1
|
Wan H, Li X, Luo Y, Shi D, Gong T, An AK, Shao S. Early monitoring of pore wetting in membrane distillation using ultrasonic time-domain reflectometry (UTDR). WATER RESEARCH 2023; 240:120081. [PMID: 37224667 DOI: 10.1016/j.watres.2023.120081] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 05/04/2023] [Accepted: 05/13/2023] [Indexed: 05/26/2023]
Abstract
Pore wetting induced by surfactants and salt scaling is a major obstacle to the industrial application of membrane distillation (MD). Identifying the transition of wetting stages and achieving early monitoring of pore wetting are crucial for wetting control. Herein, we made a pioneering attempt to use ultrasonic time-domain reflectometry (UTDR) technique to non-invasively detect the pore wetting in a direct contact MD, and explain the UTDR waveform with the help of optical coherence tomography (OCT) imaging. The results showed that the water-vapor interface had a strong reflection to ultrasound (reflection coefficient = 0.9995), while the water-membrane and water-scaling layer interfaces showed relatively weak reflection. Therefore, UTDR could effectively detect the movement of water-vapor interface with the low interference from the signals generated by the membrane and scaling layer. For the surfactant-induced wetting, the occurrence of wetting could be successfully detected by the right-shift in phase and the reduction in amplitude of the UTDR waveform. Moreover, the wetting depth could be accurately calculated by the time of flight (ToF) and ultrasonic velocity. For scaling-induced wetting, the waveform slightly shifted to the left at the beginning due to the growth of scaling layer, then to the right because the left-shift was surpassed by the right-shift of the waveform caused by pore wetting. Both for the surfactant- and scaling-induced wetting, the variation of the UTDR waveform was sensitive to wetting dynamics, and the right-shift of phase and the reduction in amplitude of the waveform could act as early monitoring signals to the occurrence of wetting.
Collapse
Affiliation(s)
- Hongting Wan
- School of Civil Engineering, Wuhan University, Wuhan 430072, China
| | - Xianhui Li
- Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou 510006, China
| | - Yusen Luo
- Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou 510006, China
| | - Danting Shi
- School of Civil Engineering, Wuhan University, Wuhan 430072, China
| | - Tengjing Gong
- School of Civil Engineering, Wuhan University, Wuhan 430072, China
| | - Alicia Kyoungjin An
- School of Energy and Environment, City University of Hong Kong, Tat Chee Avenue Kowloon, Hong Kong, Hong Kong
| | - Senlin Shao
- School of Civil Engineering, Wuhan University, Wuhan 430072, China.
| |
Collapse
|
2
|
Ilyas A, Vankelecom IFJ. Designing sustainable membrane-based water treatment via fouling control through membrane interface engineering and process developments. Adv Colloid Interface Sci 2023; 312:102834. [PMID: 36634445 DOI: 10.1016/j.cis.2023.102834] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 12/05/2022] [Accepted: 01/04/2023] [Indexed: 01/09/2023]
Abstract
Membrane-based water treatment processes have been established as a powerful approach for clean water production. However, despite the significant advances made in terms of rejection and flux, provision of sustainable and energy-efficient water production is restricted by the inevitable issue of membrane fouling, known to be the major contributor to the elevated operating costs due to frequent chemical cleaning, increased transmembrane resistance, and deterioration of permeate flux. This review provides an overview of fouling control strategies in different membrane processes, such as microfiltration, ultrafiltration, membrane bioreactors, and desalination via reverse osmosis and forward osmosis. Insights into the recent advancements are discussed and efforts made in terms of membrane development, modules arrangement, process optimization, feed pretreatment, and fouling monitoring are highlighted to evaluate their overall impact in energy- and cost-effective water treatment. Major findings in four key aspects are presented, including membrane surface modification, modules design, process integration, and fouling monitoring. Among the above mentioned anti-fouling strategies, a large part of research has been focused on membrane surface modifications using a number of anti-fouling materials whereas much less research has been devoted to membrane module advancements and in-situ fouling monitoring and control. At the end, a critical analysis is provided for each anti-fouling strategy and a rationale framework is provided for design of efficient membranes and process for water treatment.
Collapse
Affiliation(s)
- Ayesha Ilyas
- Membrane Technology Group (MTG), Division cMACS, Faculty of Bioscience Engineering, KU Leuven, Celestijnenlaan 200F, Box 2454, 3001 Leuven, Belgium
| | - Ivo F J Vankelecom
- Membrane Technology Group (MTG), Division cMACS, Faculty of Bioscience Engineering, KU Leuven, Celestijnenlaan 200F, Box 2454, 3001 Leuven, Belgium.
| |
Collapse
|
3
|
Luo Y, Shao S, Mo J, Yang Y, Wang Z, Li X. Spatio-temporal progression and influencing mechanism of local wetting in membrane distillation. J Memb Sci 2023. [DOI: 10.1016/j.memsci.2023.121374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
4
|
Song J, Yan M, Ye J, Zheng S, Ee LY, Wang Z, Li J, Huang M. Research progress in external field intensification of forward osmosis process for water treatment: A critical review. WATER RESEARCH 2022; 222:118943. [PMID: 35952439 DOI: 10.1016/j.watres.2022.118943] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 07/30/2022] [Accepted: 08/01/2022] [Indexed: 06/15/2023]
Abstract
Forward osmosis (FO) is an emerging permeation-driven membrane technology that manifests advantages of low energy consumption, low operating pressure, and uncomplicated engineering compared to conventional membrane processes. The key issues that need to be addressed in FO are membrane fouling, concentration polarization (CP) and reverse solute diffusion (RSD). They can lead to problems about loss of draw solutes and reduced membrane lifetime, which not only affect the water treatment effectiveness of FO membranes, but also increase the economic cost. Current research has focused on FO membrane preparation and modification strategies, as well as on the selection of draw solutions. Unfortunately, these intrinsic solutions had limited success in unraveling these phenomena. In this paper, we provide a brief review of the current state of research on existing external field-assisted FO systems (including electric-, pressure-, magnetic-, ultrasonic-, light- and flow-assisted FO system), analyze their mitigation mechanisms for the above key problems, and explore potential research directions to aid in the further development of FO systems. This review aims to reveal the feasibility of the development of external field-assisted FO technology to achieve a more economical and efficient FO treatment process.
Collapse
Affiliation(s)
- Jialing Song
- College of Environmental Science and Engineering, Key Laboratory of Science & Technology of Eco-Textile, Ministry of Education, Donghua University, Shanghai 201620, China; Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore
| | - Mengying Yan
- College of Environmental Science and Engineering, Key Laboratory of Science & Technology of Eco-Textile, Ministry of Education, Donghua University, Shanghai 201620, China
| | - Jingling Ye
- College of Environmental Science and Engineering, Key Laboratory of Science & Technology of Eco-Textile, Ministry of Education, Donghua University, Shanghai 201620, China
| | - Shengyang Zheng
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou, Jiangsu 225127, China
| | - Liang Ying Ee
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore
| | - Zhiwei Wang
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Jun Li
- College of Environmental Science and Engineering, Key Laboratory of Science & Technology of Eco-Textile, Ministry of Education, Donghua University, Shanghai 201620, China
| | - Manhong Huang
- College of Environmental Science and Engineering, Key Laboratory of Science & Technology of Eco-Textile, Ministry of Education, Donghua University, Shanghai 201620, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China; State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Donghua University, Shanghai 201620, China.
| |
Collapse
|
5
|
Guo Z, Zhang Y, Jia H, Guo J, Meng X, Wang J. Electrochemical methods for landfill leachate treatment: A review on electrocoagulation and electrooxidation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 806:150529. [PMID: 34600209 DOI: 10.1016/j.scitotenv.2021.150529] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 09/18/2021] [Accepted: 09/19/2021] [Indexed: 06/13/2023]
Abstract
Landfill leachate is a kind of difficult-to-degrade wastewater with complex water qualities. Waste filtrate cannot be thoroughly treated by traditional biological, physical and chemical methods. In the past five years, electrochemical methods have attracted widespread attention in the treatment of landfill leachate. The article pointed out that for the colloidal/suspended particles in the landfill leachate, using of electrocoagulation can achieve a good treatment effect. Aiming at the characteristics of the dissolved organic matter in the landfill leachate and the high concentration of chloride ions, a more efficient removal can be available by using of electrooxidation. In this review, the latest achievements and basic principles of electrocoagulation and electrooxidation have been introduced. Meanwhile, the influence of different process parameters on these two electrochemical methods was summarized. It also reviewed the effect of electrochemical technology as an independent system or combined with biological and physical chemical processes on the treatment of landfill leachate, as well as the cost of various laboratory scales. Finally, several main problems and challenges encountered by electrochemical methods were briefly discussed, and the prospects for new development and future research were also provided.
Collapse
Affiliation(s)
- Zijing Guo
- State Key Laboratory of Separation Membranes and Membrane Processes, Tiangong University, Tianjin 300387, China; School of Environmental Science and Engineering, Tiangong University, Tianjin 300387, China; State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Science, Jinan 250353, China
| | - Yang Zhang
- State Key Laboratory of Separation Membranes and Membrane Processes, Tiangong University, Tianjin 300387, China; School of Environmental Science and Engineering, Tiangong University, Tianjin 300387, China
| | - Hui Jia
- State Key Laboratory of Separation Membranes and Membrane Processes, Tiangong University, Tianjin 300387, China; School of Environmental Science and Engineering, Tiangong University, Tianjin 300387, China; State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Science, Jinan 250353, China.
| | - Jiaran Guo
- State Key Laboratory of Separation Membranes and Membrane Processes, Tiangong University, Tianjin 300387, China; School of Environmental Science and Engineering, Tiangong University, Tianjin 300387, China
| | - Xia Meng
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Science, Jinan 250353, China
| | - Jie Wang
- State Key Laboratory of Separation Membranes and Membrane Processes, Tiangong University, Tianjin 300387, China; School of Environmental Science and Engineering, Tiangong University, Tianjin 300387, China.
| |
Collapse
|
6
|
Characterization of membrane wetting phenomenon by ionic liquid via ultrasonic time-domain reflectometry (UTDR). J Memb Sci 2022. [DOI: 10.1016/j.memsci.2021.119949] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|