1
|
Zhang W, Wang Z, Zhao Z, Wang P, Wang S, Ma J, Cheng W. High-stable bimetallic AgCu nanoalloys with core-shell structures for sustainable antibacterial and biofouling mitigation in nanofiltration. WATER RESEARCH 2025; 271:122986. [PMID: 39705753 DOI: 10.1016/j.watres.2024.122986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2024] [Revised: 12/07/2024] [Accepted: 12/14/2024] [Indexed: 12/23/2024]
Abstract
Nanofiltration (NF) is crucial for advancing water purification and wastewater reuse technologies. Incorporating biocidal nanoparticles (NPs) such as AgNPs and CuNPs is promising for developing antibacterial and antibiofouling NF membranes, while their application is limited by NPs aggregation, high cost, and severe ion release. In this study, we developed novel NF membranes by integrating bimetallic AgCu nanoalloys via an in-situ reduction and coordination method facilitated by a polydopamine/polyethyleneimine (PDA/PEI) intermediate layer. The sequential deposition of Cu2+ onto nascent AgNPs formed uniform AgCuNPs with a unique core-shell structure. The Cu shell layer can shield the release of Ag+ from the Ag core and chelate with the PDA/PEI intermediate layer, thus controlling the release of biocidal ions and prolonging the biocidal properties of the membranes. As a result, the AgCuNP-modified membranes exhibited significantly improved membrane water permeability, salt rejection, and performance stability, along with reduced release of biocidal ions in the long-term operation. Notably, the bimetallic AgCuNP-modified membrane displayed superior antibacterial activity and biofouling reversibility compared to the commercial NF and monometallic Ag/Cu-modified membranes, achieving the highest sterilization rate (> 99 %), largest flux recovery rate (93 %), and lowest flux decline rate (16 %) in both static antibacterial and dynamic biofouling processes. The metal-semiconductor heterostructure of the AgCuNPs facilitated the electron transfer from the Ag core to the Cu shell, intensifying the substantial generation of reactive oxygen species (H2O2: 71.6 mmol l-1 m-2, •OH: 43.4 mmol l-1 m-2, and O2•-: 1.3 × 10-4) at the membrane-bacteria interface. The synergistic effects of the unique properties of AgCuNPs including microstructure, atomic composition, charge transfer, and ROS generation significantly enhanced the antibacterial capacity of the AgCuNP-modified membrane. This study presents a facile method for modifying NF membranes with bimetallic AgCuNPs to achieve enhanced antibacterial activity and biofouling reversibility, providing fundamental insights and promising potential for water treatment applications.
Collapse
Affiliation(s)
- Wenjuan Zhang
- Tianjin Key Laboratory of Aquatic Science and Technology, School of Environmental and Municipal Engineering, Tianjin Chengjian University, Tianjin 300384, PR China
| | - Zhe Wang
- Tianjin Key Laboratory of Aquatic Science and Technology, School of Environmental and Municipal Engineering, Tianjin Chengjian University, Tianjin 300384, PR China
| | - Zilong Zhao
- Tianjin Key Laboratory of Aquatic Science and Technology, School of Environmental and Municipal Engineering, Tianjin Chengjian University, Tianjin 300384, PR China
| | - Peizhi Wang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, PR China
| | - Shaopo Wang
- Tianjin Key Laboratory of Aquatic Science and Technology, School of Environmental and Municipal Engineering, Tianjin Chengjian University, Tianjin 300384, PR China.
| | - Jun Ma
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, PR China
| | - Wei Cheng
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, PR China.
| |
Collapse
|
2
|
Wu S, Peng LE, Yang Z, Sarkar P, Barboiu M, Tang CY, Fane AG. Next-Generation Desalination Membranes Empowered by Novel Materials: Where Are We Now? NANO-MICRO LETTERS 2024; 17:91. [PMID: 39702561 DOI: 10.1007/s40820-024-01606-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Accepted: 11/23/2024] [Indexed: 12/21/2024]
Abstract
Membrane desalination is an economical and energy-efficient method to meet the current worldwide water scarcity. However, state-of-the-art reverse osmosis membranes are gradually being replaced by novel membrane materials as a result of ongoing technological advancements. These novel materials possess intrinsic pore structures or can be assembled to form lamellar membrane channels for selective transport of water or solutes (e.g., NaCl). Still, in real applications, the results fall below the theoretical predictions, and a few properties, including large-scale fabrication, mechanical strength, and chemical stability, also have an impact on the overall effectiveness of those materials. In view of this, we develop a new evaluation framework in the form of radar charts with five dimensions (i.e., water permeance, water/NaCl selectivity, membrane cost, scale of development, and stability) to assess the advantages, disadvantages, and potential of state-of-the-art and newly developed desalination membranes. In this framework, the reported thin film nanocomposite membranes and membranes developed from novel materials were compared with the state-of-the-art thin film composite membranes. This review will demonstrate the current advancements in novel membrane materials and bridge the gap between different desalination membranes. In this review, we also point out the prospects and challenges of next-generation membranes for desalination applications. We believe that this comprehensive framework may be used as a future reference for designing next-generation desalination membranes and will encourage further research and development in the field of membrane technology, leading to new insights and advancements.
Collapse
Affiliation(s)
- Siqi Wu
- Department of Civil Engineering, The University of Hong Kong, Pokfulam, Hong Kong SAR, People's Republic of China
| | - Lu Elfa Peng
- Department of Civil Engineering, The University of Hong Kong, Pokfulam, Hong Kong SAR, People's Republic of China
| | - Zhe Yang
- Department of Civil Engineering, The University of Hong Kong, Pokfulam, Hong Kong SAR, People's Republic of China
| | - Pulak Sarkar
- Department of Civil Engineering, The University of Hong Kong, Pokfulam, Hong Kong SAR, People's Republic of China
| | - Mihail Barboiu
- Institut Européen des Membrane, University of Montpellier, ENSCM, CNRS UMR5635, Place Eugène Bataillon, CC 047, 34095, Montpellier, France
| | - Chuyang Y Tang
- Department of Civil Engineering, The University of Hong Kong, Pokfulam, Hong Kong SAR, People's Republic of China.
| | - Anthony G Fane
- UNESCO Centre for Membrane Science and Technology, School of Chemical Engineering, The University of New South Wales (UNSW), Sydney, NSW, 2052, Australia
| |
Collapse
|
3
|
Hundessa NK, Hu CC, Kang DY, Ajebe EG, Habet BA, Hung WS, Lee KR, Lai JY. A novel trimesoyl chloride/hyper branched polyethyleneimine/MOF (MIL-303)/P84 co-polyimide nanocomposite mixed matrix membranes with an ultra-thin surface cross linking layer for removing toxic heavy metal ions from wastewater. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:136221. [PMID: 39442308 DOI: 10.1016/j.jhazmat.2024.136221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 10/17/2024] [Accepted: 10/18/2024] [Indexed: 10/25/2024]
Abstract
In this study, a positively charged nanofiltration (NF) nanocomposite mixed matrix membrane (MMM) was developed by incorporating metal-organic frameworks (MOFs) (MIL-303) into P84 co-polyimide and cross-linking with hyperbranched polyethyleneimine (HPEI). A very thin selective layer was subsequently formed on the cross-linked membrane surface using trimesoyl chloride (TMC). The incorporation of MIL-303 introduced specific water channels, enhancing the permeance of the nanocomposite MMMs. Additionally, it improved hydrophilicity and influenced the diffusion of the TMC monomer through the channels. The cross-linker HPEI resulted in NF membranes with increased electro-positivity and a reduced mean pore diameter. The very thin crosslinked TMC layer further improved permeance and heavy metal ions rejection of the membrane. This optimized membrane exhibited excellent rejection for both bivalent and monovalent ions, as well as heavy metal ions, effectively overcoming the common trade-off between permeance and rejection in NF membranes. The membrane demonstrated a remarkable permeance of 13.0 LMH/bar, coupled with exceptional rejection for heavy metal ions (96.8 % for Zn²⁺, 95.2 % for Ni²⁺, 95.7 % for Cu²⁺, 93.2 % for Pb²⁺, and 92.9 % for Cd²⁺). The TMC/HPEI/MIL-303/P84 system presented in this study holds significant promise for customizing high-performance positively charged NF membranes for the removal of heavy metal ions from wastewater.
Collapse
Affiliation(s)
- Netsanet Kebede Hundessa
- Graduate Institute of Applied Science and Technology, Advanced Membrane Materials Research Center, National Taiwan University of Science and Technology, Taipei 10607, Taiwan
| | - Chien-Chieh Hu
- Graduate Institute of Applied Science and Technology, Advanced Membrane Materials Research Center, National Taiwan University of Science and Technology, Taipei 10607, Taiwan; R&D Center for Membrane Technology, Chung Yuan University, Chung-Li 32023, Taiwan.
| | - Dun-Yen Kang
- Department of Chemical Engineering, National Taiwan University, No. 1, Section 4, Roosevelt Road, Taipei 10617, Taiwan.
| | - Eyasu Gebrie Ajebe
- Graduate Institute of Applied Science and Technology, Advanced Membrane Materials Research Center, National Taiwan University of Science and Technology, Taipei 10607, Taiwan
| | - Biadglign Ayalneh Habet
- Graduate Institute of Applied Science and Technology, Advanced Membrane Materials Research Center, National Taiwan University of Science and Technology, Taipei 10607, Taiwan
| | - Wei-Song Hung
- Graduate Institute of Applied Science and Technology, Advanced Membrane Materials Research Center, National Taiwan University of Science and Technology, Taipei 10607, Taiwan; R&D Center for Membrane Technology, Chung Yuan University, Chung-Li 32023, Taiwan
| | - Kueir-Rarn Lee
- R&D Center for Membrane Technology, Chung Yuan University, Chung-Li 32023, Taiwan
| | - Juin-Yih Lai
- Graduate Institute of Applied Science and Technology, Advanced Membrane Materials Research Center, National Taiwan University of Science and Technology, Taipei 10607, Taiwan; R&D Center for Membrane Technology, Chung Yuan University, Chung-Li 32023, Taiwan; Department of Chemical Engineering and Materials Science, Yuan Ze University, Chungli, Taoyuan 32003, Taiwan
| |
Collapse
|
4
|
Dong S, Hua H, Wu X, Mao X, Li N, Zhang X, Wang K, Yang S. In-situ photoreduction strategy for synthesis of silver nanoparticle-loaded PVDF ultrafiltration membrane with high antibacterial performance and stability. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:26445-26457. [PMID: 36369440 DOI: 10.1007/s11356-022-24052-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 11/02/2022] [Indexed: 06/16/2023]
Abstract
Ultrafiltration (UF) technology using polyvinylidene fluoride (PVDF) membrane has been widely applied to water and wastewater treatment due to its low cost and simple operation process. However, PVDF-based UF membrane always encountered the issue of membrane biofouling that greatly impacted the filtration performance. In this study, we prepare a silver nanoparticle (AgNP)-loaded PVDF (Ag/PVDF) UF membrane by an in-situ photoreduction method to mitigate the membrane biofouling. Different from the previously reported method, AgNPs were synthesized in-situ by a UV photoreduction process, in which Ag+ ions were reduced to zero-valent Ag nanoparticles by the photo-induced reducing radicals. Antibacterial experiments showed that the inhibition efficiency of Ag/PVDF membrane to Escherichia coli reached up to ~ 99% after antibacterial treatment for 24 h. In comparison with the pristine PVDF membrane, Ag/PVDF membrane possessed a lower water contact angle (83.7° vs. 38.1°), and its pure water flux increased by 23.7%, and a high bovine serum albumin (BSA) rejection efficiency was maintained. In addition, the high stability of the Ag/PVDF composite membrane was confirmed by the extremely low releasing amount of Ag. This study provides a novel strategy for the preparation of metal nanoparticle-incorporated Ag/PVDF ultrafiltration composite membrane showing favorable antibacterial performance and stability.
Collapse
Affiliation(s)
- Shanshan Dong
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, School of Environmental and Chemical Engineering, Nanchang Hangkong University, Nanchang, 330063, China
| | - Helin Hua
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, School of Environmental and Chemical Engineering, Nanchang Hangkong University, Nanchang, 330063, China.
| | - Xin Wu
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, School of Environmental and Chemical Engineering, Nanchang Hangkong University, Nanchang, 330063, China
| | - Xuhui Mao
- School of Resource and Environmental Sciences, Wuhan University, Wuhan, 430079, China
| | - Na Li
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, School of Environmental and Chemical Engineering, Nanchang Hangkong University, Nanchang, 330063, China
| | - Xinping Zhang
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, School of Environmental and Chemical Engineering, Nanchang Hangkong University, Nanchang, 330063, China
| | - Kun Wang
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, School of Environmental and Chemical Engineering, Nanchang Hangkong University, Nanchang, 330063, China
| | - Shengyun Yang
- Guangdong Weiqing Environmental Engineering Company, Zhongshan, 528437, China
| |
Collapse
|
5
|
Natural-product-derived membranes for high-efficiency anionic dye removal. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.121061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
6
|
Huo HQ, Mi YF, Yang X, Lu HH, Ji YL, Zhou Y, Gao CJ. Polyamide thin film nanocomposite membranes with in-situ integration of multiple functional nanoparticles for high performance reverse osmosis. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.121311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
7
|
A critical review on thin-film nanocomposite membranes enabled by nanomaterials incorporated in different positions and with diverse dimensions: Performance comparison and mechanisms. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.120952] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
8
|
Novel infinite coordination polymer (ICP) modified thin-film polyamide nanocomposite membranes for simultaneous enhancement of antifouling and chlorine-resistance performance. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.120305] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
9
|
Zhang H, Zhu S, Yang J, Ma A. Advancing Strategies of Biofouling Control in Water-Treated Polymeric Membranes. Polymers (Basel) 2022; 14:1167. [PMID: 35335498 PMCID: PMC8951698 DOI: 10.3390/polym14061167] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 03/10/2022] [Accepted: 03/11/2022] [Indexed: 01/27/2023] Open
Abstract
Polymeric membranes, such as polyamide thin film composite membranes, have gained increasing popularity in wastewater treatment, seawater desalination, as well as the purification and concentration of chemicals for their high salt-rejection and water flux properties. Membrane biofouling originates from the attachment or deposition of organic macromolecules/microorganisms and leads to an increased operating pressure and shortened service life and has greatly limited the application of polymeric membranes. Over the past few years, numerous strategies and materials were developed with the aim to control membrane biofouling. In this review, the formation process, influence factors, and consequences of membrane biofouling are systematically summarized. Additionally, the specific strategies for mitigating membrane biofouling including anchoring of hydrophilic monomers, the incorporation of inorganic antimicrobial nanoparticles, coating/grafting of cationic bactericidal polymers, and the design of multifunctional material integrated multiple anti-biofouling mechanisms, are highlighted. Finally, perspectives on the challenges and opportunities in anti-biofouling polymeric membranes are shared, shedding light on the development of even better anti-biofouling materials in near future.
Collapse
Affiliation(s)
- Hongli Zhang
- School of Materials Science and Chemical Engineering, Xi’an Technological University, Xi’an 710021, China;
| | - Shilin Zhu
- School of Materials Science and Chemical Engineering, Xi’an Technological University, Xi’an 710021, China;
| | - Jie Yang
- School of Materials Science and Engineering, Xi’an Polytechnic University, Xi’an 710048, China;
| | - Aijie Ma
- School of Materials Science and Chemical Engineering, Xi’an Technological University, Xi’an 710021, China;
| |
Collapse
|
10
|
Ag-based nanocapsule-regulated interfacial polymerization Enables synchronous nanostructure towards high-performance nanofiltration membrane for sustainable water remediation. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2021.120196] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
11
|
Nambi Krishnan J, Venkatachalam KR, Ghosh O, Jhaveri K, Palakodeti A, Nair N. Review of Thin Film Nanocomposite Membranes and Their Applications in Desalination. Front Chem 2022; 10:781372. [PMID: 35186879 PMCID: PMC8848102 DOI: 10.3389/fchem.2022.781372] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 01/03/2022] [Indexed: 01/08/2023] Open
Abstract
All over the world, almost one billion people live in regions where water is scarce. It is also estimated that by 2035, almost 3.5 billion people will be experiencing water scarcity. Hence, there is a need for water based technologies. In separation processes, membrane based technologies have been a popular choice due to its advantages over other techniques. In recent decades, sustained research in the field of membrane technology has seen a remarkable surge in the development of membrane technology, particularly because of reduction of energy footprints and cost. One such development is the inclusion of nanoparticles in thin film composite membranes, commonly referred to as Thin Film Nanocomposite Membranes (TFN). This review covers the development, characteristics, advantages, and applications of TFN technology since its introduction in 2007 by Hoek. After a brief overview on the existing membrane technology, this review discusses TFN membranes. This discussion includes TFN membrane synthesis, characterization, and enhanced properties due to the incorporation of nanoparticles. An attempt is made to summarize the various nanoparticles used for preparing TFNs and the effects they have on membrane performance towards desalination. The improvement in membrane performance is generally observed in properties such as permeability, selectivity, chlorine stability, and antifouling. Subsequently, the application of TFNs in Reverse Osmosis (RO) alongside other desalination alternatives like Multiple Effect Flash evaporator and Multi-Stage Flash distillation is covered.
Collapse
Affiliation(s)
- Jegatha Nambi Krishnan
- Department of Chemical Engineering, Birla Institute of Technology and Science Pilani, K.K. Birla Goa Campus, Zuarinagar, India
- *Correspondence: Jegatha Nambi Krishnan,
| | - Kaarthick Raaja Venkatachalam
- Department of Chemical Engineering, Birla Institute of Technology and Science Pilani, K.K. Birla Goa Campus, Zuarinagar, India
| | - Oindrila Ghosh
- Department of Chemical Engineering, Birla Institute of Technology and Science Pilani, K.K. Birla Goa Campus, Zuarinagar, India
| | - Krutarth Jhaveri
- Strategic Engagement and Analysis Group, Rocky Mountain Institute, Boulder, CO, United States
| | - Advait Palakodeti
- Process and Environmental Technology Lab, Department of Chemical Engineering, KU Leuven, Leuven, Belgium
| | - Nikhil Nair
- Department of Chemical Engineering, Birla Institute of Technology and Science Pilani, K.K. Birla Goa Campus, Zuarinagar, India
| |
Collapse
|
12
|
Highly Selective and pH-Stable Reverse Osmosis Membranes Prepared via Layered Interfacial Polymerization. MEMBRANES 2022; 12:membranes12020156. [PMID: 35207077 PMCID: PMC8874617 DOI: 10.3390/membranes12020156] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 01/24/2022] [Accepted: 01/26/2022] [Indexed: 01/22/2023]
Abstract
Ultrathin and smooth polyamide (PA) reverse osmosis (RO) membranes have attracted significant interest due to their potential advantages of high permeance and low fouling propensity. Although a layered interfacial polymerization (LIP) technique aided by the insertion of a polyelectrolyte interlayer has proven effective in fabricating ultrathin and uniform membranes, the RO performance and pH stability of the fabricated LIP membrane remain inadequate. In this study, a poly(piperazineamide) (PIPA) layer prepared via interfacial polymerization (IP) was employed as an interlayer to overcome the limitations of the prototype LIP method. Similar to the control polyelectrolyte-interlayered LIP membrane, the PIPA-interlayered LIP (pLIP) membrane had a much thinner (~20 nm) and smoother selective layer than the membrane fabricated via conventional IP due to the highly surface-confined and uniform LIP reaction. The pLIP membrane also exhibited RO performance exceeding that of the control LIP and conventional IP-assembled membranes, by enabling denser monomer deposition and a more confined interfacial reaction. Importantly, the chemically crosslinked PIPA interlayer endowed the pLIP membrane with higher pH stability than the control polyelectrolyte interlayer. The proposed strategy enables the fabrication of high-performance and pH-stable PA membranes using hydrophilic supports, which can be applied to other separation processes, including osmosis-driven separation and organic solvent filtration.
Collapse
|
13
|
Peng LE, Yang Z, Long L, Zhou S, Guo H, Tang CY. A critical review on porous substrates of TFC polyamide membranes: Mechanisms, membrane performances, and future perspectives. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2021.119871] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
14
|
Gao H, Xue Y, Zhang Y, Zhang Y, Meng J. Engineering of Ag-nanoparticle-encapsulated intermediate layer by tannic acid-inspired chemistry towards thin film nanocomposite membranes of superior antibiofouling property. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2021.119922] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
15
|
Star polymer-mediated in-situ synthesis of silver-incorporated reverse osmosis membranes with excellent and durable biofouling resistance. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2021.119778] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
16
|
Wang C, Zhang J, Song X, Zhang C. Ligninsulfonate/trimesoylchloride nanocomposite membrane with transmembrane nanochannels via bionic cell membrane for molecular separation. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2021.119741] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
17
|
Liao Z, Zhu J, Li X, Van der Bruggen B. Regulating composition and structure of nanofillers in thin film nanocomposite (TFN) membranes for enhanced separation performance: A critical review. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2021.118567] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|