1
|
Singh G, Yadav G, Yadav N, Kapoor S, Sharma B, Sharma RK, Kumar R, Chaudhary GR. Recent advancements in the synthesis of anion exchange membranes and their potential applications in wastewater treatment. Adv Colloid Interface Sci 2025; 336:103376. [PMID: 39662338 DOI: 10.1016/j.cis.2024.103376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 12/01/2024] [Accepted: 12/02/2024] [Indexed: 12/13/2024]
Abstract
Water treatment procedures are increasingly utilized for resource recovery and wastewater disinfection, addressing the current challenges of clean water depletion and wastewater management. Various pollutants, including dyes, acids, pharmaceuticals, and toxic heavy metals have been released into the environment through industrial, domestic, and agricultural activities, posing serious environmental and public health risks. Addressing these issues requires the development of more effective waste treatment processes. Membrane-based treatment technologies offer significant advantages, including high efficiency, versatility, and cost-effectiveness, making them a promising solution for mitigating the impact of these pollutants. In view of this, the potential of ion exchange membranes (IEMs) is continuously increasing due to their advanced characteristics compared to conventional techniques. Anion exchange membranes (AEMs), a special class of IEMs, selectively allow anions to pass through their pores due to the positive charge on their surface. This selective passage aids in resource recovery and removing specific types of pollutants. This review covers preparation methods, modification techniques, and classification of AEMs. It offers a practical classification based on the method of synthesis and structural properties of AEMs. The water-based applications of AEMs including, electrodialysis, diffusion dialysis, and electro-electrodialysis for various wastewater treatments such as heavy metal recovery, dye removal, pharmaceutical removal, and acid separation, have been discussed in detail. Additionally, the effect of various operational parameters on the performance and SWOT (strengths, weaknesses, opportunities, and threats) analysis of AEMs in effluent treatment are presented. The review provides detailed insights into the current status, challenges, and future directions of AEM-based technologies, offering suggestions for future advancements.
Collapse
Affiliation(s)
- Gurkaran Singh
- Department of Chemistry, Centre of Advanced Studies in Chemistry, Panjab University, Chandigarh 160014, India
| | - Gaurav Yadav
- Department of Chemistry, Centre of Advanced Studies in Chemistry, Panjab University, Chandigarh 160014, India; Sophisticated Analytical Instrumentation Facility (SAIF)/ Central Instrumentation Laboratory (CIL), Panjab University, Chandigarh 160014, India
| | - Nidhi Yadav
- Department of Chemistry, National Institute of Technology, Silchar, 788010, India
| | - Sahil Kapoor
- Department of Chemical Engineering, Panjab University, Chandigarh 160014, India
| | - Bunty Sharma
- Sophisticated Analytical Instrumentation Facility (SAIF)/ Central Instrumentation Laboratory (CIL), Panjab University, Chandigarh 160014, India
| | - Ramesh Kumar Sharma
- Sophisticated Analytical Instrumentation Facility (SAIF)/ Central Instrumentation Laboratory (CIL), Panjab University, Chandigarh 160014, India
| | - Rajeev Kumar
- Department of Environment Studies, Panjab University, Chandigarh 160014, India
| | - Ganga Ram Chaudhary
- Department of Chemistry, Centre of Advanced Studies in Chemistry, Panjab University, Chandigarh 160014, India; Sophisticated Analytical Instrumentation Facility (SAIF)/ Central Instrumentation Laboratory (CIL), Panjab University, Chandigarh 160014, India.
| |
Collapse
|
2
|
Gao H, Jin C, Li X, So YM, Pan Y. A Hydrophilic Polyethylene Glycol-Blended Anion Exchange Membrane to Facilitate the Migration of Hydroxide Ions. Polymers (Basel) 2024; 16:1464. [PMID: 38891411 PMCID: PMC11175046 DOI: 10.3390/polym16111464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 05/09/2024] [Accepted: 05/16/2024] [Indexed: 06/21/2024] Open
Abstract
As one of the most important sources for green hydrogen, anion exchange membrane water electrolyzers (AEMWEs) have been developing rapidly in recent decades. Among these components, anion exchange membranes (AEMs) with high ionic conductivity and good stability play an important role in the performance of AEMWEs. In this study, we have developed a simple blending method to fabricate the blended membrane ImPSF-PEGx via the introduction of a hydrophilic PEG into the PSF-based ionic polymer. Given their hydrophilicity and coordination properties, the introduced PEGs are beneficial in assembling the ionic groups to form the ion-conducting channels. Moreover, an asymmetric structure is observed in ImPSF-PEGx membranes with a layer of finger-like cracks at the upper surface because PEGs can act as pore-forming agents. During the study, the ImPSF-PEGx membranes exhibited higher water uptake and ionic conductivity with lower swelling ratios and much better mechanical properties in comparison to the pristine ImPSF membrane. The ImPSF-PEG1000 membrane showed the best overall performance among the membranes with higher ionic conductivity (82.6 mS cm-1 at 80 °C), which was approximately two times higher than the conductivity of ImPSF, and demonstrated better mechanical and alkaline stability. The alkaline water electrolyzer assembled by ImPSF-PEG1000 achieved a current density of 606 mA cm-2 at 80 °C under conditions of 1 M KOH and 2.06 V, and maintained an essentially unchanged performance after 48 h running.
Collapse
Affiliation(s)
- Huaiming Gao
- Institute of Functional Textiles and Advanced Materials, College of Textiles and Clothing, State Key Laboratory of Bio-Fibers and Eco-Textiles, Qingdao University, Qingdao 266071, China
| | - Chenglou Jin
- Institute of Functional Textiles and Advanced Materials, College of Textiles and Clothing, State Key Laboratory of Bio-Fibers and Eco-Textiles, Qingdao University, Qingdao 266071, China
| | - Xia Li
- Institute of Functional Textiles and Advanced Materials, College of Textiles and Clothing, State Key Laboratory of Bio-Fibers and Eco-Textiles, Qingdao University, Qingdao 266071, China
| | - Yat-Ming So
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Yu Pan
- Institute of Functional Textiles and Advanced Materials, College of Textiles and Clothing, State Key Laboratory of Bio-Fibers and Eco-Textiles, Qingdao University, Qingdao 266071, China
| |
Collapse
|
3
|
Jin Z, Zou X, Xu G, Sun Z, Yan F. Semi-Interpenetrating Network Anion Exchange Membranes by Thiol-Ene Coupling Reaction for Alkaline Fuel Cells and Water Electrolyzers. Molecules 2023; 28:5470. [PMID: 37513341 PMCID: PMC10385286 DOI: 10.3390/molecules28145470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 07/14/2023] [Accepted: 07/15/2023] [Indexed: 07/30/2023] Open
Abstract
In this work, a thiol-ene coupling reaction was employed to prepare the semi-interpenetrating polymer network AEMs. The obtained QP-1/2 membrane exhibits high hydroxide conductivity (162.5 mS cm-1 at 80 °C) with a relatively lower swelling ratio, demonstrating its mechanical strength of 42 MPa. This membrane is noteworthy for its improved alkaline stability, as the semi-interpenetrating network effectively limits the attack of hydroxide. Even after being treated in 2 M NaOH at 80 °C for 600 h, 82.5% of the hydroxide conductivity is maintained. The H2/O2 fuel cell with QP-1/2 membrane displays a peak power density of 521 mW cm-2. Alkaline water electrolyzers based on QP-1/2 membrane demonstrated a current density of 1460 mA cm-2 at a cell voltage of 2.00 V using NiCoFe catalysts in the anode. All the results demonstrate that a semi-interpenetrating structure is a promising way to enhance the mechanical property, ionic conductivity, and alkaline stability of AEMs for the application of alkaline fuel cells and water electrolyzers.
Collapse
Affiliation(s)
- Zhiyu Jin
- Jiangsu Engineering Laboratory of Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Suzhou Key Laboratory of Soft Material and New Energy, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Xiuyang Zou
- Jiangsu Engineering Laboratory of Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Suzhou Key Laboratory of Soft Material and New Energy, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Guodong Xu
- Jiangsu Engineering Laboratory of Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Suzhou Key Laboratory of Soft Material and New Energy, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Zhe Sun
- Jiangsu Engineering Laboratory of Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Suzhou Key Laboratory of Soft Material and New Energy, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Feng Yan
- Jiangsu Engineering Laboratory of Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Suzhou Key Laboratory of Soft Material and New Energy, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| |
Collapse
|
4
|
Chen C, Zeng X, Peng Z, Chen Z. Polyaromatic anion exchange membranes for alkaline fuel cells with high hydroxide conductivity and alkaline stability. J Appl Polym Sci 2023. [DOI: 10.1002/app.53795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
|
5
|
Liu R, Nie Y, Chen J, Shen C, Gao S. Anion exchange membranes based on poly (styrene‐b‐(ethylene‐co‐butylene)‐b‐styrene) grafted poly (2,6‐dimethyl‐1,4‐phenylene oxide). J Appl Polym Sci 2022. [DOI: 10.1002/app.53579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Rui Liu
- School of Materials Science and Engineering Wuhan University of Technology Wuhan People's Republic of China
| | - Yiwen Nie
- School of Materials Science and Engineering Wuhan University of Technology Wuhan People's Republic of China
| | - Junjie Chen
- School of Materials Science and Engineering Wuhan University of Technology Wuhan People's Republic of China
| | - Chunhui Shen
- School of Materials Science and Engineering Wuhan University of Technology Wuhan People's Republic of China
| | - Shanjun Gao
- School of Materials Science and Engineering Wuhan University of Technology Wuhan People's Republic of China
| |
Collapse
|
6
|
Treichel M, Xun R, Williams CF, Gaitor JC, MacMillan SN, Vinskus JL, Womble CT, Kowalewski T, Noonan KJT. Examining the Alkaline Stability of Tris(dialkylamino)sulfoniums and Sulfoxoniums. J Org Chem 2022; 87:15732-15743. [PMID: 36383039 DOI: 10.1021/acs.joc.2c01289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Herein, a synthetic method was developed to prepare a series of tris(dialkylamino)sulfonium and sulfoxonium cations from sulfur monochloride. Alkaline stability studies of these two cation families in 2 M KOH/CD3OH solution at 80 °C revealed how degradation pathways change as a function of the oxidation state of the S center, as determined by 1H NMR spectroscopy. The sulfonium cations (+S(NR2)3) typically degrade by nucleophilic attack at the sulfur atom with loss of an amino group and a proton transfer reaction to produce sulfoxides, while the sulfoxoniums (+O═S(NR2)3) tend to degrade by loss of an R group to form sulfoximines. From the group of sulfoniums and sulfoxoniums explored in this work, the tris(piperidino)sulfoxonium cation was noted to have excellent alkaline stability. This sulfoxonium should be suitable for future examination as a tethered cation in anion-exchange membranes (AEMs), or as a phase-transfer catalyst in biphasic reactions.
Collapse
Affiliation(s)
- Megan Treichel
- Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213, United States
| | - Ruiran Xun
- Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213, United States
| | - Camille F Williams
- Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213, United States
| | - Jamie C Gaitor
- Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213, United States
| | - Samantha N MacMillan
- Department of Chemistry and Chemical Biology, Baker Laboratory, Cornell University, Ithaca, New York 14850, United States
| | - Jessica L Vinskus
- Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213, United States
| | - C Tyler Womble
- Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213, United States
| | - Tomasz Kowalewski
- Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213, United States
| | - Kevin J T Noonan
- Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213, United States
| |
Collapse
|
7
|
Wang Q, Huang L, Wang Z, Zheng J, Zhang Q, Qin G, Li S, Zhang S. High Conductive Anion Exchange Membranes from All-Carbon Twisted Intrinsic Microporous Polymers. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c01874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Affiliation(s)
- Qian Wang
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun130022, China
- University of Science and Technology of China, Hefei230026, China
| | - Lei Huang
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun130022, China
- University of Science and Technology of China, Hefei230026, China
| | - Zimo Wang
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun130022, China
| | - Jifu Zheng
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun130022, China
| | - Qifeng Zhang
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun130022, China
| | - Guorui Qin
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun130022, China
| | - Shenghai Li
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun130022, China
- University of Science and Technology of China, Hefei230026, China
| | - Suobo Zhang
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun130022, China
- University of Science and Technology of China, Hefei230026, China
| |
Collapse
|
8
|
Design, synthesis and characterization of SEBS anion exchange membranes with ultrahigh dimensional stability. JOURNAL OF POLYMER RESEARCH 2022. [DOI: 10.1007/s10965-022-03115-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
9
|
Wang Q, Huang L, Zheng J, Zhang Q, Qin G, Li S, Zhang S. Design, synthesis and characterization of anion exchange membranes containing guanidinium salts with ultrahigh dimensional stability. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2021.120008] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
10
|
|
11
|
Qu C, Zhang H, Wang C, Li X. Poly(arylene ether sulfone) Membrane Crosslinked with Bi‐Guanidinium for Vanadium Flow Battery Applications. MACROMOL CHEM PHYS 2021. [DOI: 10.1002/macp.202100338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Chao Qu
- School of Chemistry and Chemical Engineering Liaoning Normal University Dalian 116029 China
- Division of Energy Storage Dalian National Laboratory for Clean Energy Dalian Institute of Chemical Physics Chinese Academy of Sciences Dalian 116023 China
| | - Hongzhang Zhang
- Division of Energy Storage Dalian National Laboratory for Clean Energy Dalian Institute of Chemical Physics Chinese Academy of Sciences Dalian 116023 China
| | - Changsheng Wang
- School of Chemistry and Chemical Engineering Liaoning Normal University Dalian 116029 China
| | - Xianfeng Li
- Division of Energy Storage Dalian National Laboratory for Clean Energy Dalian Institute of Chemical Physics Chinese Academy of Sciences Dalian 116023 China
| |
Collapse
|
12
|
Enhanced performance of poly(olefin)-based anion exchange membranes cross-linked by triallylmethyl ammonium iodine and divinylbenzene. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2021.119629] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
13
|
Wang X, Lin C, Gao Y, Lammertink RG. Anion exchange membranes with twisted poly(terphenylene) backbone: Effect of the N-cyclic cations. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2021.119525] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
14
|
Shi Y, Meng F, Zhao Z, Liu W, Zhang C. Hybrid anion exchange membranes with adjustable ion transport channels designed by compounding
SEBS
and homo‐polystyrene. J Appl Polym Sci 2021. [DOI: 10.1002/app.50540] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Yue Shi
- State Key Laboratory of Fine Chemicals School of Chemical Engineering, Dalian University of Technology Dalian China
| | - Fanzhi Meng
- State Key Laboratory of Fine Chemicals School of Chemical Engineering, Dalian University of Technology Dalian China
| | - Zhongfu Zhao
- State Key Laboratory of Fine Chemicals School of Chemical Engineering, Dalian University of Technology Dalian China
| | - Wei Liu
- State Key Laboratory of Fine Chemicals School of Chemical Engineering, Dalian University of Technology Dalian China
| | - Chunqing Zhang
- State Key Laboratory of Fine Chemicals School of Chemical Engineering, Dalian University of Technology Dalian China
| |
Collapse
|
15
|
Jiang T, Zhou Y, Yang Y, Wu C, Fang H, Yang S, Wei H, Ding Y. Dimensionally and oxidatively stable anion exchange membranes based on bication cross-linked poly(meta-terphenylene alkylene)s. POLYMER 2021. [DOI: 10.1016/j.polymer.2021.123433] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
16
|
Wan R, Xu S, Wang J, Yang Y, Zhang D, He R. Construction of ion conducting channels by embedding hydrophilic oligomers in piperidine functionalized poly(2, 6-dimethyl-1, 4-phenylene oxide) membranes. Eur Polym J 2021. [DOI: 10.1016/j.eurpolymj.2020.110150] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
17
|
Xu F, Su Y, Yuan W, Han J, Ding J, Lin B. Piperidinium-Based Anion-Exchange Membranes with an Aliphatic Main Chain for Alkaline Fuel Cells. Ind Eng Chem Res 2020. [DOI: 10.1021/acs.iecr.0c02736] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Fei Xu
- School of Materials Science and Engineering, Jiangsu Collaborative Innovation Center of Photovolatic Science and Engineering, Changzhou University, Changzhou, Jiangsu 213164, China
| | - Yue Su
- School of Materials Science and Engineering, Jiangsu Collaborative Innovation Center of Photovolatic Science and Engineering, Changzhou University, Changzhou, Jiangsu 213164, China
| | - Wensen Yuan
- School of Materials Science and Engineering, Jiangsu Collaborative Innovation Center of Photovolatic Science and Engineering, Changzhou University, Changzhou, Jiangsu 213164, China
| | - Juanjuan Han
- School of Chemical and Environmental Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - Jianning Ding
- School of Materials Science and Engineering, Jiangsu Collaborative Innovation Center of Photovolatic Science and Engineering, Changzhou University, Changzhou, Jiangsu 213164, China
| | - Bencai Lin
- School of Materials Science and Engineering, Jiangsu Collaborative Innovation Center of Photovolatic Science and Engineering, Changzhou University, Changzhou, Jiangsu 213164, China
| |
Collapse
|
18
|
Lai AN, Hu PC, Zhu RY, Yin Q, Zhou SF. Comb-shaped cardo poly(arylene ether nitrile sulfone) anion exchange membranes: significant impact of nitrile group content on morphology and properties. RSC Adv 2020; 10:15375-15382. [PMID: 35495478 PMCID: PMC9052220 DOI: 10.1039/d0ra01798a] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Accepted: 04/07/2020] [Indexed: 11/21/2022] Open
Abstract
A series of comb-shaped cardo poly(arylene ether nitrile sulfone) (CCPENS-x) materials were synthesized by varying the content of nitrile groups as anion exchange membranes (AEMs). The well-designed architecture of cardo-based main chains and comb-shaped C10 long alkyl side chains bearing imidazolium groups was responsible for the clear microphase-separated morphologies, as confirmed by atomic force microscopy. The ion exchange capacity (IEC) of the AEMs ranged from 1.56 to 1.65 meq. g−1. With strong dipole interchain interactions, the effects of nitrile groups on the membrane morphology and properties were investigated. With the nitrile group content increasing from CCPENS-0.2 to CCPENS-0.8, CCPENS-x revealed larger and more interconnected ionic domains to form more efficient ion-transport channels, thus increasing the corresponding ionic conductivity from 25.8 to 39.5 mS cm−1 at 30 °C and 58.6 to 83 mS cm−1 at 80 °C. Furthermore, CCPENS-x with a higher content of nitrile groups also exhibited lower water uptake (WU) and swelling ratio (SR), and better mechanical properties and thermal stability. This work presents a promising strategy for enhancing the performance of AEMs. A series of comb-shaped cardo poly(arylene ether nitrile sulfone) (CCPENS-x) materials were synthesized by varying the content of nitrile groups as anion exchange membranes (AEMs).![]()
Collapse
Affiliation(s)
- Ao Nan Lai
- College of Chemical Engineering
- Huaqiao University
- Xiamen 361021
- PR China
| | - Peng Cheng Hu
- College of Chemical Engineering
- Huaqiao University
- Xiamen 361021
- PR China
| | - Rong Yu Zhu
- College of Chemical Engineering
- Huaqiao University
- Xiamen 361021
- PR China
| | - Qi Yin
- College of Chemical Engineering
- Huaqiao University
- Xiamen 361021
- PR China
| | - Shu Feng Zhou
- College of Chemical Engineering
- Huaqiao University
- Xiamen 361021
- PR China
| |
Collapse
|