1
|
Guan P, Zou Y, Zhang M, Zhong W, Xu J, Lei J, Ding H, Feng W, Liu F, Zhang Y. High-temperature low-humidity proton exchange membrane with "stream-reservoir" ionic channels for high-power-density fuel cells. SCIENCE ADVANCES 2023; 9:eadh1386. [PMID: 37126562 PMCID: PMC10132749 DOI: 10.1126/sciadv.adh1386] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
The perfluorosulfonic acid (PFSA) proton exchange membrane (PEM) is the key component for hydrogen fuel cells (FCs). We used in situ synchrotron scattering to investigate the PEM morphology evolution and found a "stream-reservoir" morphology, which enables efficient proton transport. The short-side-chain (SSC) PFSA PEM is fabricated under the guidance of morphology optimization, which delivered a proton conductivity of 193 milliSiemens per centimeter [95% relativity humidity (RH)] and 40 milliSiemens per centimeter (40% RH) at 80°C. The improved glass transition temperature, water permeability, and mechanical strength enable high-temperature low-humidity FC applications. Performance improvement by 82.3% at 110°C and 25% RH is obtained for SSC-PFSA PEM FCs compared to Nafion polymer PEM devices. The insights in chain conformation, packing mechanism, crystallization, and phase separation of PFSAs build up the structure-property relationship. In addition, SSC-PFSA PEM is ideal for high-temperature low-humidity FCs that are needed urgently for high-power-density and heavy-duty applications.
Collapse
Affiliation(s)
- Panpan Guan
- Frontiers Science Center for Transformative Molecules and Center of Hydrogen Science, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Yecheng Zou
- State Key Laboratory of Fluorinated Functional Membrane Materials and Dongyue Future Hydrogen Energy Materials Company, Zibo, Shandong 256401, P. R. China
| | - Ming Zhang
- Frontiers Science Center for Transformative Molecules and Center of Hydrogen Science, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Wenkai Zhong
- Frontiers Science Center for Transformative Molecules and Center of Hydrogen Science, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Jinqiu Xu
- Frontiers Science Center for Transformative Molecules and Center of Hydrogen Science, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Jianlong Lei
- Frontiers Science Center for Transformative Molecules and Center of Hydrogen Science, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Han Ding
- State Key Laboratory of Fluorinated Functional Membrane Materials and Dongyue Future Hydrogen Energy Materials Company, Zibo, Shandong 256401, P. R. China
| | - Wei Feng
- State Key Laboratory of Fluorinated Functional Membrane Materials and Dongyue Future Hydrogen Energy Materials Company, Zibo, Shandong 256401, P. R. China
| | - Feng Liu
- Frontiers Science Center for Transformative Molecules and Center of Hydrogen Science, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Yongming Zhang
- Frontiers Science Center for Transformative Molecules and Center of Hydrogen Science, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| |
Collapse
|
2
|
Xu K, Pei S, Zhang W, Han Z, Liu G, Xu X, Ma J, Zhang Y, Liu F, Zhang Y, Wang L, Zou Y, Ding H, Guan P. Chemical stability of proton exchange membranes synergistically promoted by organic antioxidant and inorganic radical scavengers. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.120594] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
3
|
Ma Y, Ren K, Zeng Z, Feng M, Huang Y. Highly selective sulfonated Poly (arylene ether nitrile) composite membranes containing copper phthalocyanine grafted graphene oxide for direct methanol fuel cell. HIGH PERFORM POLYM 2021. [DOI: 10.1177/09540083211039412] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
To improve the performances of sulfonated poly (arylene ether nitrile) (SPEN)–based proton exchange membranes (PEMs) in direct methanol fuel cells (DMFCs), the copper phthalocyanine grafted graphene oxide (CP-GO) was successfully prepared via in situ polymerization and subsequently incorporated into SPEN as filler to fabricate a series of SPEN/CP-GO-X (X represents for the mass ratio of CP-GO) composite membranes. The water absorption, swelling ratio, mechanical properties, proton conductivity, and methanol permeability of the membranes were systematically studied. CP-GO possesses good dispersion and compatibility with SPEN matrix, which is propitious to the formation of strong interfacial interactions with the SPEN, so as to provide more efficient transport channels for proton transfer in the composite membranes and significantly improve the proton conductivity of the membranes. Besides, the strong π–π conjugation interactions between CP-GO and SPEN matrix can make the composite membranes more compact, blocking the methanol transfer in the membranes, and significantly reducing the methanol permeability. Consequently, the SPEN/CP-GO-1 composite membrane displayed outstanding tensile strength (58 MPa at 100% RH and 25°C), excellent proton conductivity (0.178 S cm−1 at 60°C), and superior selectivity (5.552 × 105 S·cm−3·s). This study proposed a new method and strategy for the preparation of high performance PEMs.
Collapse
Affiliation(s)
- Yan Ma
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu, P. R. China
- Department of Materials Science, State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai, China
| | - Kaixu Ren
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu, P. R. China
| | - Ziqiu Zeng
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu, P. R. China
| | - Mengna Feng
- School of Materials Science and Engineering, Yancheng Institute of Technology, Yancheng, P. R. China
| | - Yumin Huang
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu, P. R. China
| |
Collapse
|
4
|
Development of a proton exchange membrane based on trifluoromethanesulfonylimide-grafted polybenzimidazole. Polym J 2021. [DOI: 10.1038/s41428-021-00551-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
5
|
Durability enhancement of proton exchange membrane fuel cells by ferrocyanide or ferricyanide additives. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2021.119282] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
6
|
Designing the next generation of proton-exchange membrane fuel cells. Nature 2021; 595:361-369. [PMID: 34262215 DOI: 10.1038/s41586-021-03482-7] [Citation(s) in RCA: 402] [Impact Index Per Article: 100.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Accepted: 03/22/2021] [Indexed: 02/06/2023]
Abstract
With the rapid growth and development of proton-exchange membrane fuel cell (PEMFC) technology, there has been increasing demand for clean and sustainable global energy applications. Of the many device-level and infrastructure challenges that need to be overcome before wide commercialization can be realized, one of the most critical ones is increasing the PEMFC power density, and ambitious goals have been proposed globally. For example, the short- and long-term power density goals of Japan's New Energy and Industrial Technology Development Organization are 6 kilowatts per litre by 2030 and 9 kilowatts per litre by 2040, respectively. To this end, here we propose technical development directions for next-generation high-power-density PEMFCs. We present the latest ideas for improvements in the membrane electrode assembly and its components with regard to water and thermal management and materials. These concepts are expected to be implemented in next-generation PEMFCs to achieve high power density.
Collapse
|