1
|
Dai Y, Zhang J, Zhang S, Li L, Qu C, Chen J, Lu L. Ag/Cu nanoparticles-loaded glycocalyx biomimetic corneal bandage lenses for combatting bacterial keratitis. J Control Release 2024; 376:382-394. [PMID: 39419448 DOI: 10.1016/j.jconrel.2024.10.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 09/24/2024] [Accepted: 10/10/2024] [Indexed: 10/19/2024]
Abstract
Bacterial keratitis is a major cause of blindness, hindered by the rising threat of antibiotic resistance. Although corneal bandage lenses (CBLs) are widely utilized in ophthalmic treatment, their effectiveness in treating bacterial keratitis remains limited due to risks of secondary infections, patient discomfort, and complications. In this study, we developed a novel biomimetic coating on CBLs by grafting Ag/Cu bimetallic nanoparticles (Ag/Cu-NPs) and thiol-functionalized heparin (Hep-SH) using a rapid polydopamine (PDA) deposition technique, effectively mimicking the ocular surface glycocalyx structure. The resulting Ag/Cu-NPs/Hep-SH coated CBLs (PNH-CBLs) exhibited significant antibacterial activity, with over 80 % reduction in Staphylococcus aureus (S. aureus) and 70 % in Escherichia coli (E. coli) due to the sustained release of Ag+ and Cu2+, along with displaying favorable in vitro biocompatibility. Animal experiments conducted on New Zealand white rabbits with bacterial keratitis demonstrated successful treatment therapeutic outcomes, with PNH-CBLs leading to a significant decrease in clinical score. These biomimetic lenses also exhibited selective anti-protein adsorption properties, minimizing inflammation and promoting surface lubrication. Overall, this innovative approach addresses critical challenges in antibiotic resistance and offers a promising therapeutic strategy for managing ophthalmic infectious diseases.
Collapse
Affiliation(s)
- Yan Dai
- School & Hospital of Stomatology, Wenzhou Medical University, Wenzhou 325027, Zhejiang, China; Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, Sichuan, China
| | - Jiali Zhang
- School & Hospital of Stomatology, Wenzhou Medical University, Wenzhou 325027, Zhejiang, China; Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, Sichuan, China
| | - Shimeng Zhang
- The Department of Ophthalmology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China; Sichuan Provincial Key Laboratory for Human Disease Gene Study, the Department of Medical Genetics, the Institute of Laboratory Medicine, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, University of Electronic Science and Technology, Chengdu, China
| | - Linhua Li
- Department of Nephrology, Institute of Kidney Diseases, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Chao Qu
- The Department of Ophthalmology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China; Sichuan Provincial Key Laboratory for Human Disease Gene Study, the Department of Medical Genetics, the Institute of Laboratory Medicine, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, University of Electronic Science and Technology, Chengdu, China.
| | - Jiang Chen
- The Department of Ophthalmology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China; Sichuan Provincial Key Laboratory for Human Disease Gene Study, the Department of Medical Genetics, the Institute of Laboratory Medicine, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, University of Electronic Science and Technology, Chengdu, China.
| | - Lei Lu
- School & Hospital of Stomatology, Wenzhou Medical University, Wenzhou 325027, Zhejiang, China.
| |
Collapse
|
2
|
Wang Q, Heo W, Choi S, Jang W, Lim CS, Jung HI. Hand-held all-in-one (HAO) self-test kit for rapid and on-site detection of SARS-CoV-2 with colorimetric LAMP. LAB ON A CHIP 2024; 24:3265-3275. [PMID: 38847067 DOI: 10.1039/d4lc00199k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
Throughout the COVID-19 pandemic, individuals potentially infected with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) were forcibly recalled to local or central hospitals, where the diagnostic results were obtained a couple of days after the liquid biopsies were subjected to conventional polymerase chain reaction (PCR). This slow output of such a complex and time-consuming laboratory procedure hindered its widespread application. To overcome the limitations associated with such a centralized diagnostic system, we developed a hand-held and all-in-one type test kit in which the analytical results can be obtained in only 30 min. The test kit consists of three major steps for on-site SARS-CoV-2 RNA detection: 1) virus lysis by heat, 2) RNA enrichment by membrane, and 3) real-time detection by colorimetric loop-mediated isothermal amplification (c-LAMP). The proposed device operates in a sample-to-answer format, is fully automated, and reduces dependence on traditional laboratory settings, facilitating large-scale population screening.
Collapse
Affiliation(s)
- Qingyang Wang
- Department of Mechanical Engineering, Yonsei University, Seoul, 03722, Republic of Korea.
| | - Woong Heo
- Department of Mechanical Engineering, Yonsei University, Seoul, 03722, Republic of Korea.
| | - Seoyeon Choi
- Department of Mechanical Engineering, Yonsei University, Seoul, 03722, Republic of Korea.
- The DABOM Inc., Seoul, 03722, Republic of Korea
| | - Woongsik Jang
- Department of Laboratory Medicine, College of Medicine, Korea University, Seoul, 02841, Republic of Korea
| | - Chae Seung Lim
- Department of Laboratory Medicine, College of Medicine, Korea University, Seoul, 02841, Republic of Korea
| | - Hyo-Il Jung
- Department of Mechanical Engineering, Yonsei University, Seoul, 03722, Republic of Korea.
- The DABOM Inc., Seoul, 03722, Republic of Korea
| |
Collapse
|
3
|
Xiao M, Shang Y, Ji L, Yan M, Chen F, He Q, Yan S. Enhancing the Ammonia Selectivity by Using Nanofiber PVDF Composite Membranes Fabricated with Functionalized Carbon Nanotubes. MEMBRANES 2022; 12:1164. [PMID: 36422156 PMCID: PMC9694202 DOI: 10.3390/membranes12111164] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 11/16/2022] [Accepted: 11/17/2022] [Indexed: 06/16/2023]
Abstract
Conventional hydrophobic membrane-based membrane distillation (MD) has been applied for ammonia recovery from an anaerobic digestion (AD) effluent. However, the typical hydrophobic membranes do not have selectivity for ammonia and water vapor, which results in high energy consumption from the water evaporation. To enhance the selectivity during the ammonia recovery process, the functionalized carbon nanotubes (CNTs)/polyvinylidene fluoride (PVDF) nanofiber membranes were fabricated by electrospinning, and the effects of different CNTs and their contents on the performance of nanofiber membranes were investigated. The results indicate that CNTs can be successfully incorporated into nanofibers by electrospinning. The contact angles of the composite membrane are all higher than those of commercial membrane, and the highest value 138° can be obtained. Most importantly, under the condition of no pH adjustment, the ammonia nitrogen transfer coefficient reaches the maximum value of 3.41 × 10-6 m/s, which is about twice higher than that of commercial membranes. The ammonia separation factor of the carboxylated CNT (C-CNT) composite membrane is higher than that of the hydroxylated CNT(H-CNT) composite membrane. Compared with the application of the novel C-CNT composite membrane, the ammonia separation factor is 47% and 25% higher than that of commercial and neat PVDF membranes. This work gives a novel approach for enhancing ammonia and water selectivity during AD effluent treatment.
Collapse
Affiliation(s)
- Man Xiao
- College of Engineering, Huazhong Agricultural University, No.1, Shizishan Street, Hongshan District, Wuhan 430070, China
- Technology & Equipment Center for Carbon Neutrality in Agriculture, Huazhong Agricultural University, No.1, Shizishan Street, Hongshan District, Wuhan 430070, China
- Key Laboratory of Agricultural Equipment in Mid-Lower Yangtze River, Ministry of Agriculture and Rural Affairs, Wuhan 430070, China
| | - Yu Shang
- College of Engineering, Huazhong Agricultural University, No.1, Shizishan Street, Hongshan District, Wuhan 430070, China
- Technology & Equipment Center for Carbon Neutrality in Agriculture, Huazhong Agricultural University, No.1, Shizishan Street, Hongshan District, Wuhan 430070, China
- Key Laboratory of Agricultural Equipment in Mid-Lower Yangtze River, Ministry of Agriculture and Rural Affairs, Wuhan 430070, China
| | - Long Ji
- College of Engineering, Huazhong Agricultural University, No.1, Shizishan Street, Hongshan District, Wuhan 430070, China
- Technology & Equipment Center for Carbon Neutrality in Agriculture, Huazhong Agricultural University, No.1, Shizishan Street, Hongshan District, Wuhan 430070, China
- Key Laboratory of Agricultural Equipment in Mid-Lower Yangtze River, Ministry of Agriculture and Rural Affairs, Wuhan 430070, China
| | - Mingwei Yan
- College of Engineering, Huazhong Agricultural University, No.1, Shizishan Street, Hongshan District, Wuhan 430070, China
- Technology & Equipment Center for Carbon Neutrality in Agriculture, Huazhong Agricultural University, No.1, Shizishan Street, Hongshan District, Wuhan 430070, China
- Key Laboratory of Agricultural Equipment in Mid-Lower Yangtze River, Ministry of Agriculture and Rural Affairs, Wuhan 430070, China
| | - Feng Chen
- Key Laboratory of Optoelectronic Chemical Materials and Devices-Ministry of Education, Jianghan University, Wuhan 430056, China
| | - Qingyao He
- College of Engineering, Huazhong Agricultural University, No.1, Shizishan Street, Hongshan District, Wuhan 430070, China
- Technology & Equipment Center for Carbon Neutrality in Agriculture, Huazhong Agricultural University, No.1, Shizishan Street, Hongshan District, Wuhan 430070, China
- Key Laboratory of Agricultural Equipment in Mid-Lower Yangtze River, Ministry of Agriculture and Rural Affairs, Wuhan 430070, China
| | - Shuiping Yan
- College of Engineering, Huazhong Agricultural University, No.1, Shizishan Street, Hongshan District, Wuhan 430070, China
- Technology & Equipment Center for Carbon Neutrality in Agriculture, Huazhong Agricultural University, No.1, Shizishan Street, Hongshan District, Wuhan 430070, China
- Key Laboratory of Agricultural Equipment in Mid-Lower Yangtze River, Ministry of Agriculture and Rural Affairs, Wuhan 430070, China
| |
Collapse
|
4
|
Jia X, Cheng Q, Tang T, Xia M, Zhou F, Wu Y, Cheng P, Xu J, Liu K, Wang D. Facile plasma grafting of zwitterions onto nanofibrous membrane surface for improved antifouling properties and filtration performance. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.129752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
5
|
Cheng P, Ji C, Hu W, Huang P, Guo Q, Xia M, Cheng Q, Xu J, Liu K, Wang D. Facile fabrication of nanofibrous ion-exchange chromatography membrane with aminated surface for highly efficient RNA separation and purification. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.129160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
6
|
Gao X, Yu Z, Tang X, Zhang H, Peng L, Li J. Augmented antibacterial mechanism of ZnO nanoparticles by labyrinthian-channel configuration of maize-stalk carbohydrate columns and sustainable strategy for water decontamination. JOURNAL OF HAZARDOUS MATERIALS 2022; 436:129258. [PMID: 35739777 DOI: 10.1016/j.jhazmat.2022.129258] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 05/21/2022] [Accepted: 05/27/2022] [Indexed: 06/15/2023]
Abstract
Zinc oxide nanoparticles (ZnO NPs) as a broad-spectrum germicide in environmental remediation applications, is hindered by mild toxicity to organisms during water sterilization. To solve this dilemma, this work provided an eco-benign approach to utilize maize stalk with natural labyrinthine-channel configuration simultaneously acting as microbe trap and bactericide carrier to arouse bactericidal response of ZnO NPs. The preparation comprises in-situ growing ZnO NPs, accompanied by nanoscale delignification, leading to formed carbohydrate complex retaining the intricately porous structure of the stalk. Assembled by maize-stalk carbohydrate (MSC) composites with 9 short composites in serial, the elimination of Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus) reached up 6.7 and 4.8 orders of magnitude, respectively. Labyrinth-framework MSC provided favorable sites for fusiform flower-like ZnO NPs to strongly adsorb (adsorption energy 5.5-11.7 eV) phosphoryl-involved biomacromolecules of bacterial envelops, causing generation of stable Zn-P and Zn-O(H), then cell incompleteness, cellular redox imbalance and DNA damage. Breakthrough analysis exposed the MSC/ZnO-filter possessing remarkable features of antibacterial exhaustion rate (~ 1.06 g/L) and capacity (~ 9.6 × 109 CFU/g) which were comparable with Ag-based composites. As evaluated by the logistic and Gompertz models, the filters effectively sterilized 0.97-10 L of environmental waters to meet the requirements of drinking water.
Collapse
Affiliation(s)
- Xin Gao
- Faculty of Chemical Engineering, Kunming University of Science and Technology, Kunming 650500, Yunnan, PR China; CAS Key Laboratory of Magnetic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, Zhejiang, PR China
| | - Zhe Yu
- School of Materials, Sun Yat-Sen University, Guangzhou 510275, Guangdong, PR China
| | - Xiaoning Tang
- Faculty of Chemical Engineering, Kunming University of Science and Technology, Kunming 650500, Yunnan, PR China
| | - Heng Zhang
- Faculty of Chemical Engineering, Kunming University of Science and Technology, Kunming 650500, Yunnan, PR China
| | - Lincai Peng
- Faculty of Chemical Engineering, Kunming University of Science and Technology, Kunming 650500, Yunnan, PR China.
| | - Jiaqi Li
- Faculty of Chemical Engineering, Kunming University of Science and Technology, Kunming 650500, Yunnan, PR China
| |
Collapse
|
7
|
Cheng P, Huang P, Ji C, Jia X, Guo Q, Xia M, Cheng Q, Xu J, Liu K, Wang D. An EVOH nanofibrous sterile membrane with a robust and antifouling surface for high-performance sterile filtration via glutaraldehyde crosslinking and a plasma-assisted process. SOFT MATTER 2022; 18:4991-5000. [PMID: 35758290 DOI: 10.1039/d2sm00578f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Constructing a sterile membrane with a robust and antifouling surface is a powerful means to improve the sterile filtration efficiency of sterile membranes. In this work, a robust EVOH nanofibrous sterile membrane was facilely fabricated by the method of in situ crosslinking with glutaraldehyde and surface plasma treatment. The resultant EVOH nanofibrous sterile membrane possessed a carboxylated-crosslinked surface, with high hydrophilicity, which generated high chemical stability, high-temperature steam resistance, and an ultrahigh antifouling performance against bovine serum albumin, ribonucleic acid and nanoparticle pollutants. Moreover, the membrane also exhibited a reasonably high primary water permeance (4522.2 LMH bar-1 at 0.2 MPa), as well as an absolute interception rate (100%) of Escherichia coli, Staphylococcus aureus cells and Brevundimonas diminuta superior to the state-of-the-art sterile membrane. Moreover, the modified membrane packed syringe-driven filter presented 100% interception (LRV ≥ 7) to Brevundimonas diminuta and high permeation flux (from 10.8 to 41.8 L·h-1) in a wide operating pressure range of 0.1 MPa to 0.6 MPa, indicating its potential in real bio-separation applications. This work provides a facile strategy for the preparation of a high-performance sterile membrane for biological drug product sterilization.
Collapse
Affiliation(s)
- Pan Cheng
- College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, China.
- Key Laboratory of Textile Fiber and Products, Ministry of Education, Hubei International Scientific and Technological Cooperation Base of Intelligent Textile Materials & Application, Wuhan Textile University, Wuhan 430200, China.
| | - Peng Huang
- Key Laboratory of Textile Fiber and Products, Ministry of Education, Hubei International Scientific and Technological Cooperation Base of Intelligent Textile Materials & Application, Wuhan Textile University, Wuhan 430200, China.
| | - Cancan Ji
- Key Laboratory of Textile Fiber and Products, Ministry of Education, Hubei International Scientific and Technological Cooperation Base of Intelligent Textile Materials & Application, Wuhan Textile University, Wuhan 430200, China.
| | - Xiaodan Jia
- Key Laboratory of Textile Fiber and Products, Ministry of Education, Hubei International Scientific and Technological Cooperation Base of Intelligent Textile Materials & Application, Wuhan Textile University, Wuhan 430200, China.
| | - Qihao Guo
- Key Laboratory of Textile Fiber and Products, Ministry of Education, Hubei International Scientific and Technological Cooperation Base of Intelligent Textile Materials & Application, Wuhan Textile University, Wuhan 430200, China.
| | - Ming Xia
- Key Laboratory of Textile Fiber and Products, Ministry of Education, Hubei International Scientific and Technological Cooperation Base of Intelligent Textile Materials & Application, Wuhan Textile University, Wuhan 430200, China.
| | - Qin Cheng
- Key Laboratory of Textile Fiber and Products, Ministry of Education, Hubei International Scientific and Technological Cooperation Base of Intelligent Textile Materials & Application, Wuhan Textile University, Wuhan 430200, China.
| | - Jia Xu
- Key Laboratory of Textile Fiber and Products, Ministry of Education, Hubei International Scientific and Technological Cooperation Base of Intelligent Textile Materials & Application, Wuhan Textile University, Wuhan 430200, China.
| | - Ke Liu
- Key Laboratory of Textile Fiber and Products, Ministry of Education, Hubei International Scientific and Technological Cooperation Base of Intelligent Textile Materials & Application, Wuhan Textile University, Wuhan 430200, China.
| | - Dong Wang
- College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, China.
- Key Laboratory of Textile Fiber and Products, Ministry of Education, Hubei International Scientific and Technological Cooperation Base of Intelligent Textile Materials & Application, Wuhan Textile University, Wuhan 430200, China.
| |
Collapse
|
8
|
Ma S, Liu N, Cheng P, Hu W, Jia X, Guo Q, Xia M, Cheng Q, Liu K, Wang D. High Performance PA Nanofiltration Membrane with Coral‐reef‐like Morphology atop Polydopamine Decorated EVOH Nanofiber Scaffold. MACROMOL CHEM PHYS 2022. [DOI: 10.1002/macp.202200088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Siqi Ma
- Key Laboratory of Textile Fiber and Products Ministry of Education Hubei International Scientific and Technological Cooperation Base of Intelligent Textile Materials & Application Wuhan Textile University Wuhan 430200 China
| | - Nian Liu
- Key Laboratory of Textile Fiber and Products Ministry of Education Hubei International Scientific and Technological Cooperation Base of Intelligent Textile Materials & Application Wuhan Textile University Wuhan 430200 China
| | - Pan Cheng
- College of Chemistry Chemical Engineering and Biotechnology Donghua University Shanghai 201620 China
| | - Wei Hu
- Key Laboratory of Textile Fiber and Products Ministry of Education Hubei International Scientific and Technological Cooperation Base of Intelligent Textile Materials & Application Wuhan Textile University Wuhan 430200 China
| | - Xiaodan Jia
- Key Laboratory of Textile Fiber and Products Ministry of Education Hubei International Scientific and Technological Cooperation Base of Intelligent Textile Materials & Application Wuhan Textile University Wuhan 430200 China
| | - Qihao Guo
- Key Laboratory of Textile Fiber and Products Ministry of Education Hubei International Scientific and Technological Cooperation Base of Intelligent Textile Materials & Application Wuhan Textile University Wuhan 430200 China
| | - Ming Xia
- Key Laboratory of Textile Fiber and Products Ministry of Education Hubei International Scientific and Technological Cooperation Base of Intelligent Textile Materials & Application Wuhan Textile University Wuhan 430200 China
| | - Qin Cheng
- Key Laboratory of Textile Fiber and Products Ministry of Education Hubei International Scientific and Technological Cooperation Base of Intelligent Textile Materials & Application Wuhan Textile University Wuhan 430200 China
| | - Ke Liu
- Key Laboratory of Textile Fiber and Products Ministry of Education Hubei International Scientific and Technological Cooperation Base of Intelligent Textile Materials & Application Wuhan Textile University Wuhan 430200 China
| | - Dong Wang
- Key Laboratory of Textile Fiber and Products Ministry of Education Hubei International Scientific and Technological Cooperation Base of Intelligent Textile Materials & Application Wuhan Textile University Wuhan 430200 China
- College of Chemistry Chemical Engineering and Biotechnology Donghua University Shanghai 201620 China
| |
Collapse
|
9
|
Cheng Q, Jia X, Cheng P, Zhou P, Hu W, Cheng C, Hu H, Xia M, Liu K, Wang D. Improvement of the filtration and antifouling performance of a nanofibrous sterile membrane by a one-step grafting zwitterionic compound. NEW J CHEM 2022. [DOI: 10.1039/d2nj01800d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A zwitterionic NFM was employed as a sterile membrane for an absolute interception of 107 cfu cm−2Brevundimonas diminuta.
Collapse
Affiliation(s)
- Qin Cheng
- Key Laboratory of Textile Fiber and Products, Ministry of Education, Hubei International Scientific and Technological Cooperation Base of Intelligent Textile Materials & Application, Wuhan Textile University, Wuhan 430200, China
| | - Xiaodan Jia
- Key Laboratory of Textile Fiber and Products, Ministry of Education, Hubei International Scientific and Technological Cooperation Base of Intelligent Textile Materials & Application, Wuhan Textile University, Wuhan 430200, China
| | - Pan Cheng
- College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, China
| | - Pengcheng Zhou
- Key Laboratory of Textile Fiber and Products, Ministry of Education, Hubei International Scientific and Technological Cooperation Base of Intelligent Textile Materials & Application, Wuhan Textile University, Wuhan 430200, China
| | - Wei Hu
- Key Laboratory of Textile Fiber and Products, Ministry of Education, Hubei International Scientific and Technological Cooperation Base of Intelligent Textile Materials & Application, Wuhan Textile University, Wuhan 430200, China
| | - Cuicui Cheng
- Technical Information Center, Shandong Taipeng Group Co., Ltd, TaiAn 271600, China
| | - Hui Hu
- Humanwell Healthcare Group Co., Ltd, Wuhan 430000, China
| | - Ming Xia
- Key Laboratory of Textile Fiber and Products, Ministry of Education, Hubei International Scientific and Technological Cooperation Base of Intelligent Textile Materials & Application, Wuhan Textile University, Wuhan 430200, China
| | - Ke Liu
- Key Laboratory of Textile Fiber and Products, Ministry of Education, Hubei International Scientific and Technological Cooperation Base of Intelligent Textile Materials & Application, Wuhan Textile University, Wuhan 430200, China
| | - Dong Wang
- Key Laboratory of Textile Fiber and Products, Ministry of Education, Hubei International Scientific and Technological Cooperation Base of Intelligent Textile Materials & Application, Wuhan Textile University, Wuhan 430200, China
- College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, China
| |
Collapse
|
10
|
Liu K, Liu N, Ma S, Cheng P, Hu W, Jia X, Cheng Q, Xu J, Guo Q, Wang D. Highly Permeable Polyamide Nanofiltration Membrane Mediated by an Upscalable Wet-Laid EVOH Nanofibrous Scaffold. ACS APPLIED MATERIALS & INTERFACES 2021; 13:23142-23152. [PMID: 33960782 DOI: 10.1021/acsami.1c02776] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
For energy-saving purposes, the pursuit of ultrahigh permeance nanofiltration membranes without sacrificing selectivity is never-ending in desalination, wastewater treatment, and industrial product separation. Herein, we reported a novel facile route to engineer a highly porous and superhydrophilic nanofibrous substrate to mediate the interfacial polymerization between trimesoyl chloride and piperazine, generating an ultrathin PA active layer (∼13 nm) with a hierarchical crumpled surface. The wet laying process and subsequent plasma treatment endowed a rougher and more hydrophilic surface for ethylene vinyl alcohol copolymer (EVOH) nanofibers in the thin compact nanofibrous scaffold (∼9 μm) with a mean pore size of 210 nm, radically different from the nanofibrous membrane by other methods. Nanofibrous scaffold with these features provide abundant thin-thick alternative continuous water layers between nanofibers and organic phase, facilitating the formation of the abovementioned PA layer. As a result, an ultrahigh permeance of 42.25 L·m-2 h-1 bar-1 and a reasonably high rejection of 95.97% to 1000 ppm Na2SO4 feed solution were obtained, superior to most state-of-the-art NF membranes reported so far. Our work provides an easy and scalable method to fabricate advanced PA NF membranes with outstanding performance, highlighting its great potential in liquid separation.
Collapse
Affiliation(s)
- Ke Liu
- Key Laboratory of Textile Fiber and Products, Ministry of Education, Hubei International Scientific and Technological Cooperation Base of Intelligent Textile Materials & Application, Wuhan Textile University, Wuhan 430200, China
| | - Nian Liu
- Key Laboratory of Textile Fiber and Products, Ministry of Education, Hubei International Scientific and Technological Cooperation Base of Intelligent Textile Materials & Application, Wuhan Textile University, Wuhan 430200, China
| | - Siqi Ma
- Key Laboratory of Textile Fiber and Products, Ministry of Education, Hubei International Scientific and Technological Cooperation Base of Intelligent Textile Materials & Application, Wuhan Textile University, Wuhan 430200, China
| | - Pan Cheng
- College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, China
| | - Wei Hu
- Key Laboratory of Textile Fiber and Products, Ministry of Education, Hubei International Scientific and Technological Cooperation Base of Intelligent Textile Materials & Application, Wuhan Textile University, Wuhan 430200, China
| | - Xiaodan Jia
- Key Laboratory of Textile Fiber and Products, Ministry of Education, Hubei International Scientific and Technological Cooperation Base of Intelligent Textile Materials & Application, Wuhan Textile University, Wuhan 430200, China
| | - Qin Cheng
- Key Laboratory of Textile Fiber and Products, Ministry of Education, Hubei International Scientific and Technological Cooperation Base of Intelligent Textile Materials & Application, Wuhan Textile University, Wuhan 430200, China
| | - Jia Xu
- Key Laboratory of Textile Fiber and Products, Ministry of Education, Hubei International Scientific and Technological Cooperation Base of Intelligent Textile Materials & Application, Wuhan Textile University, Wuhan 430200, China
| | - Qihao Guo
- Key Laboratory of Textile Fiber and Products, Ministry of Education, Hubei International Scientific and Technological Cooperation Base of Intelligent Textile Materials & Application, Wuhan Textile University, Wuhan 430200, China
| | - Dong Wang
- Key Laboratory of Textile Fiber and Products, Ministry of Education, Hubei International Scientific and Technological Cooperation Base of Intelligent Textile Materials & Application, Wuhan Textile University, Wuhan 430200, China
- College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, China
| |
Collapse
|