1
|
Shi D, Liu T. Versatile Gas-Transfer Membrane in Water and Wastewater Treatment: Principles, Opportunities, and Challenges. ACS ENVIRONMENTAL AU 2025; 5:152-164. [PMID: 40125285 PMCID: PMC11926753 DOI: 10.1021/acsenvironau.4c00134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Revised: 01/15/2025] [Accepted: 01/15/2025] [Indexed: 03/25/2025]
Abstract
Technologies using liquid-transfer membranes, such as microfiltration, ultrafiltration, and reverse osmosis, have been widely applied in water and wastewater treatment. In the last few decades, gas-transfer membranes have been introduced in various fields to facilitate mass transfer, in which gaseous compounds permeate through membrane pores driven by gradients in chemical concentration or potential. A notable knowledge gap exists among researchers working on these emerging gas-transfer membranes as they approach this subject from different angles and areas of expertise (e.g., material science versus microbiology). This review explores the versatile applications of gas-transfer membranes in water and wastewater treatment, categorizing them into three primary types according to the function of membranes: water vapor transferring, gaseous reactant supplying, and gaseous compound extraction. For each type, the principles, evolution, and potential for further development were elaborated. Moreover, this review highlights the potential knowledge transfer between different fields, as insights from one type of gas-transfer membrane could potentially benefit another. Despite their technical innovations, these processes still face challenges in practical operation, such as membrane fouling and wetting. We advocate for research focusing on more practical and sustainable membranes and careful consideration of these emerging membrane technologies in specific scenarios. The current practicality and maturity of these emerging processes in water and wastewater treatment are described by the Technology Readiness Level (TRL) framework. Particularly, ongoing fundamental progress in membranes and engineering is expected to continue fueling the future development of these technologies.
Collapse
Affiliation(s)
- Danting Shi
- Department of Civil and Environmental
Engineering, The Hong Kong Polytechnic University, Hong Kong 999077, PR China
| | - Tao Liu
- Department of Civil and Environmental
Engineering, The Hong Kong Polytechnic University, Hong Kong 999077, PR China
| |
Collapse
|
2
|
Lu Y, Liu T, Wang H, Zuo L, Hu S, Yuan Z, Bagg W, Guo J. Gas-delivery membrane as an alternative aeration method to remove dissolved methane from anaerobically treated wastewater. WATER RESEARCH 2024; 268:122760. [PMID: 39536642 DOI: 10.1016/j.watres.2024.122760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 11/03/2024] [Accepted: 11/04/2024] [Indexed: 11/16/2024]
Abstract
Dissolved methane is a hurdle for anaerobic wastewater treatment, which would be stripped into the atmosphere by conventional bubble aeration and increase the release of greenhouse gases into the environment. The high oxygen transfer efficiency and less turbulence in membrane aerated biofilm reactor (MABR) could prevent the stripping of dissolved methane. In this study, an MABR was established to remove dissolved methane aerobically in parallel to the nitrogen removal driven by the anammox process. The long-term results demonstrated that aerobic methane oxidation has a short start-up period, in which a high level (>90 %) of dissolved methane removal was achieved in 20 days. Meanwhile, the anammox-based nitrogen removal process reached a total nitrogen removal rate of ∼150 mg N/L/d (0.27 g N/m2/d). In situ batch tests confirmed the active bioreactions of ammonia-oxidizing bacteria, nitrite-oxidizing bacteria, anammox bacteria and aerobic methanotrophs, while 16S rRNA gene amplicon sequencing further validated their existence. Moreover, nitrite/nitrate-dependent anaerobic methane oxidation (n-DAMO) bacteria were enriched to a relative abundance of 2.5 % on Day 372, suggesting their potential role in removing nitrogen and dissolved methane in the MABR. This study provides an alternative technology for removing dissolved methane and nitrogen in parallel from anaerobically treated wastewater.
Collapse
Affiliation(s)
- Yan Lu
- Australian Centre for Water and Environmental Biotechnology (ACWEB, Formerly AWMC), The University of Queensland, St. Lucia, Queensland 4072, Australia
| | - Tao Liu
- Australian Centre for Water and Environmental Biotechnology (ACWEB, Formerly AWMC), The University of Queensland, St. Lucia, Queensland 4072, Australia; Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hong Kong, China.
| | - Hui Wang
- SINOPEC Research Institute of Petroleum Processing Co., Ltd, Beijing 100083, China
| | - Lukun Zuo
- SINOPEC Research Institute of Petroleum Processing Co., Ltd, Beijing 100083, China
| | - Shihu Hu
- Australian Centre for Water and Environmental Biotechnology (ACWEB, Formerly AWMC), The University of Queensland, St. Lucia, Queensland 4072, Australia
| | - Zhiguo Yuan
- School of Energy and Environment, City University of Hong Kong, Hong Kong SAR, China
| | - Wayne Bagg
- Water Corporation, 629 Newcastle St, Leederville, WA 6007, Australia
| | - Jianhua Guo
- Australian Centre for Water and Environmental Biotechnology (ACWEB, Formerly AWMC), The University of Queensland, St. Lucia, Queensland 4072, Australia.
| |
Collapse
|
3
|
Phuc-Hanh Tran D, You SJ, Bui XT, Wang YF, Ramos A. Anaerobic membrane bioreactors for municipal wastewater: Progress in resource and energy recovery improvement approaches. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 366:121855. [PMID: 39025005 DOI: 10.1016/j.jenvman.2024.121855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 06/11/2024] [Accepted: 07/12/2024] [Indexed: 07/20/2024]
Abstract
Anaerobic membrane bioreactor (AnMBR) offer promise in municipal wastewater treatment, with potential benefits including high-quality effluent, energy recovery, sludge reduction, and mitigating greenhouse gas emissions. However, AnMBR face hurdles like membrane fouling, low energy recovery, etc. In light of net-zero carbon target and circular economy strategy, this work sought to evaluate novel AnMBR configurations, focusing on performance, fouling mitigation, net-energy generation, and nutrients-enhancing integrated configurations, such as forward osmosis (FO), membrane distillation (MD), bioelectrochemical systems (BES), membrane photobioreactor (MPBR), and partial nitrification-anammox (PN/A). In addition, we highlight the essential role of AnMBR in advancing the circular economy and propose ideas for the water-energy-climate nexus. While AnMBR has made significant progress, challenges, such as fouling and cost-effectiveness persist. Overall, the use of novel configurations and energy recovery strategies can further improve the sustainability and efficiency of AnMBR systems, making them a promising technology for future sustainable municipal wastewater treatment.
Collapse
Affiliation(s)
- Duyen Phuc-Hanh Tran
- Department of Civil Engineering, Chung Yuan Christian University, Taoyuan, 32023, Taiwan; Center for Environmental Risk Management, Chung Yuan Christian University, Taoyuan, 32023, Taiwan
| | - Sheng-Jie You
- Department of Environmental Engineering, Chung Yuan Christian University, Taoyuan, 32023, Taiwan; Center for Environmental Risk Management, Chung Yuan Christian University, Taoyuan, 32023, Taiwan.
| | - Xuan-Thanh Bui
- Key Laboratory of Advanced Waste Treatment Technology & Faculty of Environment and Natural Resources, Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet Street, District 10, Ho Chi Minh City, Viet Nam; Vietnam National University Ho Chi Minh City (VNU-HCM), Linh Trung Ward, Ho Chi Minh City, 700000, Viet Nam
| | - Ya-Fen Wang
- Department of Environmental Engineering, Chung Yuan Christian University, Taoyuan, 32023, Taiwan; Sustainable Environmental Education Center, Chung Yuan Christian University, Taoyuan, 32023, Taiwan
| | - Aubrey Ramos
- Department of Environmental Engineering, Chung Yuan Christian University, Taoyuan, 32023, Taiwan; Center for Environmental Risk Management, Chung Yuan Christian University, Taoyuan, 32023, Taiwan
| |
Collapse
|
4
|
Zhao Q, Ying H, Liu Y, Wang H, Xu J, Wang W, Ren J, Meng S, Wang N, Mu R, Wang S, Li J. Towards low energy-carbon footprint: Current versus potential P recovery paths in domestic wastewater treatment plants. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 344:118653. [PMID: 37478716 DOI: 10.1016/j.jenvman.2023.118653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 07/11/2023] [Accepted: 07/15/2023] [Indexed: 07/23/2023]
Abstract
With the unprecedented exhaustion of natural phosphorus (P) resource and the high eutrophication potential of the associated-P discharge, P recovery from the domestic wastewater is a promising way and has been putting on agenda of wastewater industry. To address the concern of P resource recovery in an environmentally sustainable way is indispensable especially in the carbon neutrality-oriented wastewater treatment plants (WWTPs). Therefore, this review aims to offer a critical view and a holistic analysis of different P removal/recovery process in current WWTPs and more P reclaim options with the focus on the energy consumption and greenhouse gas (GHG) emission. Unlike P mostly flowing out in the planned/semi-planned P removal/recovery process in current WWTPs, P could be maximumly sequestered via the A-2B- centered process, direct reuse of P-bearing permeate from anaerobic membrane bioreactor, nano-adsorption combined with anaerobic membrane and electrochemical P recovery process. The A-2B- centered process, in which the anaerobic fixed bed reactor was designated for COD capture for energy efficiency while P was enriched and recovered with further P crystallization treating, exhibited the lowest specific energy consumption and GHG emission on the basis of P mass recovered. P resource management in WWTPs tends to incorporate issues related to environmental protection, energy efficiency, GHG emission and socio-economic benefits. This review offers a holistic view with regard to the paradigm shift from "simple P removal" to "P reuse/recovery" and offers in-depth insights into the possible directions towards the P-recovery in the "water-energy-resource-GHG nexus" plant.
Collapse
Affiliation(s)
- Qian Zhao
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, 1000 Fengming Road, Jinan, 250101, China; Research Institute of Resources and Environmental Innovation, Shandong Jianzhu University, Jinan, 250101, China; Research Center for Urban Sewage Treatment and Resource Engineering Technology of Shandong Province, Jinan, 250101, China
| | - Hao Ying
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, 1000 Fengming Road, Jinan, 250101, China
| | - Yu Liu
- Advanced Environmental Biotechnology Centre, Nanyang Environment and Water Research Institute, Nanyang Technological University, 1 Cleantech Loop, Singapore, 637141, Singapore; School of Civil and Environmental Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore.
| | - Hongbo Wang
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, 1000 Fengming Road, Jinan, 250101, China; Research Institute of Resources and Environmental Innovation, Shandong Jianzhu University, Jinan, 250101, China; Research Center for Urban Sewage Treatment and Resource Engineering Technology of Shandong Province, Jinan, 250101, China.
| | - Jingtao Xu
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, 1000 Fengming Road, Jinan, 250101, China; Research Institute of Resources and Environmental Innovation, Shandong Jianzhu University, Jinan, 250101, China; Research Center for Urban Sewage Treatment and Resource Engineering Technology of Shandong Province, Jinan, 250101, China
| | - Wei Wang
- Shandong Institute of Geological Sciences, Jinan, 250013, Shandong, China; Key Laboratory of Gold Mineralization Processes and Resources Utilization and Key Laboratory of Metallogenic-Geologic Processes and Comprehensive Utilization of Minerals Resources in Shandong Province, Jinan, 250013, China
| | - Juan Ren
- Jinan Urban Planning and Design Institute, Jinan, 250001, China
| | - Shujuan Meng
- School of Space and Environment, Beihang University, Beijing, 100191, China
| | - Ning Wang
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, 1000 Fengming Road, Jinan, 250101, China; Research Institute of Resources and Environmental Innovation, Shandong Jianzhu University, Jinan, 250101, China; Research Center for Urban Sewage Treatment and Resource Engineering Technology of Shandong Province, Jinan, 250101, China
| | - Ruimin Mu
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, 1000 Fengming Road, Jinan, 250101, China; Research Institute of Resources and Environmental Innovation, Shandong Jianzhu University, Jinan, 250101, China
| | - Shasha Wang
- Shandong Survey and Design Institute of Water Conservancy Co. LTD, Jinan, 250013, China
| | - Jingjing Li
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, 1000 Fengming Road, Jinan, 250101, China; Research Institute of Resources and Environmental Innovation, Shandong Jianzhu University, Jinan, 250101, China; Research Center for Urban Sewage Treatment and Resource Engineering Technology of Shandong Province, Jinan, 250101, China
| |
Collapse
|
5
|
Jiménez-Robles R, Martínez-Soria V, Izquierdo M. Fouling characterisation in PVDF membrane contactors for dissolved methane recovery from anaerobic effluents: effect of surface organofluorosilanisation. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:29164-29179. [PMID: 36409410 PMCID: PMC9995407 DOI: 10.1007/s11356-022-24019-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 11/01/2022] [Indexed: 04/16/2023]
Abstract
Characterisation of the fouling attached to PVDF membranes treating an anaerobic effluent for dissolved CH4 recovery was carried out. A commercial flat-sheet PVDF membrane and a PVDF functionalised by grafting of organofluorosilanes (mPVDF) that increased its hydrophobicity were subjected to a continuous flux of an anaerobic reactor effluent in long-term operation tests (> 800 h). The fouling cakes were studied by the membrane autopsy after these tests, combining a staining technique, FTIR, and FESEM-EDX, and the fouling extraction with water and NaOH solutions. Both organic and inorganic fouling were observed, and the main foulants were proteins, polysaccharides, and different calcium and phosphate salts. Also, a significant amount of live cells was detected on the fouling cake (especially on the non-modified PVDF). Although the fouling cake composition was quite heterogeneous, a stratification was observed, with the inorganic fouling mainly in the bulk centre of the cake and the organic fouling mainly located in the lower and upper surfaces of the cake. The mPVDF suffered a more severe fouling, likely owing to a stronger hydrophobic-hydrophobic interaction with the foulants. Irreversible fouling remained on both membranes after the extraction, although a higher irreversible fouling was detected in the mPVDF; however, a complete polysaccharide removal was observed. Regarding the operation performance, PVDF showed a lower stability and suffered a severe degradation, resulting in a lower thickness and perforations. Finally, the decrease in the methane recovery performance of both membranes was associated with the fouling depositions.
Collapse
Affiliation(s)
- Ramón Jiménez-Robles
- Research Group in Environmental Engineering (GI2AM), Department of Chemical Engineering, School of Engineering, University of Valencia, Avda, Universitat S/N, 46100, Burjassot, Spain
| | - Vicente Martínez-Soria
- Research Group in Environmental Engineering (GI2AM), Department of Chemical Engineering, School of Engineering, University of Valencia, Avda, Universitat S/N, 46100, Burjassot, Spain
| | - Marta Izquierdo
- Research Group in Environmental Engineering (GI2AM), Department of Chemical Engineering, School of Engineering, University of Valencia, Avda, Universitat S/N, 46100, Burjassot, Spain.
| |
Collapse
|
6
|
Centeno Mora E, Souza CLD, Neves TDA, Chernicharo CDL. Characterisation and perspectives of energetic use of dissolved gas recovered from anaerobic effluent with membrane contactor. BIORESOURCE TECHNOLOGY 2023; 367:128223. [PMID: 36368489 DOI: 10.1016/j.biortech.2022.128223] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 10/24/2022] [Accepted: 10/26/2022] [Indexed: 06/16/2023]
Abstract
Biogas is a source of renewable energy, and its production and use has been validated in anaerobic-based sewage treatment plants (STPs). However, in these systems, a large amount of methane is lost as dissolved methane (D-CH4) in the liquid effluent. In this study, the characteristics and potential energetic uses of the gas recovered during the desorption of D-CH4 from anaerobic effluents with hollow fibre membrane contactors were investigated. A pilot-scale experiment was performed using sewage and two types of membrane contactors. The recovered gas contained considerable amounts of CH4, CO2, H2S, N2, and O2; therefore, a gas upgrade is required prior to its use as a biofuel. The recovery process should be energetically self-sustainable, and induce a considerable decrease in the STP carbon footprint. Recovering D-CH4 with membrane contactors could increase the energetic potential of anaerobic-based STPs up to 50 % and allow for more sustainable systems.
Collapse
Affiliation(s)
- Erick Centeno Mora
- Civil Engineering School, University of Costa Rica, San José, Costa Rica; Department of Sanitary and Environmental Engineering, Federal University of Minas Gerais, Brazil.
| | - Cláudio Leite de Souza
- Department of Sanitary and Environmental Engineering, Federal University of Minas Gerais, Brazil
| | - Thiago de Alencar Neves
- Department of Sanitary and Environmental Engineering, Federal University of Minas Gerais, Brazil
| | | |
Collapse
|
7
|
Centeno Mora E, de Lemos Chernicharo CA. Simultaneous removal of dissolved sulphide and dissolved methane from anaerobic effluents with hollow fibre membrane contactors. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:90549-90566. [PMID: 35871195 DOI: 10.1007/s11356-022-22074-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 07/13/2022] [Indexed: 06/15/2023]
Abstract
Dissolved gases in the effluent of anaerobic reactors, specifically dissolved methane (D-CH4) and sulphide (S2-), are a drawback for anaerobic-based sewage treatment plants (STPs). This article studied the simultaneous desorption/removal of both gases from anaerobic effluents with hollow fibre membrane contactors (HFMCs), evaluating two types of membrane materials (e.g. microporous and dense) at different operating conditions (atmospheric air as sweeping gas or vacuum, and different gas/liquid flows and vacuum pressures). The transfer of other gases, such as O2 and CO2, was studied as well. Desorption/removal efficiencies up to 99% for D-CH4 and 100% for S2- were obtained, with the higher efficiencies reported for the dense HFMC and with air as sweeping gas. It was found that the removal mechanism for S2- was oxidation with O2 from the air. In addition, the use of air as sweeping gas allowed the obtention of a nearly O2 saturated effluent, with more elevated dissolved oxygen concentrations in the microporous HFMC. Finally, it was found that the higher mass-transfer resistance in the dense membrane was compensated by a better performance in the liquid phase (lower mass-transfer resistance) in this unit, which allowed better D-CH4 desorption efficiencies.
Collapse
Affiliation(s)
- Erick Centeno Mora
- Department of Sanitary and Environmental Engineering, Federal University of Minas Gerais (UFMG), Belo Horizonte, Brazil.
- School of Civil Engineering, University of Costa Rica (UCR), San José, Costa Rica.
| | | |
Collapse
|
8
|
Estévez S, Feijoo G, Moreira MT. Environmental synergies in decentralized wastewater treatment at a hotel resort. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 317:115392. [PMID: 35636106 DOI: 10.1016/j.jenvman.2022.115392] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Revised: 05/12/2022] [Accepted: 05/23/2022] [Indexed: 06/15/2023]
Abstract
Climate change and water scarcity are clearly related environmental problems, making them global environmental issues. Accordingly, the water cycle management deserves a revision in its approach, integrating the concept of circular economy within an efficient and sustainable management of water resources and the design of wastewater facilities. In this sense, newly engineered decentralized facilities have emerged as a viable option for the treatment of segregated wastewater flows. The design has not only integrated the wastewater treatment function, but also resource recovery, such as water reclamation for agricultural and irrigation activities, fertigation, fertilization and energy sustainability. Based on these premises, the concept of decentralized wastewater management deserves the same degree of attention and development that has so far been reserved for conventional centralized management systems. Therefore, this paper proposes a progressive substitution of the business-as-usual scenario or centralized system by applying a small-scale wastewater management scheme performing a more efficient resource and water recovery in a medium-sized 4-5-star resort hotel. The spotlight was a membrane technology for the anaerobic digestion of the blackwater instead of the greywater treatment. A favorable environmental profile was found for the decentralized scenario under two circumstances: a large system boundary including the beneficial environmental impacts of the products and, based on the results obtained from a sensitivity analysis, an energy demand for the operation of the AnMBR lower than 2 kWh·m-3. The global warming potential results (around 9%) were even for such high demand and much larger benefits were obtained for other impact categories (94% for SOD and 98% for LU). Nevertheless, the operation (gate-to-gate approach) of these on-site recovery facilities is far from being optimized and further research should follow to decrease the 39.8% difference in the global warming potential between decentralized and centralized systems.
Collapse
Affiliation(s)
- Sofía Estévez
- Department of Chemical Engineering, CRETUS, Universidade de Santiago de Compostela, 15782, Santiago de Compostela, Spain.
| | - Gumersindo Feijoo
- Department of Chemical Engineering, CRETUS, Universidade de Santiago de Compostela, 15782, Santiago de Compostela, Spain
| | - María Teresa Moreira
- Department of Chemical Engineering, CRETUS, Universidade de Santiago de Compostela, 15782, Santiago de Compostela, Spain
| |
Collapse
|
9
|
Centeno Mora E, Chernicharo CADL. Modelling and optimization of transverse flow hollow fibre membrane contactors for the recovery of dissolved methane from anaerobic effluents. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
10
|
Jiménez-Robles R, Gabaldón C, Badia J, Izquierdo M, Martínez-Soria V. Recovery of dissolved methane through a flat sheet module with PDMS, PP, and PVDF membranes. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2021.120057] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
11
|
Hollow-Fiber Membrane Contactor for Biogas Recovery from Real Anaerobic Membrane Bioreactor Permeate. MEMBRANES 2022; 12:membranes12020112. [PMID: 35207034 PMCID: PMC8877462 DOI: 10.3390/membranes12020112] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 01/12/2022] [Accepted: 01/16/2022] [Indexed: 01/19/2023]
Abstract
This study demonstrates the application of hollow-fiber membrane contactors (HFMCs) for the recovery of biogas from the ultrafiltration permeate of an anaerobic membrane bioreactor (AnMBR) and synthetic effluents of pure and mixed CH4 and CO2. The developed membrane degassing setup was coupled with a pilot-scale AnMBR fed with synthetic domestic effluent working at 25 °C. The membrane degassing unit was able to recover 93% of the total dissolved CH4 and 83% of the dissolved CO2 in the first two hours of permeate recirculation. The initial recovery rates were very high (0.21 mg CH4 L−1 min−1 and 8.43 mg CO2 L−1 min−1) and the membrane was able to achieve a degassing efficiency of 95.7% for CH4 and 76.2% for CO2, at a gas to liquid ratio of 1. A higher mass transfer coefficient of CH4 was found in all experimental and theoretical evaluations compared to CO2. This could also be confirmed from the higher transmembrane mass transport resistance to CO2 rather than CH4 found in this work. A strong dependency of the selective gas transport on the gas and liquid side hydrodynamics was observed. An increase in the liquid flow rate and gas flow rate favored CH4 transport and CO2 transport, respectively, over each component. The results confirmed the effectiveness of the collective AnMBR and membrane degassing setup for biogas recovery. Still, additional work is required to improve the membrane contactor’s performance for biogas recovery during long-term operation.
Collapse
|
12
|
Velasco P, Jegatheesan V, Thangavadivel K, Othman M, Zhang Y. A focused review on membrane contactors for the recovery of dissolved methane from anaerobic membrane bioreactor (AnMBR) effluents. CHEMOSPHERE 2021; 278:130448. [PMID: 34126683 DOI: 10.1016/j.chemosphere.2021.130448] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 03/16/2021] [Accepted: 03/28/2021] [Indexed: 06/12/2023]
Abstract
The need for a more sustainable wastewater treatment is more relevant now due to climate change. Production and reuse of methane from anaerobic treatment is one pathway. However, this is defeated by the presence of dissolved methane in the effluent and would be released to the environment, adding to the greenhouse gas emissions. This review paper provided summary and analysis of studies involved in the production of dissolved methane from AnMBR, focusing with actual methane measurement (gas and dissolved) from AnMBR with different types of wastewater. Then more focused discussion and analysis on the use of membrane-based technology or membrane contactors in the recovery of dissolved methane from AnMBR effluent are included, with its development and energy analysis. The dissolved methane removal and recovery rate of membrane contactors can be as high as 96% and 0.05 mol methane/m2/h, respectively, with very low additional energy requirement of 0.01 kWh/m3 for the recovery. Future perspectives presented focus on the long-term evaluation and modelling of membrane contactors and on the membrane modifications to improve the selectivity of membranes to methane and to limit their fouling and wetting, thus making the technology more economical for resource recovery.
Collapse
Affiliation(s)
- Perlie Velasco
- Chemical and Environmental Engineering, School of Engineering, RMIT University, Melbourne, Victoria, 3000, Australia; Department of Civil Engineering, University of the Philippines - Los Baños, Pili Drive, College, Laguna, 4031, Philippines.
| | - Veeriah Jegatheesan
- Chemical and Environmental Engineering, School of Engineering, RMIT University, Melbourne, Victoria, 3000, Australia
| | | | - Maazuza Othman
- Chemical and Environmental Engineering, School of Engineering, RMIT University, Melbourne, Victoria, 3000, Australia
| | - Yang Zhang
- Membrane Innovation and Resource Recovery (MIRR), School of Environmental and Safety Engineering, Qingdao University of Science and Technology, 53 Zhengzhou Road, Qingdao, 266042, Shandong, China
| |
Collapse
|
13
|
Li X, Lee HS, Wang Z, Lee J. State-of-the-art management technologies of dissolved methane in anaerobically-treated low-strength wastewaters: A review. WATER RESEARCH 2021; 200:117269. [PMID: 34091220 DOI: 10.1016/j.watres.2021.117269] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 05/12/2021] [Accepted: 05/14/2021] [Indexed: 06/12/2023]
Abstract
The recent advancement in low temperature anaerobic processes shows a great promise for realizing low-energy-cost, sustainable mainstream wastewater treatment. However, the considerable loss of the dissolved methane from anaerobically-treated low-strength wastewater significantly compromises the energy potential of the anaerobic processes and poses an environmental risk. In this review, the promises and challenges of existing and emerging technologies for dissolved methane management are examined: its removal, recovery, and on-site reuse. It begins by describing the working principles of gas-stripping and biological oxidation for methane removal, membrane contactors and vacuum degassers for methane recovery, and on-site biological conversion of dissolved methane into electricity or value-added biochemicals as direct energy sources or energy-compensating substances. A comparative assessment of these technologies in the three categories is presented based on methane treating efficiency, energy-production potential, applicability, and scalability. Finally, current research needs and future perspectives are highlighted to advance the future development of an economically and technically sustainable methane-management technology.
Collapse
Affiliation(s)
- Xuesong Li
- State Key Laboratory of Pollution Control and Resource Reuse, Shanghai Institute of Pollution Control and Ecological Security, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Hyung-Sool Lee
- Department of Civil and Environmental Engineering, University of Waterloo, Waterloo, ON, N2L 3G1, Canada
| | - Zhiwei Wang
- State Key Laboratory of Pollution Control and Resource Reuse, Shanghai Institute of Pollution Control and Ecological Security, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Jongho Lee
- Department of Civil Engineering, University of British Columbia, Vancouver, British Columbia, Canada, V6T 1Z4.
| |
Collapse
|
14
|
Lee HS, Liao B. Anaerobic membrane bioreactors for wastewater treatment: Challenges and opportunities. WATER ENVIRONMENT RESEARCH : A RESEARCH PUBLICATION OF THE WATER ENVIRONMENT FEDERATION 2021; 93:993-1004. [PMID: 33151594 DOI: 10.1002/wer.1475] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 07/03/2020] [Accepted: 10/26/2020] [Indexed: 06/11/2023]
Abstract
Anaerobic membrane bioreactors (AnMBRs) have become a new mature technology and entered into the wastewater market, but there are several challenges to be addressed for wide applications. In this review, we discuss challenges and potentials of AnMBRs focusing on wastewater treatment. Nitrogen and dissolved methane control, membrane fouling and its control, and membrane associated cost including energy consumption are main bottlenecks to facilitating AnMBR application in wastewater treatment. Accumulation of dissolved methane in AnMBR permeate decreases the benefit of methane energy and contributes to methane gas emissions to atmosphere. Separate control units for nitrogen and dissolved methane add system complexity and increase capital and operating and maintenance (O & M) costs in AnMBR-centered wastewater treatment. Alternatively, methane-based denitrification can be an ideal nitrogen control process due to simultaneous removal of nitrogen and dissolved methane. Membrane fouling and energy associated with membrane fouling control are major limitations, in addition to membrane cost. More efforts are required to decrease capital and O & M costs associated with the control of dissolved methane nitrogen and membrane fouling to facilitate AnMBRs for wastewater treatment. PRACTITIONER POINTS: AnMBRs can accelerate anaerobic wastewater treatment including dilute wastewater. Nitrogen and dissolved methane control is detrimental for AnMBR application to wastewater treatment. Membrane biofilm reactors using gas-permeable membranes are suitable for simultaneous nitrogen and dissolved methane control. High capital and O & M costs from membranes are a major bottleneck to wide application of AnMBRs. Dynamic membranes could be an option to reduce capital and O & M costs for AnMBRs.
Collapse
Affiliation(s)
- Hyung-Sool Lee
- Department of Civil and Environmental Engineering, University of Waterloo, Waterloo, Ontario, Canada
| | - Baoqiang Liao
- Department of Chemical Engineering, Lakehead University, Thunder Bay, Ontario, Canada
| |
Collapse
|
15
|
Oscillatory Reversible Osmotic Growth of Sessile Saline Droplets on a Floating Polydimethylsiloxane Membrane. FLUIDS 2021. [DOI: 10.3390/fluids6070232] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
We report a cyclic growth/retraction phenomena observed for saline droplets placed on a cured poly (dimethylsiloxane) (PDMS) membrane with a thickness of 7.8 ± 0.1 µm floating on a pure water surface. Osmotic mass transport across the micro-scaled floating PDMS membrane provided the growth of the sessile saline droplets followed by evaporation of the droplets. NaCl crystals were observed in the vicinity of the triple line at the evaporation stage. The observed growth/retraction cycle was reversible. A model of the osmotic mass transfer across the cured PDMS membrane is suggested and verified. The first stage of the osmotic growth of saline droplets is well-approximated by the universal linear relationship, whose slope is independent of the initial radius of the droplet. The suggested physical model qualitatively explains the time evolution of the droplet size. The reported process demonstrates a potential for use in industrial desalination.
Collapse
|
16
|
Dutta A, Li X, Lee J. Dissolved methane recovery from anaerobically treated wastewaters using solvent-based membrane contactor: An experimental and modelling study. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2020.118004] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
17
|
Membrane Contactors for Maximizing Biomethane Recovery in Anaerobic Wastewater Treatments: Recent Efforts and Future Prospect. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11041372] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Increasing demand for water and energy has emphasized the significance of energy-efficient anaerobic wastewater treatment; however, anaerobic effluents still containing a large portion of the total CH4 production are discharged to the environment without being utilized as a valuable energy source. Recently, gas–liquid membrane contactors have been considered as a promising technology to recover such dissolved methane from the effluent due to their attractive characteristics such as high specific mass transfer area, no flooding at high flow rates, and low energy requirement. Nevertheless, the development and further application of membrane contactors were still not fulfilled due to their inherent issues such as membrane wetting and fouling, which lower the CH4 recovery efficiency and thus net energy production. In this perspective, the topics in membrane contactors for dissolved CH4 recovery are discussed in the following order: (1) operational principle, (2) potential as waste-to-energy conversion system, and (3) technical challenges and recent efforts to address them. Then, future efforts that should be devoted to advancing gas–liquid membrane contactors are suggested as concluding remarks.
Collapse
|
18
|
Vinardell S, Dosta J, Mata-Alvarez J, Astals S. Unravelling the economics behind mainstream anaerobic membrane bioreactor application under different plant layouts. BIORESOURCE TECHNOLOGY 2021; 319:124170. [PMID: 33011628 DOI: 10.1016/j.biortech.2020.124170] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 09/18/2020] [Accepted: 09/21/2020] [Indexed: 06/11/2023]
Abstract
This research evaluated the economic feasibility of anaerobic membrane bioreactor (AnMBR) as a mainstream technology for municipal sewage treatment. To this end, different wastewater treatment plant (WWTP) layouts were considered, including primary settler, AnMBR, degassing membrane, partial nitritation-Anammox, phosphorus precipitation and sidestream anaerobic digestion. The net treatment cost of an AnMBR-WWTP decreased from 0.42 to 0.35 € m-3 as the sewage COD concentration increased from 100 to 1100 mg COD L-1 due to revenue from electricity production. However, the net treatment cost increased above 0.51 € m-3 when nutrient removal technologies were included. The AnMBR and partial nitritation-Anammox were the costliest processes representing a 57.6 and 30.3% of the treatment cost, respectively. Energy self-sufficiency was achieved for high-strength municipal sewage treatment (1000 mg COD L-1) and a COD:SO42--S ratio above 40. Overall, the results showed that mainstream AnMBR has potential to be an economically competitive option for full-scale implementation.
Collapse
Affiliation(s)
- Sergi Vinardell
- Department of Chemical Engineering and Analytical Chemistry, University of Barcelona, 08028 Barcelona, Spain.
| | - Joan Dosta
- Department of Chemical Engineering and Analytical Chemistry, University of Barcelona, 08028 Barcelona, Spain
| | - Joan Mata-Alvarez
- Department of Chemical Engineering and Analytical Chemistry, University of Barcelona, 08028 Barcelona, Spain
| | - Sergi Astals
- Department of Chemical Engineering and Analytical Chemistry, University of Barcelona, 08028 Barcelona, Spain
| |
Collapse
|
19
|
Robles Á, Durán F, Giménez JB, Jiménez E, Ribes J, Serralta J, Seco A, Ferrer J, Rogalla F. Anaerobic membrane bioreactors (AnMBR) treating urban wastewater in mild climates. BIORESOURCE TECHNOLOGY 2020; 314:123763. [PMID: 32645574 DOI: 10.1016/j.biortech.2020.123763] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 06/22/2020] [Accepted: 06/26/2020] [Indexed: 06/11/2023]
Abstract
Feasibility of an AnMBR demonstration plant treating urban wastewater (UWW) at temperatures around 25-30 °C was assessed during a 350-day experimental period. The plant was fed with the effluent from the pre-treatment of a full-scale municipal WWTP, characterized by high COD and sulfate concentrations. Biodegradability of the UWW reached values up to 87%, although a portion of the biodegradable COD was consumed by sulfate reducing organisms. Effluent COD remained below effluent discharge limits, achieving COD removals above 90%. System operation resulted in a reduction of sludge production of 36-58% compared to theoretical aerobic sludge productions. The membranes were operated at gross transmembrane fluxes above 20 LMH maintaining low membrane fouling propensities for more than 250 days without chemical cleaning requirements. Thus, the system resulted in net positive energy productions and GHG emissions around zero. The results obtained confirm the feasibility of UWW treatment in AnMBR under mild and warm climates.
Collapse
Affiliation(s)
- Ángel Robles
- CALAGUA - Unidad Mixta UV-UPV, Departament d'Enginyeria Química, Universitat de València, Avinguda de la Universitat s/n, 46100 Burjassot, Valencia, Spain.
| | - Freddy Durán
- FCC Aqualia, S.A., Avenida Camino de Santiago, 40, 28050 Madrid, Spain
| | - Juan Bautista Giménez
- CALAGUA - Unidad Mixta UV-UPV, Institut Universitari d'Investigació d'Enginyeria de l'Aigua i Medi Ambient - IIAMA, Universitat Politècnica de Valencia, Camí de Vera s/n, 46022 Valencia, Spain
| | - Emérita Jiménez
- FCC Aqualia, S.A., Avenida Camino de Santiago, 40, 28050 Madrid, Spain
| | - Josep Ribes
- CALAGUA - Unidad Mixta UV-UPV, Departament d'Enginyeria Química, Universitat de València, Avinguda de la Universitat s/n, 46100 Burjassot, Valencia, Spain
| | - Joaquín Serralta
- CALAGUA - Unidad Mixta UV-UPV, Institut Universitari d'Investigació d'Enginyeria de l'Aigua i Medi Ambient - IIAMA, Universitat Politècnica de Valencia, Camí de Vera s/n, 46022 Valencia, Spain
| | - Aurora Seco
- CALAGUA - Unidad Mixta UV-UPV, Departament d'Enginyeria Química, Universitat de València, Avinguda de la Universitat s/n, 46100 Burjassot, Valencia, Spain
| | - José Ferrer
- CALAGUA - Unidad Mixta UV-UPV, Institut Universitari d'Investigació d'Enginyeria de l'Aigua i Medi Ambient - IIAMA, Universitat Politècnica de Valencia, Camí de Vera s/n, 46022 Valencia, Spain
| | - Frank Rogalla
- FCC Aqualia, S.A., Avenida Camino de Santiago, 40, 28050 Madrid, Spain
| |
Collapse
|
20
|
Durán F, Robles Á, Giménez JB, Ferrer J, Ribes J, Serralta J. Modeling the anaerobic treatment of sulfate-rich urban wastewater: Application to AnMBR technology. WATER RESEARCH 2020; 184:116133. [PMID: 32721762 DOI: 10.1016/j.watres.2020.116133] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 06/25/2020] [Accepted: 06/29/2020] [Indexed: 06/11/2023]
Abstract
Although anaerobic membrane bioreactors (AnMBR) are a core technology in the transition of urban wastewater (UWW) treatment towards a circular economy, the transition is being held back by a number of bottlenecks. The dissolved methane released from the effluent, the need to remove nutrients (ideally by recovery), or the energy lost by the competition between methanogenic and sulfate-reducing bacteria (SRB) for the biodegradable COD have been identified as the main issues to be addressed before AnMBR becomes widespread. Mathematical modeling of this technology can be used to obtain further insights into these bottlenecks plus other valuable information for design, simulation and control purposes. This paper therefore proposes an AnMBR anaerobic digestion model to simulate the crucial SRB-related process since these bacteria degrade more than 40% of the organic matter. The proposed model, which is included in the BNRM2 collection model, has a reduced but all-inclusive structure, including hydrolysis, acidogenesis, acetogenesis, methanogenesis and other SRB-related processes. It was calibrated and validated using data from an AnMBR pilot plant treating sulfate-rich UWW, including parameter values obtained in off-line experiments and optimization methods. Despite the complex operating dynamics and influent composition, it was able to reproduce the process performance. In fact, it was able to simulate the AD of sulfate-rich UWW considering only two groups of SRB: heterotrophic SRB growing on both VFA (propionate) and acetate, and autotrophic SRB growing on hydrogen. Besides the above-mentioned constraints, the model reproduced the dynamics of the mixed liquor solids concentration, which helped to integrate biochemical and filtration models. It also reproduced the alkalinity and pH dynamics in the mixed liquor required for assessing the effect of chemical precipitation on membrane scaling.
Collapse
Affiliation(s)
- Freddy Durán
- CALAGUA - Unidad Mixta UV-UPV, Institut Universitari d'Investigació d'Enginyeria de l'Aigua i Medi Ambient - IIAMA, Universitat Politècnica de València, Camí de Vera s/n, 46022, València, Spain
| | - Ángel Robles
- CALAGUA - Unidad Mixta UV-UPV, Departament d'Enginyeria Química, Universitat de València, Avinguda de la Universitat s/n, 46100, Burjassot, València, Spain.
| | - Juan Bautista Giménez
- CALAGUA - Unidad Mixta UV-UPV, Institut Universitari d'Investigació d'Enginyeria de l'Aigua i Medi Ambient - IIAMA, Universitat Politècnica de València, Camí de Vera s/n, 46022, València, Spain
| | - José Ferrer
- CALAGUA - Unidad Mixta UV-UPV, Institut Universitari d'Investigació d'Enginyeria de l'Aigua i Medi Ambient - IIAMA, Universitat Politècnica de València, Camí de Vera s/n, 46022, València, Spain
| | - Josep Ribes
- CALAGUA - Unidad Mixta UV-UPV, Departament d'Enginyeria Química, Universitat de València, Avinguda de la Universitat s/n, 46100, Burjassot, València, Spain
| | - Joaquín Serralta
- CALAGUA - Unidad Mixta UV-UPV, Institut Universitari d'Investigació d'Enginyeria de l'Aigua i Medi Ambient - IIAMA, Universitat Politècnica de València, Camí de Vera s/n, 46022, València, Spain
| |
Collapse
|