1
|
Castillo-Ruiz M, Negrete C, Espinoza JP, Martínez I, Daille LK, González C, Rodríguez B. Antibiofilm Effects of Modifying Polyvinylidene Fluoride Membranes with Polyethylenimine, Poly(acrylic acid) and Graphene Oxide. Polymers (Basel) 2024; 16:3418. [PMID: 39684163 DOI: 10.3390/polym16233418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 11/26/2024] [Accepted: 12/02/2024] [Indexed: 12/18/2024] Open
Abstract
Biofouling in membrane filtration systems poses significant operational challenges, leading to decreased permeate flux. The aim of this work was to study the anti-biofilm properties of new nanofiltration membranes produced via layer-by-layer, LBL, assembly by coating a polyvinylidene fluoride (PVDF) support with a polyethylenimine (PEI) and poly(acrylic acid)/graphene oxide (PAA-GO) mixture. The membranes were characterized according to contact angle, scanning electron microscopy (SEM), atomic force microscopy and their Z-potential. Biofilm quantification and characterization were carried out using crystal violet staining and SEM, while bacterial viability was assessed by using colony-forming units. The membrane with three bilayers ((PAA-PEI)3/PVDF) showed a roughness of 77.78 nm. The incorporation of GO ((GO/PAA-PEI)3/PVDF) produced a membrane with a smoother surface (roughness of 26.92 nm) and showed salt rejections of 16% and 68% for NaCl and Na2SO4, respectively. A significant reduction, ranging from 82.37 to 77.30%, in biofilm formation produced by S. aureus and E. coli were observed on modified membranes. Additionally, the bacterial viability on the modified membranes was markedly reduced (67.42-99.98%). Our results show that the modified membranes exhibited both antibiofilm and antimicrobial capacities, suggesting that these properties mainly depend on the properties of the modifying agents, as the initial adherence on the membrane surface was not totally suppressed, but the proliferation and formation of EPSs were prevented.
Collapse
Affiliation(s)
- Mario Castillo-Ruiz
- Escuela de Tecnología Médica, Facultad de Ciencias de la Salud, Universidad Bernardo O'Higgins, General Gana 1702, Santiago 8370854, Chile
- Escuela de Química y Farmacia, Facultad de Medicina, Universidad Andres Bello, Sazié 2320, Santiago 8370134, Chile
| | - Constanza Negrete
- Facultad de Ciencias Naturales, Matemáticas y del Medioambiente, Universidad Tecnológica Metropolitana, Las Palmeras 3360, Ñuñoa 7800003, Chile
| | - Juan Pablo Espinoza
- CIBQA, Facultad de Ciencias de la Salud, Universidad Bernardo O'Higgins, Fábrica 1865, Santiago 8320000, Chile
| | - Iván Martínez
- Departamento de Ciencias Químicas y Biológicas, Facultad de Ciencias de la Salud, Universidad Bernardo O'Higgins, General Gana 1702, Santiago 8370854, Chile
| | - Leslie K Daille
- Centro GEMA-Genómica, Ecología & Medio Ambiente, Universidad Mayor, Camino La Pirámide 5750, Santiago 8580745, Chile
| | - Christopher González
- CIRENYS, Escuela de Química y Farmacia, Facultad de Ciencias Médicas, Universidad Bernardo O'Higgins, General Gana 1702, Santiago 8370854, Chile
| | - Bárbara Rodríguez
- CIRENYS, Escuela de Química y Farmacia, Facultad de Ciencias Médicas, Universidad Bernardo O'Higgins, General Gana 1702, Santiago 8370854, Chile
| |
Collapse
|
2
|
Zhang Y, Deng W, Wu M, Liu Z, Yu G, Cui Q, Liu C, Fatehi P, Li B. Robust, Scalable, and Cost-Effective Surface Carbonized Pulp Foam for Highly Efficient Solar Steam Generation. ACS APPLIED MATERIALS & INTERFACES 2023; 15:7414-7426. [PMID: 36692260 DOI: 10.1021/acsami.2c21260] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Recently, a solar-driven evaporator has been applied in seawater desalination, but the low stability, high cost, and complex fabrication limit its further application. Herein, we report a novel, low-cost, scalable, and easily fabricated pulp-natural rubber (PNR) foam with a unique porous structure, which was directly used as a solar-driven evaporator after facile surface carbonization. This surface carbonized PNR (CPNR) foam without interface adhesion or modification was composed of a top photothermal layer with light absorption ability and a bottom hydrophilic foam layer with a porous and interconnected network structure. Due to the strong light absorption ability (93.2%) of the carbonized top layer, together with the low thermal conductivity (0.1 W m K-1) and good water adsorption performance (9.9 g g-1) of the bottom layer, the evaporation rate and evaporation efficiency of the pulp foam evaporator under 1 sun of illumination attained 1.62 kg m-2 h-1 and 98.09%, respectively, which were much higher than those of most cellulose-based solar-driven evaporators. Furthermore, the CPNR foam evaporator with high cost-effectiveness presented high light-thermal conversion, heat localization, and good salt rejection properties due to the unique porous structure. Additionally, the CPNR foam evaporator exhibited potential applications in the treatments of simulated sewage, metal ion concentration, and seawater desalination. Its cost-effectiveness was clearly higher than that of most reported evaporators as well. Therefore, this novel, low-cost, and stable pulp foam evaporator demonstrated here can be a very promising solution for water desalination and purification.
Collapse
Affiliation(s)
- Yidong Zhang
- CAS Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao266101, China
- Laboratory of Natural Materials Technology, Åbo Akademi University, Henrikinkatu 2, TurkuFI-20500, Finland
| | - Wangfang Deng
- CAS Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao266101, China
| | - Meiyan Wu
- CAS Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao266101, China
- Green Processes Research Centre and Biorefining Research Institute, Lakehead University, Thunder Bay, OntarioP7B5E1, Canada
| | - Zhexuan Liu
- CAS Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao266101, China
| | - Guang Yu
- CAS Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao266101, China
| | - Qiu Cui
- CAS Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao266101, China
- Shandong Energy Institute, Qingdao266101, China
- Qingdao New Energy Shandong Laboratory, Qingdao266101, China
| | - Chao Liu
- CAS Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao266101, China
| | - Pedram Fatehi
- Laboratory of Natural Materials Technology, Åbo Akademi University, Henrikinkatu 2, TurkuFI-20500, Finland
- Green Processes Research Centre and Biorefining Research Institute, Lakehead University, Thunder Bay, OntarioP7B5E1, Canada
| | - Bin Li
- CAS Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao266101, China
- Shandong Energy Institute, Qingdao266101, China
- Qingdao New Energy Shandong Laboratory, Qingdao266101, China
| |
Collapse
|
3
|
Li C, Song K, Hao C, Liang W, Li X, Zhang W, Wang Y, Song Y. Fabrication of S-PBI cation exchange membrane with excellent anti-fouling property for enhanced performance in electrodialysis. Colloids Surf A Physicochem Eng Asp 2023. [DOI: 10.1016/j.colsurfa.2022.130910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
4
|
Abriyanto H, Susanto H, Maharani T, Filardli AMI, Desiriani R, Aryanti N. Synergistic Effect of Chitosan and Metal Oxide Additives on Improving the Organic and Biofouling Resistance of Polyethersulfone Ultrafiltration Membranes. ACS OMEGA 2022; 7:46066-46078. [PMID: 36570250 PMCID: PMC9773804 DOI: 10.1021/acsomega.2c03685] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 11/21/2022] [Indexed: 06/17/2023]
Abstract
The combination of chitosan and metal oxides was utilized as an addition to improve the fouling resistance of polyethersulfone (PES) ultrafiltration membranes. Pure water flux, membrane hydrophilicity by the contact angle, scanning electron micrographs, and Fourier-transform infrared spectra were used to characterize the membranes. With the addition of metal oxides, the modified membrane's water flux increased. The PES membrane with 0.25% wt chitosan and 2.0% wt AgNO3 had the highest flux and antibacterial activity among the membranes tested. Because of its potential to improve membrane hydrophilicity, the water flux increased with the addition of chitosan and AgNO3. Because of the improved hydrophilicity, the contact angle reduced as chitosan and Ag loading was increased. The PES-chitosan-Ag2O (from AgNO3 2.0% wt) membrane had high antibacterial activity against Escherichia coli and Staphylococcus aureus, whereas the PES-2.0% wt Ag membrane did not show the same result. Finally, the addition of chitosan in the PES-Ag membrane increased the membrane's antibacterial activity substantially.
Collapse
Affiliation(s)
- Herlambang Abriyanto
- Department
of Chemical Engineering, Faculty of Engineering, Diponegoro University, No. 1 Prof Soedarto, SH Road, Tembalang-Semarang50275, Indonesia
- Membrane
Research Center (Mer-C), PUI Membrane Central Laboratory for Research
and Service, Diponegoro University, Semarang50275, Indonesia
| | - Heru Susanto
- Department
of Chemical Engineering, Faculty of Engineering, Diponegoro University, No. 1 Prof Soedarto, SH Road, Tembalang-Semarang50275, Indonesia
- Membrane
Research Center (Mer-C), PUI Membrane Central Laboratory for Research
and Service, Diponegoro University, Semarang50275, Indonesia
| | - Talita Maharani
- Department
of Chemical Engineering, Faculty of Engineering, Diponegoro University, No. 1 Prof Soedarto, SH Road, Tembalang-Semarang50275, Indonesia
| | - Abdullah M. I. Filardli
- Department
of Chemical Engineering, Faculty of Engineering, Diponegoro University, No. 1 Prof Soedarto, SH Road, Tembalang-Semarang50275, Indonesia
- Membrane
Research Center (Mer-C), PUI Membrane Central Laboratory for Research
and Service, Diponegoro University, Semarang50275, Indonesia
| | - Ria Desiriani
- Department
of Chemical Engineering, Faculty of Engineering, Diponegoro University, No. 1 Prof Soedarto, SH Road, Tembalang-Semarang50275, Indonesia
- Membrane
Research Center (Mer-C), PUI Membrane Central Laboratory for Research
and Service, Diponegoro University, Semarang50275, Indonesia
| | - Nita Aryanti
- Department
of Chemical Engineering, Faculty of Engineering, Diponegoro University, No. 1 Prof Soedarto, SH Road, Tembalang-Semarang50275, Indonesia
- Membrane
Research Center (Mer-C), PUI Membrane Central Laboratory for Research
and Service, Diponegoro University, Semarang50275, Indonesia
| |
Collapse
|
5
|
Nasruddin NISM, Abu Bakar MH. Mitigating membrane biofouling in biofuel cell system – A review. OPEN CHEM 2021. [DOI: 10.1515/chem-2021-0111] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Abstract
A biofuel cell (BFC) system can transform chemical energy to electrical energy through electrochemical reactions and biochemical pathways. However, BFC faced several obstacles delaying it from commercialization, such as biofouling. Theoretically, the biofouling phenomenon occurs when microorganisms, algae, fungi, plants, or small animals accumulate on wet surfaces. In most BFC, biofouling occurs by the accumulation of microorganisms forming a biofilm. Amassed biofilm on the anode is desired for power production, however, not on the membrane separator. This phenomenon causes severities toward BFCs when it increases the electrode’s ohmic and charge transfer resistance and impedes the proton transfer, leading to a rapid decline in the system’s power performance. Apart from BFC, other activities impacted by biofouling range from the uranium industry to drug sensors in the medical field. These fields are continuously finding ways to mitigate the biofouling impact in their industries while putting forward the importance of the environment. Thus, this study aims to identify the severity of biofouling occurring on the separator materials for implementation toward the performance of the BFC system. While highlighting successful measures taken by other industries, the effectiveness of methods performed to reduce or mitigate the biofouling effect in BFC was also discussed in this study.
Collapse
Affiliation(s)
| | - Mimi Hani Abu Bakar
- Institute of Fuel Cell, Universiti Kebangsaan Malaysia , 43600 , Bangi , Selangor , Malaysia
| |
Collapse
|
6
|
Nanocomposite cation-exchange membranes for wastewater electrodialysis: organic fouling, desalination performance, and toxicity testing. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2021.119217] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
7
|
Sun J, Wang G, Zhang H, Zhang B, Hu C. Facile fabrication of a conductive polypyrrole membrane for anti-fouling enhancement by electrical repulsion and in situ oxidation. CHEMOSPHERE 2021; 270:129416. [PMID: 33388500 DOI: 10.1016/j.chemosphere.2020.129416] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 12/04/2020] [Accepted: 12/22/2020] [Indexed: 06/12/2023]
Abstract
Conductive membranes provide a promising method to alleviate membrane fouling, but their cost-effective fabrication, which is urgently needed, is still a challenge. This paper describes the facile fabrication of an ultrafiltration conductive polypyrrole (PPy)-modified membrane (PMM) by in situ chemical polymerization of FeCl3 and monomer pyrrole vapor on a commercial membrane surface. The resulting membrane had a high electrical conductivity and an outstanding water flux of 2766.55 L m-2 h-1 bar-1. The preparation cost of the PPy deposition was $2.22/m2, which was ∼8% of the commercial ultrafiltration membrane cost. Once the PMM was charged at -1 V as a membrane electrode, the normalized water flux was maintained at 92.48 ± 1.14% after fouling by bovine serum albumin (BSA) solutions, which was 18.82% higher than that when the PMM was not charged. The reduced membrane fouling was ascribed to the electrical repulsion between the negatively charged BSA and the PMM cathode. In addition, hydroxyl and sulfate radicals were generated by peroxymonosulfate (PMS) activation on the PMM surface through electron transfer by PPy, which facilitated foulant oxidation. The PPy on the PMM surface was oxidized after catalysis and electrochemically reduced when the PMM was charged as a cathode, exhibiting continuous catalytic ability for PMS activation. These findings provide an alternative method for the facile fabrication of cost-effective conductive membranes to mitigate membrane fouling.
Collapse
Affiliation(s)
- Jingqiu Sun
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Guiguo Wang
- CRRC TANGSHAN Co., LTD., Tangshan, 064000, China
| | - Hua Zhang
- CRRC TANGSHAN Co., LTD., Tangshan, 064000, China
| | - Ben Zhang
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Chengzhi Hu
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
8
|
Xu X, He Q, Ma G, Wang H, Nirmalakhandan N, Xu P. Pilot Demonstration of Reclaiming Municipal Wastewater for Irrigation Using Electrodialysis Reversal: Effect of Operational Parameters on Water Quality. MEMBRANES 2021; 11:membranes11050333. [PMID: 33946493 PMCID: PMC8147136 DOI: 10.3390/membranes11050333] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 04/27/2021] [Accepted: 04/28/2021] [Indexed: 12/25/2022]
Abstract
The modification of ion composition is important to meet product water quality requirements, such as adjusting the sodium adsorption ratio of reclaimed water for irrigation. Bench- and pilot-scale experiments were conducted using an electrodialysis reversal (EDR) system with Ionics normal grade ion-exchange membranes (CR67 and AR204) to treat the reclaimed water in the Scottsdale Water Campus, Arizona. The goal is to investigate the impact of operating conditions on improving reclaimed water quality for irrigation and stream flow augmentation. The desalting efficiency, expressed as electrical conductivity (EC) reduction, was highly comparable at the same current density between the bench- and pilot-scale EDR systems, proportional to the ratio of residence time in the electrodialysis stack. The salt flux was primarily affected by the current density independent of flow rate, which is associated with linear velocity, boundary layer condition, and residence time. Monovalent-selectivity in terms of equivalent removal of divalent ions (Ca2+, Mg2+, and SO42−) over monovalent ions (Na+, Cl−) was dominantly affected by both current density and water recovery. The techno-economic modeling indicated that EDR treatment of reclaimed water is more cost-effective than the existing ultrafiltration/reverse osmosis (UF/RO) process in terms of unit operation and maintenance cost and total life cycle cost. The EDR system could achieve 92–93% overall water recovery compared to 88% water recovery of the UF/RO system. In summary, electrodialysis is demonstrated as a technically feasible and cost viable alternative to treat reclaimed water for irrigation and streamflow augmentation.
Collapse
Affiliation(s)
- Xuesong Xu
- Department of Civil Engineering, New Mexico State University, Las Cruces, NM 88003, USA; (X.X.); (G.M.); (H.W.); (N.N.)
| | - Qun He
- Carollo Engineers, Phoenix, AZ 85034, USA;
| | - Guanyu Ma
- Department of Civil Engineering, New Mexico State University, Las Cruces, NM 88003, USA; (X.X.); (G.M.); (H.W.); (N.N.)
| | - Huiyao Wang
- Department of Civil Engineering, New Mexico State University, Las Cruces, NM 88003, USA; (X.X.); (G.M.); (H.W.); (N.N.)
| | - Nagamany Nirmalakhandan
- Department of Civil Engineering, New Mexico State University, Las Cruces, NM 88003, USA; (X.X.); (G.M.); (H.W.); (N.N.)
| | - Pei Xu
- Department of Civil Engineering, New Mexico State University, Las Cruces, NM 88003, USA; (X.X.); (G.M.); (H.W.); (N.N.)
- Correspondence: ; Tel.: +1-575-646-5870
| |
Collapse
|