1
|
Gomez d’Ayala G, Marino T, de Almeida YMB, Costa ARDM, Bezerra da Silva L, Argurio P, Laurienzo P. Enhancing Sustainability in PLA Membrane Preparation through the Use of Biobased Solvents. Polymers (Basel) 2024; 16:2024. [PMID: 39065341 PMCID: PMC11280543 DOI: 10.3390/polym16142024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 07/03/2024] [Accepted: 07/12/2024] [Indexed: 07/28/2024] Open
Abstract
For the first time, ultrafiltration (UF) green membranes were prepared through a sustainable route by using PLA as a biopolymer and dihydrolevoclucosenone, whose trade name is Cyrene™ (Cyr), dimethyl isosorbide (DMI), and ethyl lactate (EL) as biobased solvents. The influence of physical-chemical properties of the solvent on the final membrane morphology and performance was evaluated. The variation of polymer concentration in the casting solution, as well as the presence of Pluronic® (Plu) as a pore former agent, were assessed as well. The obtained results highlighted that the final morphology of a membrane was strictly connected with the interplaying of thermodynamic factors as well as kinetic ones, primarily dope solution viscosity. The pore size of the resulting PLA membranes ranged from 0.02 to 0.09 μm. Membrane thickness and porosity varied in the range of 0.090-0.133 mm of 75-87%, respectively, and DMI led to the most porous membranes. The addition of Plu to the casting solution showed a beneficial effect on the membrane contact angle, allowing the formation of hydrophilic membranes (contact angle < 90°), and promoted the increase of pore size as well as the reduction of membrane crystallinity. PLA membranes were tested for pure water permeability (10-390 L/m2 h bar).
Collapse
Affiliation(s)
- Giovanna Gomez d’Ayala
- Institute of Polymers, Composites and Biomaterials, National Research Council (IPCB-CNR), Via Campi Flegrei, 34, 80078 Pozzuoli, NA, Italy; (G.G.d.); (P.L.)
| | - Tiziana Marino
- Institute of Polymers, Composites and Biomaterials, National Research Council (IPCB-CNR), Via Campi Flegrei, 34, 80078 Pozzuoli, NA, Italy; (G.G.d.); (P.L.)
| | | | | | - Larissa Bezerra da Silva
- Postgraduate Program in Materials Science and Engineering, Federal University of Rio Grande do Norte, Natal 59078-970, RN, Brazil;
| | - Pietro Argurio
- Department of Environmental Engineering, DIAm, University of Calabria, Via Pietro Bucci CUBO 44/A, 87036 Rende, CS, Italy;
| | - Paola Laurienzo
- Institute of Polymers, Composites and Biomaterials, National Research Council (IPCB-CNR), Via Campi Flegrei, 34, 80078 Pozzuoli, NA, Italy; (G.G.d.); (P.L.)
| |
Collapse
|
2
|
Chen G, Xie W, Chen C, Wu Q, Qin S, Liu B. Preparation of High Flux Chlorinated Polyvinyl Chloride Composite Ultrafiltration Membranes with Ternary Amphiphilic Copolymers as Anchor Pore-Forming Agents and Enhanced Anti-Fouling Behavior. Ind Eng Chem Res 2023. [DOI: 10.1021/acs.iecr.2c03847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Guijing Chen
- Institute for Disaster Management and Reconstruction, Sichuan University, Chengdu, Sichuan610207, PR China
- Yibin Institute of Industrial Technology, Sichuan University, Yibin Park, Section 2, Lingang Avenue, Cuiping District, Yibin, Sichuan644000, PR China
| | - Wancen Xie
- Yibin Institute of Industrial Technology, Sichuan University, Yibin Park, Section 2, Lingang Avenue, Cuiping District, Yibin, Sichuan644000, PR China
- State Key Laboratory of Hydraulics and Mountain River Engineering, Institute of New Energy and Low-Carbon Technology, Sichuan University, Chengdu, Sichuan610207, PR China
| | - Chen Chen
- Litree Purifying Technology Co., Ltd., Haikou, Hainan571126, PR China
| | - Qidong Wu
- Yibin Institute of Industrial Technology, Sichuan University, Yibin Park, Section 2, Lingang Avenue, Cuiping District, Yibin, Sichuan644000, PR China
- State Key Laboratory of Hydraulics and Mountain River Engineering, Institute of New Energy and Low-Carbon Technology, Sichuan University, Chengdu, Sichuan610207, PR China
| | - Shuhao Qin
- National Engineering Research Center for Compounding and Modification of Polymer Materials, Guiyang550014, China
| | - Baicang Liu
- Institute for Disaster Management and Reconstruction, State Key Laboratory of Hydraulics and Mountain River Engineering, Institute of New Energy and Low-Carbon Technology, College of Architecture and Environment, Sichuan University, Chengdu, Sichuan610207, PR China
| |
Collapse
|
3
|
A novel polysulfate hollow fiber membrane with antifouling property for ultrafiltration application. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.121088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
4
|
Boosting the permeation of ultrafiltration membranes by covalent organic frameworks nanofillers: Nanofibers doing better than nanoparticles. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.120944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
5
|
Liu SH, Tang C, She J, Lu X, Zhang H, Wu C. Poly(ionic liquid) copolymer blended polyvinyl chloride ultrafiltration membranes with simultaneously improved persistent hydrophilicity and pore uniformity. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121270] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
6
|
Zheng S, Lu X, Wu C, Liu S, Liu J, Shu G, Li K. Study on the reconstruction of crystalline polymer porous membrane pore channels via confined-region swelling effect. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
7
|
Zhu J, An Z, Zhang A, Du Y, Zhou X, Geng Y, Chen G. Anisotropic porous designed polymer coatings for high-performance passive all-day radiative cooling. iScience 2022; 25:104126. [PMID: 35402873 PMCID: PMC8983389 DOI: 10.1016/j.isci.2022.104126] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 02/10/2022] [Accepted: 03/17/2022] [Indexed: 11/25/2022] Open
Abstract
Porous polymer radiative cooling coatings (PPCs) have attracted attention due to their ability of drawing and radiating heat from a hot object into the outer space, without any energy consumption. However, high performance of PPCs has yet to be achieved and the large-scale production of radiative cooling technology is still facing high cost and complex manufacturing constraints. Here, we propose a simple, inexpensive, scalable approach to fabricate anisotropic (P(VdF-HFP))ap PPCs (TPCs) by dissolution and diffusion between solvent and non-solvent-induced phase separation. By adjusting the porosity, pore size, and geometry, a sub-ambient temperature drop of ∼6.3°C in daytime and 10.1°C in night-time was achieved under a solar reflectance of 0.92 and an atmospheric window emittance of 0.96. A thermoelectric generator with an output voltage of almost zero reached 7 V/m2 after coating with TPCs. This could provide a convenient, economical, and environment-friendly way for PPCs materials toward efficient cooling and power generations. Anisotropic porous designed polymer coatings for passive all-day radiative cooling Dissolution and diffusion of the solvent and non-solvent cause phase separation Adjustment of pore shape and size of polymer coating by phase separation process High cooling and power generation efficiency achieved with anisotropic coatings
Collapse
Affiliation(s)
- Jiliang Zhu
- Department of Applied Physics, Hebei University of Technology, Tianjin 300401, P. R. China
- Corresponding author
| | - Zhiqiang An
- Department of Applied Physics, Hebei University of Technology, Tianjin 300401, P. R. China
| | - Anxun Zhang
- Department of Applied Physics, Hebei University of Technology, Tianjin 300401, P. R. China
| | - Yike Du
- Department of Applied Physics, Hebei University of Technology, Tianjin 300401, P. R. China
| | - Xuan Zhou
- Department of Applied Physics, Hebei University of Technology, Tianjin 300401, P. R. China
| | - Yizhao Geng
- Department of Applied Physics, Hebei University of Technology, Tianjin 300401, P. R. China
| | - Guifeng Chen
- School of Materials Science and Engineering, Hebei University of Technology, Tianjin 300132, P. R. China
| |
Collapse
|
8
|
Yang HL, Ang MBMY, Tsai HA, Lee KR, Lai JY. Effect of adding carbon quantum dots to a NMP solution of cellulose acetate on the formation mechanism of ensuing membrane. J Taiwan Inst Chem Eng 2022. [DOI: 10.1016/j.jtice.2022.104250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
9
|
Li J, Chen G, Luo S, Pang H, Gao C, Huang S, Liu S, Qin S. Tuning the microstructure of
SMA
/
CPVC
membrane for enhanced separation performance by adjusting the coagulation bath temperature. J Appl Polym Sci 2022. [DOI: 10.1002/app.52148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Juan Li
- National Engineering Research Center for Compounding and Modification of Polymer Materials Guiyang China
| | - Guijing Chen
- National Engineering Research Center for Compounding and Modification of Polymer Materials Guiyang China
| | - Shanshan Luo
- National Engineering Research Center for Compounding and Modification of Polymer Materials Guiyang China
| | - Huixia Pang
- National Engineering Research Center for Compounding and Modification of Polymer Materials Guiyang China
| | - Chengtao Gao
- National Engineering Research Center for Compounding and Modification of Polymer Materials Guiyang China
| | - Shaowen Huang
- National Engineering Research Center for Compounding and Modification of Polymer Materials Guiyang China
| | - Shan Liu
- National Engineering Research Center for Compounding and Modification of Polymer Materials Guiyang China
- College of Materials and Energy Engineering Guizhou Institute of Technology Guiyang China
| | - Shuhao Qin
- National Engineering Research Center for Compounding and Modification of Polymer Materials Guiyang China
| |
Collapse
|
10
|
Wu X, Kang D, Liu N, Shao H, Dong X, Qin S. Microstructure manipulation in PVDF/SMA/MWCNTs ultrafiltration membranes: Effects of hydrogen bonding and crystallization during the membrane formation. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2021.119523] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
11
|
Polyvinyl chloride-based membranes: A review on fabrication techniques, applications and future perspectives. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2021.119678] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
12
|
Li X, Nayak K, Stamm M, Tripathi BP. Zwitterionic silica nanogel-modified polysulfone nanoporous membranes formed by in-situ method for water treatment. CHEMOSPHERE 2021; 280:130615. [PMID: 33965864 DOI: 10.1016/j.chemosphere.2021.130615] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 04/04/2021] [Accepted: 04/15/2021] [Indexed: 06/12/2023]
Abstract
We report a simple methodology to prepare nano-porous polysulfone membranes using zwitterionic functionalized silica nanogels with high BSA protein rejection and antifouling properties. The zwitterionic silica precursor was prepared by reacting 1,3-propane sultone with 3-aminopropyl triethoxysilane under an inert atmosphere. The precursor was in situ hydrolyzed and condensed in the polysulfone nanoporous membrane network by one-pot acidic phase inversion. The prepared membranes were characterized to establish their physicochemical nature, morphology, and basic membrane properties such as permeation, rejection, and recovery. The zwitterionic membranes showed improved hydrophilicity, membrane water uptake (∼83.5%), water permeation, BSA protein rejection (>95%), and dye rejection (congo red: >52% (∼6-fold increase); methylene blue: ∼15% (∼2-fold increase)) were improved without compromising the membrane flux and fouling resistance. Overall, we report an easy fabrication method of efficient nanocomposite zwitterionic ultrafilter membranes for water treatment with excellent flux, protein separation, filtration efficiency, and antifouling behavior.
Collapse
Affiliation(s)
- Xiaojiao Li
- Department of Nanostructured Materials, Leibniz-Institut für Polymerforschung Dresden, Hohe Straße 6, 01069, Dresden, Germany; Technische Universität Dresden, Department of Chemistry, 01069, Dresden, Germany
| | - Kanupriya Nayak
- Department of Materials Science and Engineering, Indian Institute of Technology Delhi, New Delhi, 110016, India
| | - Manfred Stamm
- Department of Nanostructured Materials, Leibniz-Institut für Polymerforschung Dresden, Hohe Straße 6, 01069, Dresden, Germany; Technische Universität Dresden, Department of Chemistry, 01069, Dresden, Germany
| | - Bijay P Tripathi
- Department of Materials Science and Engineering, Indian Institute of Technology Delhi, New Delhi, 110016, India.
| |
Collapse
|
13
|
Yu H, Chang H, Li X, Zhou Z, Song W, Ji H, Liang H. Long-term fouling evolution of polyvinyl chloride ultrafiltration membranes in a hybrid short-length sedimentation/ ultrafiltration process for drinking water production. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2021.119320] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
14
|
Shi X, Wang L, Yan N, Wang Z, Guo L, Steinhart M, Wang Y. Fast Evaporation Enabled Ultrathin Polymer Coatings on Nanoporous Substrates for Highly Permeable Membranes. Innovation (N Y) 2021; 2:100088. [PMID: 34557742 PMCID: PMC8454551 DOI: 10.1016/j.xinn.2021.100088] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 01/31/2021] [Indexed: 11/18/2022] Open
Abstract
Thin polymer coatings covering on porous substrates are a common composite structure required in numerous applications, including membrane separation, and there is a strong need to push the coating thicknesses down to the nanometer scale to maximize the performances. However, producing such ultrathin polymer coatings in a facile and efficient way remains a big challenge. Here, uniform ultrathin polymer covering films (UPCFs) are realized by a facile and general approach based on rapid solvent evaporation. By fast evaporating dilute polymer solutions spread on the surface of porous substrates, we obtain ultrathin coatings (down to ∼30 nm) exclusively on the top surface of porous substrates, forming UPCFs with a block copolymer of polystyrene-block-poly(2-vinyl pyridine) at room temperature or a homopolymer of poly(vinyl alcohol) (PVA) at elevated temperatures. Upon selective swelling of the block copolymer and crosslinking of PVA, we obtain highly permeable membranes delivering ∼2–10 times higher permeance in ultrafiltration and pervaporation than state-of-the-art membranes with comparable selectivities. We have invented a very convenient but highly efficient process for the direct preparation of defective-free ultrathin coatings on porous substrates, which is extremely desired in different fields in addition to membrane separation. Fast solvent evaporation is developed to produce UPCFs on porous substrates Selective swelling to cavitate block copolymers to form interconnected mesopores UPCFs enable the preparation of highly permeable membranes
Collapse
Affiliation(s)
- Xiansong Shi
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing, Jiangsu 211816, P.R. China
| | - Lei Wang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing, Jiangsu 211816, P.R. China
| | - Nina Yan
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing, Jiangsu 211816, P.R. China
| | - Zhaogen Wang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing, Jiangsu 211816, P.R. China
| | - Leiming Guo
- Institut für Chemie neuer Materialien, Universität Osnabrück, Barbarastr. 7, 49069 Osnabrück, Germany
| | - Martin Steinhart
- Institut für Chemie neuer Materialien, Universität Osnabrück, Barbarastr. 7, 49069 Osnabrück, Germany
- Corresponding author
| | - Yong Wang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing, Jiangsu 211816, P.R. China
- Corresponding author
| |
Collapse
|
15
|
Zhang Y, Tan L, Yao A, Tan P, Guo R, Zhou M, Zhu P, Huang S, Wu Y. Improvement of filtration performance of polyvinyl chloride/cellulose acetate blend membrane via acid hydrolysis. J Appl Polym Sci 2020. [DOI: 10.1002/app.50312] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Yong Zhang
- College of Biomass Science and Engineering Sichuan University Chengdu China
- Sichuan Push Acetati Co.,Ltd. Yibin China
- Yibin Yuntong Plastic Additive Co., Ltd. Yibin China
| | - Lin Tan
- College of Biomass Science and Engineering Sichuan University Chengdu China
| | - Anrong Yao
- College of Biomass Science and Engineering Sichuan University Chengdu China
| | - Pengfei Tan
- College of Biomass Science and Engineering Sichuan University Chengdu China
| | - Ronghui Guo
- College of Biomass Science and Engineering Sichuan University Chengdu China
| | - Mi Zhou
- College of Biomass Science and Engineering Sichuan University Chengdu China
| | - Puxin Zhu
- College of Biomass Science and Engineering Sichuan University Chengdu China
| | | | - Yunheng Wu
- Yibin Yuntong Plastic Additive Co., Ltd. Yibin China
| |
Collapse
|