1
|
Chen T, Li X, Yu F, Tang W, Wo Y, Yang J, Wan H, Gao Z. TA-APTES Coating Facilitated Secondary Reactions for Synthesis of Multifunctional Porous Melamine Sponge and Application in Wastewater Treatment. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2025; 41:10853-10872. [PMID: 40275716 DOI: 10.1021/acs.langmuir.4c05352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/26/2025]
Abstract
Secondary reactions induced by functional surface coating are of critical significance and have attracted substantial interest, as the surface coating can function as a versatile platform for designing multifunctional coatings by tailoring the surface performance. The surface coating incorporated tannic acid, and 3-aminopropyltriethoxysilane (TA-APTES) contains plentiful nanospheres with secondary reaction sites, which is favorable for surface modification. In this research, a TA-APTES coating with a unique hierarchical structure was grown in situ on the skeleton of a porous melamine sponge under mild conditions. The secondary reactions triggered by the TA-APTES coating were comprehensively employed to construct a multifunctional melamine sponge for various applications. The TA-APTES-coated melamine sponge was first immersed in silver ammonia solutions for the reduction of silver ammonia ions. The decoration of Ag NPs endowed the sponge with catalytic and antibacterial activity, which could be applied for dye reduction and bacterial disinfection in wastewater. The surface energy of the TA-APTES-coated melamine sponge was subsequently decreased by long-chain alkyl molecules. After the condensation polymerization reaction with octadecyltrimethoxysilane, the surface of the melamine sponge coated with TA-APTES was converted into a superhydrophobic state, making it suitable for efficient separation of oil and water mixtures. The prepared superhydrophobic sponge demonstrated remarkable water repellency and strong oil affinity with a water contact angle of 156.5° and oil contact angle of 0°. Significantly, the superhydrophobic sponge retained a relatively stable oil absorption capacity and separation efficiency after multiple recycling utilization. The proposed routine for fabrication and design of TA-APTES coating demonstrates the potential to develop a multifunctional porous melamine sponge in solving water pollution issues.
Collapse
Affiliation(s)
- Teng Chen
- School of Material and Chemical Engineering, Xuzhou University of Technology, Xuzhou 221018, People's Republic of China
| | - Xin Li
- School of Material and Chemical Engineering, Xuzhou University of Technology, Xuzhou 221018, People's Republic of China
| | - Fei Yu
- School of Food and Biological Engineering, Xuzhou University of Technology, Xuzhou 221018, People's Republic of China
| | - Wenwei Tang
- School of Material and Chemical Engineering, Xuzhou University of Technology, Xuzhou 221018, People's Republic of China
| | - Yunjiang Wo
- School of Material and Chemical Engineering, Xuzhou University of Technology, Xuzhou 221018, People's Republic of China
| | - Jie Yang
- School of Material and Chemical Engineering, Xuzhou University of Technology, Xuzhou 221018, People's Republic of China
| | - Hongri Wan
- School of Material and Chemical Engineering, Xuzhou University of Technology, Xuzhou 221018, People's Republic of China
| | - Zhaojian Gao
- School of Food and Biological Engineering, Xuzhou University of Technology, Xuzhou 221018, People's Republic of China
| |
Collapse
|
2
|
Li J, Sun H, Zhang D, Yang X, Fu Z, Yu B. In Situ Preparation of MnO 2 on the Catechol/Silane-Coated Polypropylene Nonwoven Fabrics for Effective Removal of Cationic Dyes. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:25088-25100. [PMID: 39541439 DOI: 10.1021/acs.langmuir.4c03266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Previous studies have confirmed that MnOx removes heavy metal ions and organic pollutants from water with dual effects of adsorption and oxidation coupling, significantly improving the ability to remove impurities. Nanometal oxides have a highly reactive surface but tend to agglomerate during preparation and are challenging to recycle after use. A common method is to combine nano-MnO2 with Fe3O4 to prepare magnetic materials for easy recycling. Our previous research has confirmed that catechol (CA) and (3-aminopropyl) triethoxysilane (KH550) can be co-deposited on the surface of polypropylene nonwovens to form a stable CK coating under alkaline conditions. In addition, the coating has many active groups, including hydroxyl groups, amino groups, etc. This study further investigates the secondary reactivity of CK coatings. The coordination of catechol groups and metal ions was used to anchor manganese ions to the coating. Meanwhile, the hydroxyl and amino groups were used to reduce manganese ions to Mn4+ in situ to prepare PP-(CK-MnO2). We found that the sample had an excellent decolorization effect on cationic dyes but was limited to anionic dyes. The decolorization mechanism of cationic dyes was further discussed. The results showed that the decolorization of cationic dyes had a dual effect of adsorption and oxidative degradation. Under acidic conditions, its oxidation properties were enhanced. It can be used as a highly effective decolorizing agent for cationic dyes, and the decolorization behavior is consistent with the first-order kinetics. As the pH increases, its oxidation properties gradually decrease. Although the electrostatic adsorption effect was enhanced, the overall decolorization performance was significantly reduced. Recycling experiments have proved that it can maintain >90% removal rate after five cycles. This study also demonstrated that the CK coating has dopamine-like properties, which can coordinate with metal ions to prepare metal-organic hybrid materials.
Collapse
Affiliation(s)
- Jing Li
- College of Textiles Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China
- School of Electrical and Mechanical Engineering, Xinjiang Institute of Engineering, Urumqi 830023, China
- Zhejiang Provincial Innovation Center of Advanced Textile Technology, Shaoxing 312000, China
| | - Hui Sun
- College of Textiles Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China
- Zhejiang Provincial Innovation Center of Advanced Textile Technology, Shaoxing 312000, China
| | - Dewei Zhang
- College of Textiles Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China
- Zhejiang Provincial Innovation Center of Advanced Textile Technology, Shaoxing 312000, China
| | - Xiaodong Yang
- College of Textiles Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China
- Zhejiang Provincial Innovation Center of Advanced Textile Technology, Shaoxing 312000, China
| | - Zhuan Fu
- College of Textiles Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Bin Yu
- College of Textiles Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China
- Zhejiang Provincial Innovation Center of Advanced Textile Technology, Shaoxing 312000, China
| |
Collapse
|
3
|
Zhang X, Zhang X, Xu L, Zhang G, Meng Q. Amphiphilic Interlayer Regulated Interfacial Polymerization for Constructing Polyamide Nanofiltration Membranes with High Perm-Selectivity of Mono-/Divalent Salts. ACS APPLIED MATERIALS & INTERFACES 2024; 16:14321-14332. [PMID: 38447145 DOI: 10.1021/acsami.3c19291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/08/2024]
Abstract
High-quality thin-film composite (TFC) membranes with high selectivity and permeability have great significance owing to their practical applications, specifically for the accurate differentiation of monovalent and divalent ions. However, the trade-off effect between selectivity and permeability is still a big challenge due to the difficult structure adjustment of the selective layer. Herein, polydopamine (PDA) functionalized with a hydrophobic long alkane chain was first explored as a functional amphiphilic interlayer to synthesize high-quality TFC membranes via a confined interfacial polymerization (IP) reaction. The amphiphilic interlayer not only restricted the formation of the polyamide (PA) matrix in the pores of the substrate but also accelerated spatially more homogeneous polymerization and formed a PA active layer with a more uniform pore size distribution. The method may provide an effective principle for the construction of versatile polyamide-based membranes with high perm-selectivity on various supports. The NaCl/Na2SO4 separation factor of the D-8/PA membrane reached as high as 204.07, while the flux increased up to 25.71 L m-2 h-1 bar-1. This progress provides a more feasible way for the construction of high-quality TFC membranes with a devisable and creative amphiphilic interlayer for industrial application.
Collapse
Affiliation(s)
- Xin Zhang
- Center for Membrane and Water Science & Technology, Collaborative Innovation Center of Membrane Separation and Water Treatment of Zhejiang Province, Zhejiang University of Technology, Hangzhou 310014, China
| | - Xu Zhang
- Center for Membrane and Water Science & Technology, Collaborative Innovation Center of Membrane Separation and Water Treatment of Zhejiang Province, Zhejiang University of Technology, Hangzhou 310014, China
| | - Lushen Xu
- Center for Membrane and Water Science & Technology, Collaborative Innovation Center of Membrane Separation and Water Treatment of Zhejiang Province, Zhejiang University of Technology, Hangzhou 310014, China
| | - Guoliang Zhang
- Center for Membrane and Water Science & Technology, Collaborative Innovation Center of Membrane Separation and Water Treatment of Zhejiang Province, Zhejiang University of Technology, Hangzhou 310014, China
| | - Qin Meng
- College of Chemical and Biological Engineering, and State Key Laboratory of Chemical Engineering, Zhejiang University, Yugu Road 38#, 310027 Hangzhou, China
| |
Collapse
|
4
|
Tong Y, Miao C, Ding W, Hammond Quarcoo F, Xiao X, Ji H, Li W, Ju X. Rapid Construction of Caffeic Acid/ p-Phenylenediamine Antifouling Hydrophilic Coating on a PVDF Membrane for Emulsion Separation. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:13197-13211. [PMID: 37676039 DOI: 10.1021/acs.langmuir.3c01627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/08/2023]
Abstract
The current methods of constructing modification strategies for hydrophilic membranes are time-consuming, complex in operation, and poor in universality, which limit their application on membranes. In this work, inspired by the adhesion properties and versatility of caffeic acid (CA) and p-phenylenediamine (PPDA), a simple, rapid, and universal method was designed for the separation of oil-in-water emulsion by preparing a stable hydrophilic coating separation membrane. The preparation time of the membrane was shortened to 40 min. The developed PVDF-PCA/PPDA membrane showed superhydrophilic and underwater superoleophobic properties. When applied to petroleum ether-in-water emulsion, isooctane-in-water emulsion, and dodecane-in-water emulsion separation, the oil rejection was more than 99.0%. In the circulating separation of 10 g/L soybean oil-in-water emulsion, the oil rejection was more than 99.3%, and the highest flux was 1036 L·m-2·h-1. The prepared PVDF-PCA/PPDA membrane performed well in the separation test of oily wastewater. The proposed strategy is simple and rapid; it may become a universal method for preparing membranes with super strong antifouling properties against viscous oil and accelerate the research progress of membrane separation of oil-in-water emulsions.
Collapse
Affiliation(s)
- Yujia Tong
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Changing Miao
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Wenlong Ding
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Fiona Hammond Quarcoo
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Xiao Xiao
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Hongjun Ji
- NJTU Membrane Application Institute Company Limited, Nanjing 211816, China
| | - Weixing Li
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Xiaohui Ju
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 211816, China
| |
Collapse
|
5
|
One-step rapid co-deposition of oxidant induced mussel-polyphenol coating on PVDF substrate for separating oily water. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.122304] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
6
|
Yan L, Yang X, Zeng H, Zhao Y, Li Y, He X, Ma J, Shao L. Nanocomposite hydrogel engineered hierarchical membranes for efficient oil/water separation and heavy metal removal. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.121243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
|
7
|
Liang Q, Jiang B, Yang N, Zhang L, Sun Y, Zhang L. Superhydrophilic Modification of Polyvinylidene Fluoride Membrane via a Highly Compatible Covalent Organic Framework-COOH/Dopamine-Integrated Hierarchical Assembly Strategy for Oil-Water Separation. ACS APPLIED MATERIALS & INTERFACES 2022; 14:45880-45892. [PMID: 36165501 DOI: 10.1021/acsami.2c13402] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The integration of membranes with additives such as functionalized nanomaterials can be recognized as an effective method to enhance membrane performance. However, to obtain an efficient nanoparticle-decorated membrane, the compatibility of nanomaterials remains a challenge. Hydrophilic carboxylated covalent organic frameworks (COF-COOH) might be expected to avoid the drawbacks of aggregation and easy shedding of inorganic materials caused by the poor interfacial compatibility. Herein, a highly compatible dip-coating strategy was proposed for the superhydrophilic modification of polyvinylidene fluoride membrane via COF-COOH integrated with dopamine. COF-COOH together with polydopamine nanoparticles were uniformly and stably attached to the membrane due to the high interfacial compatibility, constructing a coating with rough hierarchical nanostructures and abundant carboxyl groups. The synergistic effects of multiscale structures and chemical groups endow the membrane with superhydrophilicity and underwater superoleophobicity, the water contact angle decreased from 123 to 15°, and the underwater oil contact angle increased from 132 to 162°. Accordingly, the modified membrane exhibits an ultrahigh oil rejection ratio (>98%), a high flux (the maximum reaches 1843.48 L m-2 h-1 bar-1), attractive antifouling ability, and impregnable stability. This work would provide a momentous reference for the application of COF-COOH in practical oily wastewater treatment.
Collapse
Affiliation(s)
- Qi Liang
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, People's Republic of China
| | - Bin Jiang
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, People's Republic of China
| | - Na Yang
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, People's Republic of China
| | - Longfei Zhang
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, People's Republic of China
| | - Yongli Sun
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, People's Republic of China
| | - Luhong Zhang
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, People's Republic of China
| |
Collapse
|
8
|
An S, Jeon EJ, Han SY, Jeon J, Lee MJ, Kim S, Shin M, Cho SW. pH-Universal Catechol-Amine Chemistry for Versatile Hyaluronic Acid Bioadhesives. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2202729. [PMID: 35989097 DOI: 10.1002/smll.202202729] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 07/01/2022] [Indexed: 06/15/2023]
Abstract
Catechol, a major mussel-inspired underwater adhesive moiety, has been used to develop functional adhesive hydrogels for biomedical applications. However, oxidative catechol chemistry for interpolymer crosslinking and adhesion is exclusively effective under alkaline conditions, with limited applications in non-alkaline conditions. To overcome this limitation, pH-universal catechol-amine chemistry to recapitulate naturally occurring biochemical events induced by pH variation in the mussel foot is suggested. Aldehyde moieties are introduced to hyaluronic acid (HA) by partial oxidation, which enables dual-mode catechol tethering to the HA via both stable amide and reactive secondary amine bonds. Because of the presence of additional reactive amine groups, the resultant aldehyde-modified HA conjugated with catechol (AH-CA) is effectively crosslinked in acidic and neutral pH conditions. The AH-CA hydrogel exhibits not only fast gelation via active crosslinking regardless of pH conditions, but also strong adhesion and excellent biocompatibility. The hydrogel enables rapid and robust wound sealing and hemostasis in neutral and alkaline conditions. The hydrogel also mediates effective therapeutic stem cell and drug delivery even in dynamic and harsh environments, such as a motile heart and acidic stomach. Therefore, the AH-CA hydrogel can serve as a versatile biomaterial in a wide range of pH conditions in vivo.
Collapse
Affiliation(s)
- Soohwan An
- Department of Biotechnology, Yonsei University, Seoul, 03722, Republic of Korea
| | - Eun Je Jeon
- Department of Biotechnology, Yonsei University, Seoul, 03722, Republic of Korea
- CellArtgen Inc., Seoul, 03722, Republic of Korea
| | - Seung Yeop Han
- Department of Biotechnology, Yonsei University, Seoul, 03722, Republic of Korea
| | - Jihoon Jeon
- Department of Biotechnology, Yonsei University, Seoul, 03722, Republic of Korea
| | - Mi Jeong Lee
- Department of Biotechnology, Yonsei University, Seoul, 03722, Republic of Korea
| | - Sooyeon Kim
- Department of Biotechnology, Yonsei University, Seoul, 03722, Republic of Korea
| | - Mikyung Shin
- Department of Biomedical Engineering, Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea
- Department of Intelligent Precision Healthcare Convergence, Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea
| | - Seung-Woo Cho
- Department of Biotechnology, Yonsei University, Seoul, 03722, Republic of Korea
- CellArtgen Inc., Seoul, 03722, Republic of Korea
- Center for Nanomedicine, Institute for Basic Science (IBS), Seoul, 03722, Republic of Korea
- Graduate Program of Nano Biomedical Engineering (NanoBME), Advanced Science Institute, Yonsei University, Seoul, 03722, Republic of Korea
| |
Collapse
|
9
|
Taghizadeh A, Taghizadeh M, Yazdi MK, Zarrintaj P, Ramsey JD, Seidi F, Stadler FJ, Lee H, Saeb MR, Mozafari M. Mussel-inspired biomaterials: From chemistry to clinic. Bioeng Transl Med 2022; 7:e10385. [PMID: 36176595 PMCID: PMC9472010 DOI: 10.1002/btm2.10385] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 05/25/2022] [Accepted: 07/16/2022] [Indexed: 11/18/2022] Open
Abstract
After several billions of years, nature still makes decisions on its own to identify, develop, and direct the most effective material for phenomena/challenges faced. Likewise, and inspired by the nature, we learned how to take steps in developing new technologies and materials innovations. Wet and strong adhesion by Mytilidae mussels (among which Mytilus edulis-blue mussel and Mytilus californianus-California mussel are the most well-known species) has been an inspiration in developing advanced adhesives for the moist condition. The wet adhesion phenomenon is significant in designing tissue adhesives and surgical sealants. However, a deep understanding of engaged chemical moieties, microenvironmental conditions of secreted proteins, and other contributing mechanisms for outstanding wet adhesion mussels are essential for the optimal design of wet glues. In this review, all aspects of wet adhesion of Mytilidae mussels, as well as different strategies needed for designing and fabricating wet adhesives are discussed from a chemistry point of view. Developed muscle-inspired chemistry is a versatile technique when designing not only wet adhesive, but also, in several more applications, especially in the bioengineering area. The applications of muscle-inspired biomaterials in various medical applications are summarized for future developments in the field.
Collapse
Affiliation(s)
- Ali Taghizadeh
- Institute of Tissue Regeneration Engineering (ITREN), Dankook UniversityCheonanRepublic of Korea
| | - Mohsen Taghizadeh
- Institute of Tissue Regeneration Engineering (ITREN), Dankook UniversityCheonanRepublic of Korea
| | - Mohsen Khodadadi Yazdi
- Center of Excellence in ElectrochemistrySchool of Chemistry, College of Science, University of TehranTehranIran
| | - Payam Zarrintaj
- School of Chemical Engineering, Oklahoma State UniversityStillwaterOklahomaUSA
| | - Joshua D. Ramsey
- School of Chemical Engineering, Oklahoma State UniversityStillwaterOklahomaUSA
| | - Farzad Seidi
- Jiangsu Co‐Innovation Center of Efficient Processing and Utilization of Forest Resources and International Innovation Center for Forest Chemicals and MaterialsNanjing Forestry UniversityNanjingChina
| | - Florian J. Stadler
- College of Materials Science and EngineeringShenzhen Key Laboratory of Polymer Science and TechnologyGuangdongChina
| | - Haeshin Lee
- Department of ChemistryKorea Advanced Institute of Science and Technology (KAIST)DaejeonRepublic of Korea
| | - Mohammad Reza Saeb
- Department of Polymer Technology, Faculty of ChemistryGdańsk University of TechnologyGdańskPoland
| | - Masoud Mozafari
- Department of Tissue Engineering & Regenerative MedicineIran University of Medical SciencesTehranIran
- Present address:
Lunenfeld‐Tanenbaum Research InstituteMount Sinai Hospital, University of TorontoToronto, ONCanada
| |
Collapse
|
10
|
Ultra-Highly permeable loose nanofiltration membrane containing PG/PEI/Fe3+ ternary coating for efficient dye/salt separation. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
11
|
Plant-inspired biomimetic hybrid PVDF membrane co-deposited by tea polyphenols and 3-amino-propyl-triethoxysilane for high-efficiency oil-in-water emulsion separation. Chin J Chem Eng 2022. [DOI: 10.1016/j.cjche.2022.01.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
12
|
Zhang L, He Y, Luo P, Ma L, Li S, Nie Y, Yu J, Guo X. A robust underwater superoleophobic aminated polyacrylonitrile membrane embedded with CNTs-COOH for durable oil/water and dyes/oil emulsions separation. CHEMOSPHERE 2022; 293:133535. [PMID: 35016958 DOI: 10.1016/j.chemosphere.2022.133535] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 12/30/2021] [Accepted: 01/03/2022] [Indexed: 06/14/2023]
Abstract
Considering the emulsified oil and water-soluble dyes in wastewater, the exploitation of easy-manufacturing, energy-saving and high-efficiency separation materials is urgently required. In this work, integrating the positively charged polyethyleneimine (PEI) with negatively charged CNTs-COOH constructed the superhydrophilic Cassie-Baxter structure onto the electrospun polyacrylonitrile (PAN) membrane surface by ultrasonic, electrostatic interaction and thermal treatment. Based on it, the PEN@CNTs membrane achieved efficient separation for surfactant-free, tween 80-stabilized, SDS-stabilized, and CTAB-stabilized emulsions (the fluxes reached 508-3158 L m-2 h-1, the separation efficiency reached 99.42%) by the splendid water-penetration and oil-repellency, electrostatic interaction, and "aperture sieve". Moreover, because of the porosity and strong charged surface of PEN@CNTs membrane, the anionic dyes can be quickly removed by one-step filtrate method (∼403 L m-2 h-1). Meanwhile, the PEN@CNTs membrane also achieved synchronous and efficient remediation for oil/dye mixture emulsions after many cycles. More importantly, facing the complex physical and chemical environments, the combination of the stabilized PEN membrane, inactive CNTs-COOH layer, and the bond of embedding method between CNTs-COOH and PEN nanofibers made the PEN@CNTs membrane demonstrated robust stability and durable separation capability.
Collapse
Affiliation(s)
- Liyun Zhang
- State Key Lab of Oil and Gas Reservoir Geology and Exploitation, Southwest Petroleum University, Chengdu, 610500, PR China; College of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu, 610500, PR China
| | - Yi He
- State Key Lab of Oil and Gas Reservoir Geology and Exploitation, Southwest Petroleum University, Chengdu, 610500, PR China; College of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu, 610500, PR China; Oil & Gas Field Applied Chemistry Key Laboratory of Sichuan Province, Chengdu, 610500, China.
| | - Pingya Luo
- State Key Lab of Oil and Gas Reservoir Geology and Exploitation, Southwest Petroleum University, Chengdu, 610500, PR China; College of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu, 610500, PR China.
| | - Lan Ma
- State Key Lab of Oil and Gas Reservoir Geology and Exploitation, Southwest Petroleum University, Chengdu, 610500, PR China
| | - Shuangshuang Li
- State Key Lab of Oil and Gas Reservoir Geology and Exploitation, Southwest Petroleum University, Chengdu, 610500, PR China; College of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu, 610500, PR China
| | - Yiling Nie
- State Key Lab of Oil and Gas Reservoir Geology and Exploitation, Southwest Petroleum University, Chengdu, 610500, PR China; College of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu, 610500, PR China
| | - Jing Yu
- State Key Lab of Oil and Gas Reservoir Geology and Exploitation, Southwest Petroleum University, Chengdu, 610500, PR China; College of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu, 610500, PR China
| | - Xiao Guo
- State Key Lab of Oil and Gas Reservoir Geology and Exploitation, Southwest Petroleum University, Chengdu, 610500, PR China
| |
Collapse
|
13
|
Hu YQ, Li HN, Xu ZK. Janus hollow fiber membranes with functionalized outer surfaces for continuous demulsification and separation of oil-in-water emulsions. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.120388] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
14
|
Zheng Y, Long X, Zuo Y, Wang L, Wang Y, Feng F, Jiao F. Tannin-Based Spontaneous Adhesion Superhydrophilic Coatings for Efficient Oil-in-Water Emulsion Separation and Dye Removal. Ind Eng Chem Res 2022. [DOI: 10.1021/acs.iecr.1c05011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Yijian Zheng
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P.R. China
| | - Xuan Long
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P.R. China
| | - Yi Zuo
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P.R. China
| | - Lujun Wang
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P.R. China
| | - Yinke Wang
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P.R. China
| | - Fenling Feng
- School of Traffic and Transportation Engineering, Central South University, Changsha 410083, P.R. China
| | - Feipeng Jiao
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P.R. China
| |
Collapse
|
15
|
Bio-inspired mineral-hydrogel hybrid coating on hydrophobic PVDF membrane boosting oil/water emulsion separation. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2021.120383] [Citation(s) in RCA: 57] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
16
|
Ding W, Tong Y, Shi L, Li W. Superhydrophilic PVDF Membrane Modified by Norepinephrine/Acrylic Acid via Self-Assembly for Efficient Separation of an Oil-in-Water Emulsion. Ind Eng Chem Res 2022. [DOI: 10.1021/acs.iecr.1c03953] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- Wenlong Ding
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Yujia Tong
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Lijian Shi
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Weixing Li
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 211816, China
| |
Collapse
|
17
|
Razmgar K, Nasiraee M. Polyvinyl alcohol
‐based membranes for filtration of aqueous solutions: A comprehensive review. POLYM ENG SCI 2021. [DOI: 10.1002/pen.25846] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Kourosh Razmgar
- College of Science, Health, Engineering and Education Murdoch University Perth Western Australia Australia
| | - Mohammad Nasiraee
- Chemical Engineering Department, Faculty of Engineering Ferdowsi University of Mashhad Mashhad Iran
| |
Collapse
|
18
|
Superwetting PVDF membrane prepared by in situ extraction of metal ions for highly efficient oil/water mixture and emulsion separation. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2021.119174] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
19
|
Gu H, Xie W, Du A, Pan D, Guo Z. Overview of electrocatalytic treatment of antibiotic pollutants in wastewater. CATALYSIS REVIEWS 2021. [DOI: 10.1080/01614940.2021.1960009] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Hongbo Gu
- Shanghai Key Lab of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, Shanghai, China
| | - Wenhao Xie
- Shanghai Key Lab of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, Shanghai, China
| | - Ai Du
- Shanghai Key Laboratory of Special Artificial Microstructure Materials and Technology, School of Physics Science and Engineering, Tongji University, Shanghai, China
| | - Duo Pan
- Key Laboratory of Materials Processing and Mold (Zhengzhou University), Ministry of Education, National Engineering Research Center for Advanced Polymer Processing Technology, Zhengzhou University, Zhengzhou, China
- Integrated Composites Lab (ICL), Department of Chemical & Biomolecular Engineering, University of Tennessee, Knoxville, Tennessee, USA
| | - Zhanhu Guo
- Integrated Composites Lab (ICL), Department of Chemical & Biomolecular Engineering, University of Tennessee, Knoxville, Tennessee, USA
| |
Collapse
|
20
|
Feng L, Gao Y, Dai Z, Dan H, Xiao F, Yue Q, Gao B, Wang S. Preparation of a rice straw-based green separation layer for efficient and persistent oil-in-water emulsion separation. JOURNAL OF HAZARDOUS MATERIALS 2021; 415:125594. [PMID: 33740722 DOI: 10.1016/j.jhazmat.2021.125594] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 01/27/2021] [Accepted: 03/03/2021] [Indexed: 06/12/2023]
Abstract
Inefficiency, high cost, and complex operation have emerged as shackles for large-scale separate oil-in-water emulsion. Herein, a low-cost and eco-friendly separation layer with a rough structure and rich anionic groups was fabricated from rice straw (RS) via a simple acid-base treatment and slight squeeze process. The separation layer's morphology, composition, and wettability were investigated. It was then employed to separate oil-in-water emulsion. The RS after acid and alkali treatment (A1A2-RS) exhibited a clear fiber structure and abundant humps, which made the separation layer superwettable and highly electronegative (-26.55 mV). The overlapped and intertwined A1A2-RS layer structure owned a superior performance for hexadecyl-trimethyl-ammonium-bromide (CTAB) adsorption and tiny oil interception. As a result, the separation layer had stable fluxes (>500 LMH) for multiple CTAB-stabilized emulsions and the obtained filtrates performed low total organic carbon (TOC) contents (<30 mg/L). In addition, the A1A2-RS layer had excellent renewability (10 cycles/ 200 mL) and the flux could be substantially recovered merely by aqueous wash. Moreover, filtrate analysis showed that the A1A2-RS layer had a good effect on actual emulsion treatment with a TOC removal rate of 89.56%.
Collapse
Affiliation(s)
- Lidong Feng
- Shandong Provincial Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Jinan 250100, PR China
| | - Yue Gao
- Shandong Provincial Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Jinan 250100, PR China.
| | - Zhenguo Dai
- Shandong Shanda WIT Science and Technology Co., Ltd., Jinan 250061, Shandong, PR China
| | - Hongbing Dan
- Shandong Provincial Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Jinan 250100, PR China
| | - Fang Xiao
- Ecological Environment Monitoring Center of HeZe Shandong, PR China
| | - Qinyan Yue
- Shandong Provincial Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Jinan 250100, PR China.
| | - Baoyu Gao
- Shandong Provincial Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Jinan 250100, PR China
| | - Shuguang Wang
- Shandong Provincial Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Jinan 250100, PR China
| |
Collapse
|
21
|
Engineering dual-heterogeneous membrane surface with heterostructured modifier to integrate multi-defense antifouling mechanisms. CHEMICAL ENGINEERING SCIENCE: X 2021. [DOI: 10.1016/j.cesx.2021.100103] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
|
22
|
Chien HW, Chiu TH, Lee YL. Rapid Biocidal Activity of N-Halamine-Functionalized Polydopamine and Polyethylene Imine Coatings. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:8037-8044. [PMID: 34160231 DOI: 10.1021/acs.langmuir.1c01256] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Microorganisms easily adhere to the surface of substrates and further form biofilms, which present problems in various fields. Therefore, the development of surfaces with antimicrobial adhesion or viability is a promising approach. In this study, we were committed to develop a rapid sterilizing coating. First, polyester fibers were immersed into a mixing solution of dopamine (PDA) and polyethyleneimine (PEI) for forming the co-deposition of PDA and PEI coatings. After this, the co-deposition of PDA and PEI coatings was immersed in a solution of household bleach for chlorination. We found that the nitrogens of PDA and PEI could be chlorinated repeatedly and that the oxidative chlorine content increased with the increasing PEI concentration upon co-deposition. Next, the efficacy of the co-deposition of chlorinated PDA and PEI coatings in eliminating Staphylococcus aureus and Escherichia coli was investigated. We found that the antibacterial ability of the coatings increased with increasing PEI content. In addition, the chlorinated co-deposition coatings had significantly improved antibacterial properties compared to the unchlorinated ones. The chlorinated co-deposition coatings inactivated >99.99% of S. aureus and >99.9% of E. coli after contact of less than 10 min. Therefore, chlorination of a PDA/PEI co-deposition surface is a feasible method for use in antibacterial coatings.
Collapse
Affiliation(s)
- Hsiu-Wen Chien
- Department of Chemical and Materials Engineering, National Kaohsiung University of Science and Technology, Kaohsiung 807618, Taiwan
- Photo-Sensitive Material Advanced Research and Technology Center (Photo-SMART Center), National Kaohsiung University of Science and Technology, Kaohsiung 807618, Taiwan
| | - Ting-Hsiang Chiu
- Department of Chemical and Materials Engineering, National Kaohsiung University of Science and Technology, Kaohsiung 807618, Taiwan
| | - Yu-Ling Lee
- Department of Chemical and Materials Engineering, National Kaohsiung University of Science and Technology, Kaohsiung 807618, Taiwan
| |
Collapse
|
23
|
Huang Z, Yin S, Zhang J, Zhang N. Recent advances in membrane hydrophilic modification with plant polyphenol‐inspired coatings for enhanced oily emulsion separation. J Appl Polym Sci 2021. [DOI: 10.1002/app.50587] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Zhaohe Huang
- State Key Laboratory of Safety and Control for Chemicals SINOPEC Research Institute of Safety Engineering Qingdao China
| | - Shumeng Yin
- State Key Laboratory of Safety and Control for Chemicals SINOPEC Research Institute of Safety Engineering Qingdao China
| | - Jianzhong Zhang
- State Key Laboratory of Safety and Control for Chemicals SINOPEC Research Institute of Safety Engineering Qingdao China
| | - Na Zhang
- School of Chemical Engineering and Technology Tianjin University Tianjin China
| |
Collapse
|
24
|
Co-deposition of pyrogallol/polyethyleneimine on polymer membranes for highly efficient treatment of oil-in-water emulsion. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2021.118660] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
25
|
Zhao Y, Zhang Y, Li F, Bai Y, Pan Y, Ma J, Zhang S, Shao L. Ultra-robust superwetting hierarchical membranes constructed by coordination complex networks for oily water treatment. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2021.119234] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
26
|
A thin film composite membrane prepared from monomers of vanillin and trimesoyl chloride for organic solvent nanofiltration. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2021.118394] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
27
|
Zhao Z, Li Y, Jin D, Van der Bruggen B. Modification of an anion exchange membrane based on rapid mussel-inspired deposition for improved antifouling performance. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.126267] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
28
|
Zhang BP, Li HN, Shen JL, Zhou D, Xu ZK, Wan LS. Surface Coatings via the Assembly of Metal-Monophenolic Networks. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:3721-3730. [PMID: 33734690 DOI: 10.1021/acs.langmuir.1c00221] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Mussel-inspired surface modification has received significant interest in recent years because of its simplicity and versatility. The deposition systems are still mainly limited to molecules with catechol chemical structures. In this paper, we report a novel deposition system based on a monophenol, vanillic acid (4-hydroxy-3-methoxybenzoic acid), to fabricate metal-phenolic network coatings on various substrates. The results of the water contact angle and zeta potential reveal that the modified polypropylene microfiltration membrane is underwater superhydrophobic and positively charged, showing applications in oil/water separation and dye removal. Furthermore, the single-face modified Janus membrane is promising in switchable oil/water separation. The results demonstrate a novel example of the metal-monophenolic deposition system, which expands the toolbox of surface coatings and facilitates the understanding of the deposition of phenols.
Collapse
Affiliation(s)
- Bing-Pan Zhang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Key Laboratory of Adsorption and Separation Materials & Technologies of Zhejiang Province, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Hao-Nan Li
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Key Laboratory of Adsorption and Separation Materials & Technologies of Zhejiang Province, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Jia-Lu Shen
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Key Laboratory of Adsorption and Separation Materials & Technologies of Zhejiang Province, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Di Zhou
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Key Laboratory of Adsorption and Separation Materials & Technologies of Zhejiang Province, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Zhi-Kang Xu
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Key Laboratory of Adsorption and Separation Materials & Technologies of Zhejiang Province, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Ling-Shu Wan
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Key Laboratory of Adsorption and Separation Materials & Technologies of Zhejiang Province, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| |
Collapse
|
29
|
Jiang X, He S, Han G, Long J, Li S, Lau CH, Zhang S, Shao L. Aqueous One-Step Modulation for Synthesizing Monodispersed ZIF-8 Nanocrystals for Mixed-Matrix Membrane. ACS APPLIED MATERIALS & INTERFACES 2021; 13:11296-11305. [PMID: 33625225 DOI: 10.1021/acsami.0c22910] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Enhancing the monodispersity and surface properties of nanoporous zeolitic imidazolate frameworks (ZIFs) are crucial for maximizing their performance in advanced nanocomposites for separations. Herein, we developed an in situ method to synthesize monodispersed ZIF-8 nanocrystals with unique dopamine (DA) surface decoration layer (ZIF-8-DA) in an aqueous solution at room temperature. Interestingly, the in situ formation of the monodispersed ZIF-8-DA nanocrystals experiences a triple-stage crystallization process, resulting in a rhombic dodecahedron architecture, which is greatly different from the synthesis of conventional ZIF-8. The crystallinity and abundant microporosity of ZIF-8-DA nanocrystals is well maintained even with the DA surface decoration. Owing to the advanced surface compatibility and pore properties of ZIF-8-DA, ZIF-8-DA/Matrimid mixed-matrix membranes exhibit both higher gas permeability and selectivity than the pristine Matrimid polyimide membrane, which breaks out the traditional "trade-off" phenomena between permeability and selectivity.
Collapse
Affiliation(s)
- Xu Jiang
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, State Key Laboratory of Urban Water Resource and Environment, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, P. R. China
| | - Shanshan He
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, State Key Laboratory of Urban Water Resource and Environment, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, P. R. China
| | - Gang Han
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Jun Long
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, State Key Laboratory of Urban Water Resource and Environment, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, P. R. China
| | - Songwei Li
- Key Laboratory of Materials Processing and Mold (Zhengzhou University), Ministry of Education, National Engineering Research Center for Advanced Polymer Processing Technology Department of Chemical Engineering, Zhengzhou University, Zhengzhou 450002, P. R. China
| | - Cher Hon Lau
- School of Engineering, The University of Edinburgh, The King's Buildings, Mayfield Road, Edinburgh EH9 3JL, U.K
| | - Sui Zhang
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore 117585
| | - Lu Shao
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, State Key Laboratory of Urban Water Resource and Environment, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, P. R. China
| |
Collapse
|