1
|
Lee JY, Huang TY, Belle Marie Yap Ang M, Huang SH, Tsai HA, Jeng RJ. Effects of monomer rigidity on microstructures and properties of novel polyamide thin-film composite membranes prepared through interfacial polymerization for pervaporation dehydration. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.120702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
2
|
Separation performance of alcohol-induced silk fibroin membranes with homogeneous and heterogeneous microstructures. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
3
|
Khorram M, Chianeh FN, Shamsodin M. Preparation and characterization of a novel polyethersulfone nanofiltration membrane modified with Bi2O3 nanoparticles for enhanced separation performance and antifouling properties. J IND ENG CHEM 2022. [DOI: 10.1016/j.jiec.2022.07.036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
4
|
Wu PH, Gallardo MR, Ang MBMY, Millare JC, Huang SH, Tsai HA, Lee KR. Assessing the impact of membrane support and different amine monomer structures on the efficacy of thin-film composite nanofiltration membrane for dye/salt separation. JOURNAL OF POLYMER RESEARCH 2022. [DOI: 10.1007/s10965-022-03126-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
5
|
Enhancing Performance of Thin-Film Nanocomposite Membranes by Embedding in Situ Silica Nanoparticles. MEMBRANES 2022; 12:membranes12060607. [PMID: 35736314 PMCID: PMC9229390 DOI: 10.3390/membranes12060607] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 06/06/2022] [Accepted: 06/07/2022] [Indexed: 02/01/2023]
Abstract
In this work, silica nanoparticles were produced in situ, to be embedded eventually in the polyamide layer formed during interfacial polymerization for fabricating thin-film nanocomposite membranes with enhanced performance for dehydrating isopropanol solution. The nanoparticles were synthesized through a sol-gel reaction between 3-aminopropyltrimethoxysilane (APTMOS) and 1,3-cyclohexanediamine (CHDA). Two monomers—CHDA (with APTMOS) and trimesoyl chloride—were reacted on a hydrolyzed polyacrylonitrile (hPAN) support. To obtain optimum fabricating conditions, the ratio of APTMOS to CHDA and reaction time were varied. Field emission scanning electron microscopy (FESEM) and atomic force microscopy (AFM) were used to illustrate the change in morphology as a result of embedding silica nanoparticles. The optimal conditions for preparing the nanocomposite membrane turned out to be 0.15 (g/g) APTMOS/CHDA and 60 min mixing of APTMOS and CHDA, leading to the following membrane performance: flux = 1071 ± 79 g∙m−2∙h−1, water concentration in permeate = 97.34 ± 0.61%, and separation factor = 85.39. A stable performance was shown by the membrane under different operating conditions, where the water concentration in permeate was more than 90 wt%. Therefore, the embedment of silica nanoparticles generated in situ enhanced the separation efficiency of the membrane.
Collapse
|
6
|
Ang MBMY, Wu YL, Chu MY, Wu PH, Chiao YH, Millare JC, Huang SH, Tsai HA, Lee KR. Nanofiltration Membranes Formed through Interfacial Polymerization Involving Cycloalkane Amine Monomer and Trimesoyl Chloride Showing Some Tolerance to Chlorine during Dye Desalination. MEMBRANES 2022; 12:333. [PMID: 35323809 PMCID: PMC8954597 DOI: 10.3390/membranes12030333] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 03/06/2022] [Accepted: 03/14/2022] [Indexed: 12/16/2022]
Abstract
Wastewater effluents containing high concentrations of dyes are highly toxic to the environment and aquatic organisms. Recycle and reuse of both water and dye in textile industries can save energy and costs. Thus, new materials are being explored to fabricate highly efficient nanofiltration membranes for fulfilling industrial needs. In this work, three diamines, 1,4-cyclohexanediamine (CHD), ethylenediamine (EDA), and p-phenylenediamine (PPD), are reacted with TMC separately to fabricate a thin film composite polyamide membrane for dye desalination. Their chemical structures are different, with the difference located in the middle of two terminal amines. The surface morphology, roughness, and thickness of the polyamide layer are dependent on the reactivity of the diamines with TMC. EDA has a short linear alkane chain, which can easily react with TMC, forming a very dense selective layer. CHD has a cyclohexane ring, making it more sterically hindered than EDA. As such, CHD's reaction with TMC is slower than EDA's, leading to a thinner polyamide layer. PPD has a benzene ring, which should make it the most sterically hindered structure; however, its benzene ring has a pi-pi interaction with TMC that can facilitate a faster reaction between PPD and TMC, leading to a thicker polyamide layer. Among the TFC membranes, TFCCHD exhibited the highest separation efficiency (pure water flux = 192.13 ± 7.11 L∙m-2∙h-1, dye rejection = 99.92 ± 0.10%, and NaCl rejection = 15.46 ± 1.68% at 6 bar and 1000 ppm salt or 50 ppm of dye solution). After exposure at 12,000 ppm∙h of active chlorine, the flux of TFCCHD was enhanced with maintained high dye rejection. Therefore, the TFCCHD membrane has a potential application for dye desalination process.
Collapse
Affiliation(s)
- Micah Belle Marie Yap Ang
- R&D Center for Membrane Technology and Department of Chemical Engineering, Chung Yuan Christian University, Taoyuan 32023, Taiwan; (Y.-L.W.); (M.-Y.C.); (P.-H.W.); (Y.-H.C.); (H.-A.T.)
| | - Yi-Ling Wu
- R&D Center for Membrane Technology and Department of Chemical Engineering, Chung Yuan Christian University, Taoyuan 32023, Taiwan; (Y.-L.W.); (M.-Y.C.); (P.-H.W.); (Y.-H.C.); (H.-A.T.)
| | - Min-Yi Chu
- R&D Center for Membrane Technology and Department of Chemical Engineering, Chung Yuan Christian University, Taoyuan 32023, Taiwan; (Y.-L.W.); (M.-Y.C.); (P.-H.W.); (Y.-H.C.); (H.-A.T.)
| | - Ping-Han Wu
- R&D Center for Membrane Technology and Department of Chemical Engineering, Chung Yuan Christian University, Taoyuan 32023, Taiwan; (Y.-L.W.); (M.-Y.C.); (P.-H.W.); (Y.-H.C.); (H.-A.T.)
| | - Yu-Hsuan Chiao
- R&D Center for Membrane Technology and Department of Chemical Engineering, Chung Yuan Christian University, Taoyuan 32023, Taiwan; (Y.-L.W.); (M.-Y.C.); (P.-H.W.); (Y.-H.C.); (H.-A.T.)
- Research Center for Membrane and Film Technology, Department of Chemical Science and Engineering, Kobe University, Rokkodaicho 1-1, Nada, Kobe 657-8501, Japan
| | - Jeremiah C. Millare
- School of Chemical, Biological, and Materials Engineering and Sciences, Mapúa University, Manila 1002, Philippines;
| | - Shu-Hsien Huang
- R&D Center for Membrane Technology and Department of Chemical Engineering, Chung Yuan Christian University, Taoyuan 32023, Taiwan; (Y.-L.W.); (M.-Y.C.); (P.-H.W.); (Y.-H.C.); (H.-A.T.)
- Department of Chemical and Materials Engineering, National Ilan University, Yilan 26047, Taiwan
| | - Hui-An Tsai
- R&D Center for Membrane Technology and Department of Chemical Engineering, Chung Yuan Christian University, Taoyuan 32023, Taiwan; (Y.-L.W.); (M.-Y.C.); (P.-H.W.); (Y.-H.C.); (H.-A.T.)
| | - Kueir-Rarn Lee
- R&D Center for Membrane Technology and Department of Chemical Engineering, Chung Yuan Christian University, Taoyuan 32023, Taiwan; (Y.-L.W.); (M.-Y.C.); (P.-H.W.); (Y.-H.C.); (H.-A.T.)
- Research Center for Circular Economy, Chung Yuan Christian University, Taoyuan 32023, Taiwan
| |
Collapse
|
7
|
Ang MBMY, Marquez JAD, Huang SH, Lee KR. A recent review of developmental trends in fabricating pervaporation membranes through interfacial polymerization and future prospects. J IND ENG CHEM 2021. [DOI: 10.1016/j.jiec.2021.03.013] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
8
|
Cosolvent-Driven Interfacial Polymerization for Superior Separation Performance of Polyurea-Based Pervaporation Membrane. Polymers (Basel) 2021; 13:polym13081179. [PMID: 33916885 PMCID: PMC8067614 DOI: 10.3390/polym13081179] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 03/30/2021] [Accepted: 04/02/2021] [Indexed: 11/16/2022] Open
Abstract
A thin-film composite (TFC) polyurea membrane was fabricated for the dehydration of an aqueous tetrahydrofuran (THF) solution through interfacial polymerization, wherein polyethyleneimine (a water-soluble amine monomer) and m-xylene diisocyanate (an oil-soluble diisocyanate monomer) were reacted on the surface of a modified polyacrylonitrile (mPAN) substrate. Cosolvents were used to tailor the membrane properties and increase the membrane permeation flux. Four types of alcohols that differed in the number of carbon (methanol, ethanol, isopropanol, and tert-butanol) were added as cosolvents, serving as swelling agents, to the aqueous-phase monomer solution, and their effect on the membrane properties and pervaporation separation was discussed. Attenuated total reflection Fourier transform infrared spectroscopy confirmed the formation of a polyurea layer on mPAN. Field emission scanning electron microscopy and surface water contact angle analysis indicated no change in the membrane morphology and hydrophilicity, respectively, despite the addition of cosolvents for interfacial polymerization. The TFC membrane produced when ethanol was the cosolvent exhibited the highest separation performance (permeation flux = 1006 ± 103 g·m−2·h−1; water concentration in permeate = 98.8 ± 0.3 wt.%) for an aqueous feed solution containing 90 wt.% THF at 25 °C. During the membrane formation, ethanol caused the polyurea layer to loosen and to acquire a certain degree of cross-linking. The optimal fabrication conditions were as follows: 10 wt.% ethanol as cosolvent; membrane curing temperature = 50 °C; membrane curing time = 30 min.
Collapse
|
9
|
Modification Approaches to Enhance Dehydration Properties of Sodium Alginate-Based Pervaporation Membranes. MEMBRANES 2021; 11:membranes11040255. [PMID: 33916137 PMCID: PMC8066153 DOI: 10.3390/membranes11040255] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 03/27/2021] [Accepted: 03/29/2021] [Indexed: 11/21/2022]
Abstract
Transport characteristics of sodium alginate (SA) membranes cross-linked with CaCl2 and modified with fullerenol and fullerene derivative with L-arginine for pervaporation dehydration were improved applying various approaches, including the selection of a porous substrate for the creation of a thin selective SA-based layer, and the deposition of nano-sized polyelectrolyte (PEL) layers through the use of a layer-by-layer (Lbl) method. The impacts of commercial porous substrates made of polyacrylonitrile (PAN), regenerated cellulose, and aromatic polysulfone amide were investigated by scanning electron microscopy (SEM), atomic force microscopy (AFM), standard porosimetry method, and water filtration. The effects of PEL combinations (such as poly(sodium 4-styrene sulfonate) (PSS)/SA, PSS/chitosan, PSS/polyacrylic acid, PSS/poly(allylamine hydrochloride)) and the number of PEL bilayers deposited with the Lbl technique on the properties of the SA and SA/fullerene derivative membranes were studied by SEM, AFM, and contact angle measurements. The best characteristics were exhibited by a cross-linked PAN-supported SA/fullerenol (5%) membrane with five PSS/SA bilayers: permeation flux of 0.68–1.38 kg/(m2h), 0.18–1.55 kg/(m2h), and 0.50–1.15 kg/(m2h), and over 99.7, 99.0, and 89.0 wt.% water in the permeate for the pervaporation dehydration of isopropanol (12–70 wt.% water), ethanol (4–70 wt.% water), and tetrahydrofuran (5.7–70 wt.% water), respectively. It was demonstrated that the mutual application of bulk and surface modifications essentially improved the membrane’s characteristics in pervaporation dehydration.
Collapse
|
10
|
De Guzman MR, Ang MBMY, Huang SH, Huang QY, Chiao YH, Lee KR. Optimal Performance of Thin-Film Composite Nanofiltration-Like Forward Osmosis Membranes Set Off by Changing the Chemical Structure of Diamine Reacted with Trimesoyl Chloride through Interfacial Polymerization. Polymers (Basel) 2021; 13:polym13040544. [PMID: 33673191 PMCID: PMC7918250 DOI: 10.3390/polym13040544] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Revised: 02/07/2021] [Accepted: 02/08/2021] [Indexed: 11/23/2022] Open
Abstract
Thin-film composite (TFC) polyamide membranes formed through interfacial polymerization can function more efficiently by tuning the chemical structure of participating monomers. Accordingly, three kinds of diamine monomers were considered to take part in interfacial polymerization. Each diamine was reacted with trimesoyl chloride (TMC) to manufacture TFC polyamide nanofiltration (NF)-like forward osmosis (FO) membranes. The diamines differed in chemical structure; the functional group present between the terminal amines was classified as follows: aliphatic group of 1,3-diaminopropane (DAPE); cyclohexane in 1,3-cyclohexanediamine (CHDA); and aromatic or benzene ring in m-phenylenediamine (MPD). For FO tests, deionized water and 1 M aqueous sodium sulfate solution were used as feed and draw solution, respectively. Interfacial polymerization conditions were also varied: concentrations of water and oil phases, time of contact between the water-phase solution and the membrane substrate, and polymerization reaction time. The resultant membranes were characterized using attenuated total reflectance-Fourier transform infrared spectroscopy, field emission scanning electron microscopy, atomic force microscopy, and surface contact angle measurement to identify the chemical structure, morphology, roughness, and hydrophilicity of the polyamide layer, respectively. The results of FO experiments revealed that among the three diamine monomers, CHDA turned out to be the most effective, as it led to the production of TFC NF-like FO membrane with optimal performance. Then, the following optimum conditions were established for the CHDA-based membrane: contact between 2.5 wt.% aqueous CHDA solution and polysulfone (PSf) substrate for 2 min, and polymerization reaction between 1 wt.% TMC solution and 2.5 wt.% CHDA solution for 30 s. The composite CHDA-TMC/PSf membrane delivered a water flux (Jw) of 18.24 ± 1.33 LMH and a reverse salt flux (Js) of 5.75 ± 1.12 gMH; therefore, Js/Jw was evaluated to be 0.32 ± 0.07 (g/L).
Collapse
Affiliation(s)
- Manuel Reyes De Guzman
- Material Corrosion and Protection Key Laboratory of Sichuan Province, School of Materials Science and Engineering, Sichuan University of Science and Engineering, Zigong 643000, China;
| | - Micah Belle Marie Yap Ang
- R&D Center for Membrane Technology and Department of Chemical Engineering, Chung Yuan Christian University, Taoyuan 32023, Taiwan; (M.B.M.Y.A.); (K.-R.L.)
| | - Shu-Hsien Huang
- R&D Center for Membrane Technology and Department of Chemical Engineering, Chung Yuan Christian University, Taoyuan 32023, Taiwan; (M.B.M.Y.A.); (K.-R.L.)
- Department of Chemical and Materials Engineering, National Ilan University, Yilan 26047, Taiwan;
- Correspondence:
| | - Qing-Yi Huang
- Department of Chemical and Materials Engineering, National Ilan University, Yilan 26047, Taiwan;
| | - Yu-Hsuan Chiao
- Department of Chemical Engineering, University of Arkansas, Fayetteville, AR 72701, USA;
| | - Kueir-Rarn Lee
- R&D Center for Membrane Technology and Department of Chemical Engineering, Chung Yuan Christian University, Taoyuan 32023, Taiwan; (M.B.M.Y.A.); (K.-R.L.)
- Research Center for Circular Economy, Chung Yuan Christian University, Taoyuan 32023, Taiwan
| |
Collapse
|
11
|
De Guzman MR, Ang MBMY, Yeh YL, Yang HL, Huang SH, Lee KR. Improved pervaporation efficiency of thin-film composite polyamide membranes fabricated through acetone-assisted interfacial polymerization. Chem Eng Res Des 2021. [DOI: 10.1016/j.cherd.2020.11.016] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
12
|
Ang MBMY, Huang SH, Wei SW, Chiao YH, Aquino RR, Hung WS, Tsai HA, Lee KR, Lai JY. Surface Properties, Free Volume, and Performance for Thin-Film Composite Pervaporation Membranes Fabricated through Interfacial Polymerization Involving Different Organic Solvents. Polymers (Basel) 2020; 12:E2326. [PMID: 33053660 PMCID: PMC7601289 DOI: 10.3390/polym12102326] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 10/05/2020] [Accepted: 10/09/2020] [Indexed: 11/17/2022] Open
Abstract
The type of organic solvents used in interfacial polymerization affects the surface property, free volume, and separation performance of the thin-film composite (TFC) polyamide membrane. In this study, TFC polyamide membrane was fabricated through interfacial polymerization between diethylenetriamine (DETA) and trimesoyl chloride (TMC). Four types of organic solvent were explored in the preparation of pervaporation membrane. These are tetralin, toluene, hexane, and isopentane. The solubility parameter distance between organic solvents and DETA follows in increasing order: tetralin (17.07 MPa1/2) < toluene (17.31 MPa1/2) < hexane (19.86 MPa1/2) < isopentane (20.43 MPa1/2). Same trend was also observed between the organic solvents and DETA. The larger the solubility parameter distance, the denser and thicker the polyamide. Consequently, field emission scanning electron microscope (FESEM) and positron annihilation spectroscopy (PAS) analysis revealed that TFCisopentane had the thickest polyamide layer. It also delivered the highest pervaporation efficiency (permeation flux = 860 ± 71 g m-2 h-1; water concentration in permeate = 99.2 ± 0.8 wt%; pervaporation separation index = 959,760) at dehydration of 90 wt% aqueous ethanol solution. Furthermore, TFCisopentane also exhibited a high separation efficiency in isopropanol and tert-butanol. Therefore, a suitable organic solvent in preparation of TFC membrane through interfacial polymerization enables high pervaporation efficiency.
Collapse
Affiliation(s)
- Micah Belle Marie Yap Ang
- R&D Center for Membrane Technology, Department of Chemical Engineering, Chung Yuan Christian University, Taoyuan 32023, Taiwan; (M.B.M.Y.A.); (S.-W.W.); (Y.-H.C.); (W.-S.H.); (K.-R.L.); (J.-Y.L.)
| | - Shu-Hsien Huang
- R&D Center for Membrane Technology, Department of Chemical Engineering, Chung Yuan Christian University, Taoyuan 32023, Taiwan; (M.B.M.Y.A.); (S.-W.W.); (Y.-H.C.); (W.-S.H.); (K.-R.L.); (J.-Y.L.)
- Department of Chemical and Materials Engineering, National Ilan University, Yilan 26047, Taiwan
| | - Shi-Wei Wei
- R&D Center for Membrane Technology, Department of Chemical Engineering, Chung Yuan Christian University, Taoyuan 32023, Taiwan; (M.B.M.Y.A.); (S.-W.W.); (Y.-H.C.); (W.-S.H.); (K.-R.L.); (J.-Y.L.)
| | - Yu-Hsuan Chiao
- R&D Center for Membrane Technology, Department of Chemical Engineering, Chung Yuan Christian University, Taoyuan 32023, Taiwan; (M.B.M.Y.A.); (S.-W.W.); (Y.-H.C.); (W.-S.H.); (K.-R.L.); (J.-Y.L.)
- Department of Chemical Engineering, University of Arkansas, Fayetteville, AR 72701, USA
| | - Ruth R. Aquino
- General Education Department, Colegio de Muntinlupa, Mayor J. Posadas Avenue, Sucat, Muntinlupa City 1770, Metro Manila, Philippines;
- School of Chemical, Biological, and Materials Engineering and Sciences, Mapúa University, Manila 1002, Philippines
| | - Wei-Song Hung
- R&D Center for Membrane Technology, Department of Chemical Engineering, Chung Yuan Christian University, Taoyuan 32023, Taiwan; (M.B.M.Y.A.); (S.-W.W.); (Y.-H.C.); (W.-S.H.); (K.-R.L.); (J.-Y.L.)
- Advanced Membrane Materials Research Center, Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei 10607, Taiwan
| | - Hui-An Tsai
- R&D Center for Membrane Technology, Department of Chemical Engineering, Chung Yuan Christian University, Taoyuan 32023, Taiwan; (M.B.M.Y.A.); (S.-W.W.); (Y.-H.C.); (W.-S.H.); (K.-R.L.); (J.-Y.L.)
| | - Kueir-Rarn Lee
- R&D Center for Membrane Technology, Department of Chemical Engineering, Chung Yuan Christian University, Taoyuan 32023, Taiwan; (M.B.M.Y.A.); (S.-W.W.); (Y.-H.C.); (W.-S.H.); (K.-R.L.); (J.-Y.L.)
- Research Center for Circular Economy, Chung Yuan Christian University, Taoyuan 32023, Taiwan
| | - Juin-Yih Lai
- R&D Center for Membrane Technology, Department of Chemical Engineering, Chung Yuan Christian University, Taoyuan 32023, Taiwan; (M.B.M.Y.A.); (S.-W.W.); (Y.-H.C.); (W.-S.H.); (K.-R.L.); (J.-Y.L.)
- Advanced Membrane Materials Research Center, Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei 10607, Taiwan
| |
Collapse
|