1
|
Jiao W, Zhou J, Gu Q, Liu Z, Pan J, Qin J, Zhu Y, Jiang D, Hu J. Preparation, Thermal Stability, and Preliminary Gas Separation Performance of Furan-Based Bio-Polyimide Films. Polymers (Basel) 2025; 17:1362. [PMID: 40430658 PMCID: PMC12115040 DOI: 10.3390/polym17101362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2025] [Revised: 05/10/2025] [Accepted: 05/13/2025] [Indexed: 05/29/2025] Open
Abstract
The need for renewable alternatives to petroleum-based polymers is growing in response to environmental concerns and resource depletion. Polyimides (PIs), which are traditionally synthesized from petroleum-derived monomers, raise sustainability issues. In this work, renewable 2,5-furandicarboxylic acid (FDCA) was employed as a sustainable feedstock to synthesize a bio-based diamine monomer, N,N'-bis(4-aminophenyl)furan-2,5-dicarboxamide (FPA). Subsequently, FPA was polymerized with various aromatic dianhydrides through thermal imidization, yielding four distinct bio-based polyimide (FPA-PI) films. The resulting films exhibited exceptional thermal stability, with 5% weight loss temperatures exceeding 425 °C and char yields ranging from 54% to 60%. Mechanical characterization revealed high elastic moduli (2.14-3.20 GPa), moderate tensile strengths (50-99 MPa), and favorable aging resistance. Gas permeation tests demonstrated promising CO2/N2 separation performance, with FPA-DODDA achieving superior CO2/N2 selectivity (27.721) compared to commercial films such as Matrimid®, polysulfone, and polycarbonate, while FPA-BPFLDA exhibited enhanced CO2 permeability (P(CO2) = 2.526 Barrer), surpassing that of Torlon®. The CO2/N2 separation performance of these FPA-PI films is governed synergistically by size-sieving effects and solution-diffusion mechanisms. This work not only introduces a novel synthetic route for bio-based polymers but also highlights the potential of replacing conventional petroleum-based materials with renewable alternatives in high-temperature and gas separation applications, thereby advancing environmental sustainability.
Collapse
Affiliation(s)
- Wei Jiao
- National and Local Joint Engineering Research Center for Green Preparation Technology of Biobased Materials, Yunnan Minzu University, Kunming 650500, China; (W.J.); (J.Z.); (Q.G.); (Z.L.); (J.P.); (J.Q.); (Y.Z.)
| | - Jie Zhou
- National and Local Joint Engineering Research Center for Green Preparation Technology of Biobased Materials, Yunnan Minzu University, Kunming 650500, China; (W.J.); (J.Z.); (Q.G.); (Z.L.); (J.P.); (J.Q.); (Y.Z.)
| | - Qinying Gu
- National and Local Joint Engineering Research Center for Green Preparation Technology of Biobased Materials, Yunnan Minzu University, Kunming 650500, China; (W.J.); (J.Z.); (Q.G.); (Z.L.); (J.P.); (J.Q.); (Y.Z.)
| | - Zijun Liu
- National and Local Joint Engineering Research Center for Green Preparation Technology of Biobased Materials, Yunnan Minzu University, Kunming 650500, China; (W.J.); (J.Z.); (Q.G.); (Z.L.); (J.P.); (J.Q.); (Y.Z.)
| | - Jiashu Pan
- National and Local Joint Engineering Research Center for Green Preparation Technology of Biobased Materials, Yunnan Minzu University, Kunming 650500, China; (W.J.); (J.Z.); (Q.G.); (Z.L.); (J.P.); (J.Q.); (Y.Z.)
| | - Jiangchun Qin
- National and Local Joint Engineering Research Center for Green Preparation Technology of Biobased Materials, Yunnan Minzu University, Kunming 650500, China; (W.J.); (J.Z.); (Q.G.); (Z.L.); (J.P.); (J.Q.); (Y.Z.)
| | - Yiyi Zhu
- National and Local Joint Engineering Research Center for Green Preparation Technology of Biobased Materials, Yunnan Minzu University, Kunming 650500, China; (W.J.); (J.Z.); (Q.G.); (Z.L.); (J.P.); (J.Q.); (Y.Z.)
| | - Dengbang Jiang
- National and Local Joint Engineering Research Center for Green Preparation Technology of Biobased Materials, Yunnan Minzu University, Kunming 650500, China; (W.J.); (J.Z.); (Q.G.); (Z.L.); (J.P.); (J.Q.); (Y.Z.)
| | - Jiayang Hu
- Hubei Academy of Forestry, Wuhan 430075, China
| |
Collapse
|
2
|
Lei X, Zhang Z, Xiao Y, Yu Q, Liu Y, Ma X, Zhang Q. Tröger's Base Polyimide Membranes with Enhanced Mechanical Robustness for Gas Separation. Polymers (Basel) 2025; 17:524. [PMID: 40006186 PMCID: PMC11859751 DOI: 10.3390/polym17040524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Revised: 02/13/2025] [Accepted: 02/15/2025] [Indexed: 02/27/2025] Open
Abstract
The rigid V-shaped Tröger's base (TB) unit has been proven efficacious in creating microporosity, making TB-based polyimides (PIs) exhibiting significant advantages in simultaneously increasing gas permeability and selectivity for the separation industry. However, TB-based PIs commonly display undesired mechanical performance due to the low molecular weight resulting from the evident steric hindrance and low reactivity of TB-containing diamines. Herein, a novel diamine-containing bisimide linkage (BIDA) has been synthesized and then polymerized with paraformaldehyde via a moderate "TB polymerization" strategy to furnish polymers simultaneously, including imide linkages and TB units in the polymer main chains, namely, TB-PIs. This TB polymerization strategy avoids the direct polymerization of dianhydride with low-reactivity TB diamine. After incorporating a meta-methyl substituent into BIDA diamine, the m-MBIDA diamine-derived m-MTBPI ultimately exhibits a high molecular weight, good tensile strength (90.4 MPa) and an outstanding fracture toughness (45.1 MJ/m3). And more importantly, the m-MTBPI membrane displays an evidently enhanced gas separation ability in comparison with BIDA-derived TBPI, with overall separation properties much closer to the 1991 Robeson upper bound. Moreover, no sign of plasticization appears for the m-MTBPI membrane when separating a high-pressure CO2/CH4 mixture (v/v = 1/1) up to 20 bar, with the CO2/CH4 mixed-gas separation performance approaching the 2018 upper bound.
Collapse
Affiliation(s)
- Xingfeng Lei
- Xi’an Key Laboratory of Functional Organic Porous Materials, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi’an 710072, China
- Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi’an 710072, China
- Key Laboratory of Material Physics and Chemistry Under Extraordinary Conditions of Ministry of Education, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi’an 710072, China
| | - Zixiang Zhang
- Xi’an Key Laboratory of Functional Organic Porous Materials, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi’an 710072, China
- Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi’an 710072, China
- Key Laboratory of Material Physics and Chemistry Under Extraordinary Conditions of Ministry of Education, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi’an 710072, China
| | - Yuyang Xiao
- Xi’an Key Laboratory of Functional Organic Porous Materials, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi’an 710072, China
- Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi’an 710072, China
- Key Laboratory of Material Physics and Chemistry Under Extraordinary Conditions of Ministry of Education, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi’an 710072, China
| | - Qinyu Yu
- Xi’an Key Laboratory of Functional Organic Porous Materials, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi’an 710072, China
- Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi’an 710072, China
- Key Laboratory of Material Physics and Chemistry Under Extraordinary Conditions of Ministry of Education, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi’an 710072, China
| | - Yewei Liu
- Xi’an Key Laboratory of Functional Organic Porous Materials, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi’an 710072, China
- Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi’an 710072, China
- Key Laboratory of Material Physics and Chemistry Under Extraordinary Conditions of Ministry of Education, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi’an 710072, China
| | - Xiaohua Ma
- State Key Laboratory of Separation Membranes and Membrane Processes, National Center for International Joint Research on Membrane Science and Technology, Tiangong University, Tianjin 300387, China
| | - Qiuyu Zhang
- Xi’an Key Laboratory of Functional Organic Porous Materials, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi’an 710072, China
- Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi’an 710072, China
- Key Laboratory of Material Physics and Chemistry Under Extraordinary Conditions of Ministry of Education, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi’an 710072, China
| |
Collapse
|
3
|
Li Y, Lu Y, Tian C, Wang Z, Yan J. Intrinsically Microporous Polyimides Derived from 2,2'-Dibromo-4,4',5,5'-bipohenyltetracarboxylic Dianhydride for Gas Separation Membranes. Polymers (Basel) 2024; 16:1198. [PMID: 38732667 PMCID: PMC11085140 DOI: 10.3390/polym16091198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 04/17/2024] [Accepted: 04/22/2024] [Indexed: 05/13/2024] Open
Abstract
This work aims to expand the structure-property relationships of bromo-containing polyimides and the influence of bromine atoms on the gas separation properties of such materials. A series of intrinsically microporous polyimides were synthesized from 2,2'-dibromo-4,4',5,5'-bipohenyltetracarboxylic dianhydride (Br-BPDA) and five bulky diamines, (7,7'-(mesitylmethylene)bis(8-methyldibenzo[b,e][1,4]dioxin-2-amine) (MMBMA), 7,7'-(Mesitylmethylene)bis(1,8-dimethyldibenzo[b,e][1,4] dioxin-2-amine) (MMBDA), 4,10-dimethyl-6H,12H-5,11-methanodibenzo[b,f][1,5]diazocine-2,8-diamine (TBDA1), 4,10-dimethyl-6H,12H-5,11-methanodibenzo[b,f][1,5]diazocine-3,9-diamine (TBDA2), and (9R,10R)-9,10-dihydro-9,10-[1,2]benzenoanthracene-2,6-diamine (DAT). The Br-BPDA-derived polyimides exhibited excellent solubility, high thermal stability, and good mechanical properties, with their tensile strength and modulus being 59.2-109.3 MPa and 1.8-2.2 GPa, respectively. The fractional free volumes (FFVs) and surface areas (SBET) of the Br-BPDA-derived polyimides were in the range of 0.169-0.216 and 211-342 m2 g-1, following the order of MMBDA > MMBMA > TBDA2 > DAT > TBDA1, wherein the Br-BPDA-MMBDA exhibited the highest SBET and FFV and thus highest CO2 permeability of 724.5 Barrer. Moreover, Br-BPDA-DAT displayed the best gas separation performance, with CO2, H2, O2, N2, and CH4 permeabilities of 349.8, 384.4, 69.8, 16.3, and 19.7 Barrer, and H2/N2 selectivity of 21.4. This can be ascribed to the ultra-micropores (<0.7 nm) caused by the high rigidity of Br-BPDA-DAT. In addition, all the bromo-containing polymers of intrinsic microporosity membranes exhibited excellent resistance to physical ageing.
Collapse
Affiliation(s)
- Yongle Li
- Ningbo Institute of Material Technology & Engineering, Chinese Academy of Sciences, Ningbo 315201, China; (Y.L.); (Z.W.); (J.Y.)
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Yao Lu
- School of Fine Arts, Zhengzhou University, Zhengzhou 450001, China;
| | - Chun Tian
- Ningbo Institute of Material Technology & Engineering, Chinese Academy of Sciences, Ningbo 315201, China; (Y.L.); (Z.W.); (J.Y.)
| | - Zhen Wang
- Ningbo Institute of Material Technology & Engineering, Chinese Academy of Sciences, Ningbo 315201, China; (Y.L.); (Z.W.); (J.Y.)
| | - Jingling Yan
- Ningbo Institute of Material Technology & Engineering, Chinese Academy of Sciences, Ningbo 315201, China; (Y.L.); (Z.W.); (J.Y.)
| |
Collapse
|
4
|
Lu J, Zhang Y, Li J, Fu M, Zou G, Ando S, Zhuang Y. Tröger’s Base (TB)-Based Polyimides as Promising Heat-Insulating and Low- K Dielectric Materials. Macromolecules 2023. [DOI: 10.1021/acs.macromol.2c02148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
Affiliation(s)
- Jian Lu
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
- School of Materials Science and Engineering, Changzhou University, Changzhou 213164, China
| | - Yu Zhang
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
- School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jing Li
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
- School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Meifang Fu
- School of Chemistry and Materials Science, Hubei Engineering University, Xiaogan 432000, China
| | - Guoxiang Zou
- School of Materials Science and Engineering, Changzhou University, Changzhou 213164, China
| | - Shinji Ando
- Department of Chemical Science and Engineering, Tokyo Institute of Technology, 2-12-1-E4-5 Ookayama, Meguro-ku, Tokyo 152-8552, Japan
| | - Yongbing Zhuang
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
- School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
5
|
Zheng P, Xie W, Cai Z, Jiao Y, Sun Y, Han T, Ma X, Li N, Luo S. Ionization of Tröger's base polymer of intrinsic microporosity for high-performance membrane-mediated helium recovery. J Memb Sci 2023. [DOI: 10.1016/j.memsci.2023.121425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
6
|
Jia H, Zhao S, Jiang P, Jing B, Yang G, Xu S, Zhang M, Qu Y, Zou Y. Preparation and gas separation performance of polyimide membranes endcapped with ionic liquid-type structures. HIGH PERFORM POLYM 2022. [DOI: 10.1177/09540083221109867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
A set of ionic liquid capped polyimide membranes was prepared using 1-aminoethyl-3-methylimidazolium hexafluorophosphate (IL1) and 1-aminopropylimidazolium bis(trifluoromethylsulfonyl)imine (IL2) as the terminal groups. The products’ molecular weights, mechanical properties, and separation permeability (CO2/CH4) were investigated. For CO2/CH4 separation, the selectivity of the ionic liquid capped polyimide membranes was higher than that of noncapped ones. Among them, the membrane synthesized by 4.4′- diaminodiphenyl ether and 4.4′-(hexafluoroisopropyl) diphthalic anhydride (6FDA) as monomer, with IL1 as terminal group, displayed the best selectivity. Its permeability was 7.47 Barrer and selectivity 102.42, which exceeded the 1991 Robeson curve. Polyimide membranes capped by ionic liquid showed high gas selectivity and good gas permeability as well as good physical and chemical properties. Consequently, it can be concluded that introducing an ionic liquid structure to polyimide chains could make attractive membrane materials for various gas separation and related applications.
Collapse
Affiliation(s)
| | | | | | | | - Guoxing Yang
- Daqing Petrochemical Research Center, Petrochemical Research Institute, Qiqihar, China
| | | | | | | | | |
Collapse
|
7
|
Cetina-Mancilla E, González-Díaz MO, Sulub-Sulub R, Zolotukhin MG, González A, Herrera-Kao W, Ruiz-Treviño FA, Aguilar-Vega M. Aging resistant, fluorinated aromatic polymers with ladderized, rigid kink-structured backbones for gas separations. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.120764] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
8
|
Effect of structural isomerism on physical and gas transport properties of Tröger's Base-based polyimides. POLYMER 2022. [DOI: 10.1016/j.polymer.2021.124412] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
9
|
Hu X, Miao J, Pang Y, Zhao J, Lu Y, Guo H, Wang Z, Yan J. Synthesis, microstructures, and gas separation performance of norbornyl bis-benzocyclobutene-Tröger’s base polymers derived from pure regioisomers. Polym Chem 2022. [DOI: 10.1039/d2py00210h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Chain configuration significantly influences the microstructures and gas separation performance of polymers of intrinsic microporosity. Herein, pure regioisomers of norbornyl bis-benzocyclobutene-containing (N2BC) diamines, i.e. anti-CANAL-4-MeNH2, syn-CANAL-4-MeNH2, anti-CANAL-2-Me2NH2, and syn-CANAL-2-Me2NH2, were...
Collapse
|
10
|
He L, Lu Y, Xiao G, Hou M, Chi H, Wang T. Phthalide-containing poly(ether-imide)s based thermal rearrangement membranes for gas separation application. RSC Adv 2021; 12:728-742. [PMID: 35425112 PMCID: PMC8978668 DOI: 10.1039/d1ra07013d] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Accepted: 12/18/2021] [Indexed: 12/01/2022] Open
Abstract
The diamine monomer 3,3-bis[4-(3-hydroxy-4-amino-phenoxy)phenyl]phthalide (BHAPPP) was firstly synthesized by the nucleophilic substitution of 5-fluoro-2-nitrophenol and phenolphthalein, followed by a reduction reaction. A series of phthalide-containing poly(ether imide)s (PEI) were then prepared through the polycondensation of BHAPPP with six kinds of dianhydrides, including 4,4'-(hexafluoroisopropylidene)diphthalic anhydride (6FDA), 3,3',4,4'-benzophenone tetracarboxylic dianhydride (BTDA), 3,3',4,4'-biphenyl tetracarboxylic dianhydride (BPDA), 4,4'-oxydiphthalic dianhydride (ODPA), 1,2,3,4-cyclobutane tetracarboxylic dianhydride (CBDA) and pyromellitic dianhydride (PMDA), as well as thermal imidization. After further thermal treatment, the corresponding thermal rearrangement (TR) membranes were obtained. Due to the existence of the phthalide lactone ring, the PEIs probably underwent TR and crosslinking simultaneously. With the increase of thermal treatment temperature, the mechanical properties of the TR membranes dramatically decreased, but the gas separation properties obviously increased. When the PEIs were treated at 450 °C for 1 h, the CO2, H2, O2, N2 and CH4 permeability of TR(BHAPPP-6FDA) reached 258.5, 190.5, 38.35, 4.25 and 2.15 Barrers, respectively. Meanwhile, the CO2/CH4 selectivity of 120.2 sharply exceeded the 2008 Robeson limit, and O2/N2 selectivity was 9.02, close to the 2015 upper limit. Therefore, the TR membranes derived from phthalide-containing PEIs exhibit superior gas separation performance, andare expected to be applied in the field of gas separation.
Collapse
Affiliation(s)
- Lei He
- School of Chemical Engineering, University of Science and Technology Liaoning Anshan Liaoning 114051 P. R. China
| | - Yunhua Lu
- School of Chemical Engineering, University of Science and Technology Liaoning Anshan Liaoning 114051 P. R. China
| | - Guoyong Xiao
- School of Chemical Engineering, University of Science and Technology Liaoning Anshan Liaoning 114051 P. R. China
| | - Mengjie Hou
- School of Chemical Engineering, Dalian University of Technology Dalian Liaoning 116024 P. R. China
| | - Haijun Chi
- School of Chemical Engineering, University of Science and Technology Liaoning Anshan Liaoning 114051 P. R. China
| | - Tonghua Wang
- School of Chemical Engineering, Dalian University of Technology Dalian Liaoning 116024 P. R. China
| |
Collapse
|
11
|
Pai MH, Hu CC, Tan WS, Yang JS, Liou GS. Preparation and Characterization of Intrinsic Porous Polyamides Based on Redox-Active Aromatic Diamines with Pentiptycene Scaffolds. ACS Macro Lett 2021; 10:1210-1215. [PMID: 35549038 DOI: 10.1021/acsmacrolett.1c00487] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The electrochromic (EC) polyamides (Ether-PentiTPA1 and Ether-PentiTPA8) from the electroactive pentiptycene-derived triphenylaminediamine monomers (PentiTPA1 and PentiTPA8) were designed and prepared via polycondensation. The incorporation of rigid and contorted H-shaped pentiptycene scaffolds could restrain polymer chains from close packing and further form intrinsic microporosity in the polymer matrix which could be confirmed by the measurements of WXRD, BET, and PALS. With the existence of intrinsic microporosity, the diffusion rate of counterions between the electroactive polymer film and electrolyte can be promoted during the electrochemical procedure. Therefore, the prepared polyamide Ether-PentiTPA1 exhibits enhanced EC behaviors, such as lower driving potential (1.11 V), smaller redox potential difference ΔE (0.24 V), and shorter switching response time (3.6/5.2 s for coloring/bleaching). Consequently, the formation of intrinsic microporosity can be a useful approach for the enhancement of EC response performance.
Collapse
Affiliation(s)
- Min-Hao Pai
- Institute of Polymer Science and Engineering, National Taiwan University, No. 1, Roosevelt Road, Sec. 4, Taipei 10617, Taiwan
| | - Chien-Chieh Hu
- Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, No. 43, Keelung Rd., Sec. 4, Taipei 106335, Taiwan
| | - Wei Shyang Tan
- Department of Chemistry, National Taiwan University, No. 1, Roosevelt Road, Sec. 4, Taipei 10617, Taiwan
| | - Jye-Shane Yang
- Department of Chemistry, National Taiwan University, No. 1, Roosevelt Road, Sec. 4, Taipei 10617, Taiwan
| | - Guey-Sheng Liou
- Institute of Polymer Science and Engineering, National Taiwan University, No. 1, Roosevelt Road, Sec. 4, Taipei 10617, Taiwan
| |
Collapse
|
12
|
Wu AX, Lin S, Mizrahi Rodriguez K, Benedetti FM, Joo T, Grosz AF, Storme KR, Roy N, Syar D, Smith ZP. Revisiting group contribution theory for estimating fractional free volume of microporous polymer membranes. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2021.119526] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
13
|
Alentiev AY, Ryzhikh VE, Belov NA. Polymer Materials for Membrane Separation of Gas Mixtures Containing CO2. POLYMER SCIENCE SERIES C 2021. [DOI: 10.1134/s1811238221020016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
14
|
Lin JY, Cao XY, Xiao Y, Wang JX, Luo SH, Yang LT, Fang YG, Wang ZY. Controllable preparation and performance of bio-based poly(lactic acid-iminodiacetic acid) as sustained-release Pb 2+ chelating agent. iScience 2021; 24:102518. [PMID: 34142032 PMCID: PMC8188493 DOI: 10.1016/j.isci.2021.102518] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 04/04/2021] [Accepted: 05/04/2021] [Indexed: 11/15/2022] Open
Abstract
The bio-based lactic acid (LA) and the common metal ion chelating agent iminodiacetic acid (IDA) are used to design and prepare a polymeric sustained-release Pb2+ chelating agent by a brief one-step reaction. After the analysis on theoretical calculation for this reaction, poly(lactic acid-iminodiacetic acid) [P(LA-co-IDA)] with different monomer molar feed ratios is synthesized via direct melt polycondensation. P(LA-co-IDA) mainly has star-shaped structure, and some of them have two-core or three-core structure. Thus, a possible mechanism of the polymerization is proposed. The degradation rate of P(LA-co-IDA)s can reach 70% in 4 weeks. The change of IDA release rate is consistent with the trend of the degradation rate, and the good Pb2+ chelating performance is confirmed. P(LA-co-IDA) is expected to be developed as a lead poisoning treatment drug or Pb2+ adsorbent in the environment with long-lasting effect, and this research provides a new strategy for the development of such drugs.
Collapse
Affiliation(s)
- Jian-Yun Lin
- School of Chemistry, South China Normal University, Key Laboratory of Theoretical Chemistry of Environment, Ministry of Education, Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, Guangzhou 510006, P. R. China
| | - Xi-Ying Cao
- School of Chemistry, South China Normal University, Key Laboratory of Theoretical Chemistry of Environment, Ministry of Education, Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, Guangzhou 510006, P. R. China
| | - Ying Xiao
- School of Chemistry, South China Normal University, Key Laboratory of Theoretical Chemistry of Environment, Ministry of Education, Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, Guangzhou 510006, P. R. China
| | - Jin-Xin Wang
- School of Chemistry, South China Normal University, Key Laboratory of Theoretical Chemistry of Environment, Ministry of Education, Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, Guangzhou 510006, P. R. China
| | - Shi-He Luo
- School of Chemistry, South China Normal University, Key Laboratory of Theoretical Chemistry of Environment, Ministry of Education, Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, Guangzhou 510006, P. R. China
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, 381 Wushan Road, Guangzhou 510640, P. R. China
| | - Li-Ting Yang
- School of Chemistry, South China Normal University, Key Laboratory of Theoretical Chemistry of Environment, Ministry of Education, Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, Guangzhou 510006, P. R. China
| | - Yong-Gan Fang
- School of Chemistry, South China Normal University, Key Laboratory of Theoretical Chemistry of Environment, Ministry of Education, Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, Guangzhou 510006, P. R. China
| | - Zhao-Yang Wang
- School of Chemistry, South China Normal University, Key Laboratory of Theoretical Chemistry of Environment, Ministry of Education, Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, Guangzhou 510006, P. R. China
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, 381 Wushan Road, Guangzhou 510640, P. R. China
| |
Collapse
|
15
|
Yuan Q, Longo M, Thornton AW, McKeown NB, Comesaña-Gándara B, Jansen JC, Jelfs KE. Imputation of missing gas permeability data for polymer membranes using machine learning. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2021.119207] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
16
|
Thermally rearranged semi-interpenetrating polymer network (TR-SIPN) membranes for gas and olefin/paraffin separation. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2021.119157] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
17
|
Liu S, Luo J, Deng G, Wang Y, Liu X, Wu Q, Xue S. From a hyperbranched polyimide to a microporous network polyimide via reaction temperature change and its application in gas separation membranes. POLYM ADVAN TECHNOL 2021. [DOI: 10.1002/pat.5228] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Shan Liu
- Tianjin Key Laboratory of Organic Solar Cells and Photochemical Conversion, School of Chemistry & Chemical Engineering Tianjin University of Technology Tianjin China
| | - Jiangzhou Luo
- Tianjin Key Laboratory of Organic Solar Cells and Photochemical Conversion, School of Chemistry & Chemical Engineering Tianjin University of Technology Tianjin China
| | - Guoxiong Deng
- Tianjin Key Laboratory of Organic Solar Cells and Photochemical Conversion, School of Chemistry & Chemical Engineering Tianjin University of Technology Tianjin China
| | - Yilei Wang
- Tianjin Key Laboratory of Organic Solar Cells and Photochemical Conversion, School of Chemistry & Chemical Engineering Tianjin University of Technology Tianjin China
| | - Xiangyun Liu
- Tianjin Key Laboratory of Organic Solar Cells and Photochemical Conversion, School of Chemistry & Chemical Engineering Tianjin University of Technology Tianjin China
| | - Quanping Wu
- Tianjin Key Laboratory of Organic Solar Cells and Photochemical Conversion, School of Chemistry & Chemical Engineering Tianjin University of Technology Tianjin China
| | - Song Xue
- Tianjin Key Laboratory of Organic Solar Cells and Photochemical Conversion, School of Chemistry & Chemical Engineering Tianjin University of Technology Tianjin China
| |
Collapse
|
18
|
Jung JT, Wang HH, Kim JF, Jeon SM, Park SH, Lee WH, Moon SJ, Drioli E, Lee YM. Microfiber aligned hollow fiber membranes from immiscible polymer solutions by phase inversion. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2020.118654] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
19
|
Hu X, Lee WH, Bae JY, Zhao J, Kim JS, Wang Z, Yan J, Lee YM. Highly permeable polyimides incorporating Tröger's base (TB) units for gas separation membranes. J Memb Sci 2020. [DOI: 10.1016/j.memsci.2020.118533] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
20
|
Lee WH, Bae JY, Yushkin A, Efimov M, Jung JT, Volkov A, Lee YM. Energy and time efficient infrared (IR) irradiation treatment for preparing thermally rearranged (TR) and carbon molecular sieve (CMS) membranes for gas separation. J Memb Sci 2020. [DOI: 10.1016/j.memsci.2020.118477] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
21
|
Hu X, Lee WH, Bae JY, Kim JS, Jung JT, Wang HH, Park HJ, Lee YM. Thermally rearranged polybenzoxazole copolymers incorporating Tröger's base for high flux gas separation membranes. J Memb Sci 2020. [DOI: 10.1016/j.memsci.2020.118437] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
22
|
Zhang Y, Lee WH, Seong JG, Bae JY, Zhuang Y, Feng S, Wan Y, Lee YM. Alicyclic segments upgrade hydrogen separation performance of intrinsically microporous polyimide membranes. J Memb Sci 2020. [DOI: 10.1016/j.memsci.2020.118363] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|