1
|
Zhao Z, Zhang Y, Yu L, Hou D, Wu X, Li K, Wang J. Fenton pretreatment to mitigate membrane distillation fouling during treatment of landfill leachate membrane concentrate: Performance and mechanism. WATER RESEARCH 2023; 244:120517. [PMID: 37666152 DOI: 10.1016/j.watres.2023.120517] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 08/17/2023] [Accepted: 08/21/2023] [Indexed: 09/06/2023]
Abstract
Membrane distillation (MD) is regarded as a promising technology for treatment of landfill leachate membrane concentrate (LLMC) due to its merits of low cost and high rejection of non-volatile components. However, the high concentration of pollutants in the wastewater will cause severe membrane fouling, resulting in costly cleaning and maintenance. In this study, Fenton pretreatment was applied to alleviate membrane fouling during MD treatment of LLMC. Compared to rapid flux decline of 88.2% at concentration factor (CF) of 3 for raw LLMC, MD flux only decreased by 17.4% at CF = 6 for treating acidic Fenton effluent without subsequent pH adjustment (Fe2+ and H2O2 concentration were 600 mg/L and 1457 mg/L, respectively). The pH neutralization of Fenton effluent or merely acidification of LLMC could not achieve such excellent fouling mitigation. It was concluded that both oxidation and acidification were critical and the collaboration mechanism was revealed to explain low membrane fouling. Firstly, Fenton oxidation removed organic contaminants, reduced the hydrophobicity of organic substances and increased the percentage of carboxylic group within LLMC. Thus, hydrophobic (HP) attraction was weakened but multivalent cation bridging became dominant fouling mechanism for neutral Fenton effluent. Then, acidification weakened multivalent cation bridging by inhibiting the deprotonation of carboxylic group, further mitigating membrane fouling. However, acidification of LLMC caused more severe organic fouling due to decrease in electrostatic (EL) repulsion. In addition to low membrane fouling, satisfactory total organic carbon (TOC) rejection rate of 96.23% was achieved during combined Fenton-MD process. This study demonstrated that Fenton pretreatment without pH neutralization could effectively alleviate MD fouling and elucidated the synergistic mechanism between oxidation and acidification for fouling mitigation.
Collapse
Affiliation(s)
- Zhichao Zhao
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yong Zhang
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Ling Yu
- Institute of Oceanic and Environmental Chemical Engineering, Center for Membrane and Water Science &Technology, State Key Lab Breeding Base of Green Chemical Synthesis Technology, Zhejiang University of Technology, Hangzhou 310014, China
| | - Deyin Hou
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaohui Wu
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Kuiling Li
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jun Wang
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
2
|
Chandra Bhoumick M, Paul S, Roy S, Mitra S. Selective Recovery of Ethyl Acetate by Air-Sparged Membrane Distillation Using Carbon Nanotube-Immobilized Membranes and Process Optimization via a Response Surface Approach. Ind Eng Chem Res 2023. [DOI: 10.1021/acs.iecr.2c03893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Affiliation(s)
- Mitun Chandra Bhoumick
- Department of Chemistry and Environmental Science, New Jersey Institute of Technology, Newark, New Jersey 07102, United States
| | - Sumona Paul
- Department of Chemistry and Environmental Science, New Jersey Institute of Technology, Newark, New Jersey 07102, United States
| | - Sagar Roy
- Department of Chemistry and Environmental Science, New Jersey Institute of Technology, Newark, New Jersey 07102, United States
| | - Somenath Mitra
- Department of Chemistry and Environmental Science, New Jersey Institute of Technology, Newark, New Jersey 07102, United States
| |
Collapse
|
3
|
Guillen-Burrieza E, Moritz E, Hobisch M, Muster-Slawitsch B. Recovery of ammonia from centrate water in urban waste water treatment plants via direct contact membrane distillation: Process performance in long-term pilot-scale operation. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.121161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
4
|
Diaby AT, Byrne P, Loulergue P, Sow O, Maré T. Experimental Study of a Heat Pump for Simultaneous Cooling and Desalination by Membrane Distillation. MEMBRANES 2021; 11:membranes11100725. [PMID: 34677491 PMCID: PMC8537058 DOI: 10.3390/membranes11100725] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 09/08/2021] [Accepted: 09/15/2021] [Indexed: 11/22/2022]
Abstract
Heat pump systems can simultaneously produce cooling energy for space cooling in hotels, office and residential buildings and heat for desalination using membrane distillation (MD). The MD technique uses a heat input at a temperature compatible with the levels of heat pump condensers (<60 °C). A heat pump prototype coupled with an air-gap membrane distillation unit was constructed and tested. This paper presents the experimental study on a lab-scale prototype and details the two operating modes “continuous” and “controlled” simulating an air conditioning system and a food storage, respectively. The experimental results enable to analyze the performance of the prototype and the physical phenomena involved. Finally, the study shows that this system could be a promising solution to help supplying freshwater to people in hot regions of the world.
Collapse
Affiliation(s)
- Ahmadou Tidiane Diaby
- Laboratoire du froid, des systèmes énergétiques et thermiques (Lafset), Cnam—Hesam Université, 292 rue Saint Martin, 75003 Paris, France;
- Laboratoire de Génie Civil et de Génie Mécanique, Université de Rennes, F-35000 Rennes, France; (P.B.); (T.M.)
| | - Paul Byrne
- Laboratoire de Génie Civil et de Génie Mécanique, Université de Rennes, F-35000 Rennes, France; (P.B.); (T.M.)
| | - Patrick Loulergue
- Univ Rennes, CNRS, ISCR–UMR 6226, F-35000 Rennes, France
- Correspondence:
| | - Ousmane Sow
- Laboratoire Eau, Energie, Environnement et Procédés Industriels—Ecole Supérieure Polytechnique (ESP)-Université Cheikh Anta Diop, Dakar 10700, Senegal;
| | - Thierry Maré
- Laboratoire de Génie Civil et de Génie Mécanique, Université de Rennes, F-35000 Rennes, France; (P.B.); (T.M.)
| |
Collapse
|