Center, Med+X Center for Manufacturing, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, Sichuan 610041, China
| |
Collapse
|
17
|
Compactness-tailored hollow fiber loose nanofiltration separation layers based on “chemical crosslinking and metal ion coordination” for selective dye separation. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2020.118948] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
18
|
Xu D, Zhu X, Luo X, Guo Y, Liu Y, Yang L, Tang X, Li G, Liang H. MXene Nanosheet Templated Nanofiltration Membranes toward Ultrahigh Water Transport. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:1270-1278. [PMID: 33372511 DOI: 10.1021/acs.est.0c06835] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
The demand for thin-film composite (TFC) nanofiltration membranes with superior permeance and high rejection is gradually increasing for seawater desalination and brackish water softening. However, improving the membrane permeance remains a great challenge due to the formation of excrescent polyamide in the substrate pores and thick polyamide film. Herein, we fabricated a high-performance TFC nanofiltration membrane via a classical interfacial polymerization reaction on a two-dimensional lamellar layer of transition-metal carbides (MXene). The MXene layer promoted the absorption of the reactive monomer, and higher amine monomer concentration facilitated the self-sealing and self-termination of interfacial polymerization to generate a thinner outer polyamide film from 68 to 20 nm. The almost nonporous lamellar interface inhibited the formation of inner polyamide in the substrate pores. In addition, the MXene lamellar layer could be eliminated by mild oxidation after interfacial polymerization to avoid imparted additional hydraulic resistance. The resulting TFC membrane conferred a high rejection above 96% for Na2SO4 and excellent permeance of 45.7 L·m-2·h-1·bar-1, which was almost 4.5 times higher than that of the control membrane (10.2 L·m-2·h-1·bar-1). This research provides a feasible strategy for fabricating a high-performance nanofiltration membrane using two-dimensional nanosheets as a templated interface.
Collapse
Affiliation(s)
- Daliang Xu
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, P. R. China
| | - Xuewu Zhu
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, P. R. China
| | - Xinsheng Luo
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, P. R. China
| | - Yuanqing Guo
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, P. R. China
| | - Yatao Liu
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, P. R. China
| | - Liu Yang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, P. R. China
| | - Xiaobin Tang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, P. R. China
| | - Guibai Li
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, P. R. China
| | - Heng Liang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, P. R. China
| |
Collapse
|