1
|
Kazemi A, Manteghi F, Tehrani Z. Metal Electrocatalysts for Hydrogen Production in Water Splitting. ACS OMEGA 2024; 9:7310-7335. [PMID: 38405471 PMCID: PMC10882616 DOI: 10.1021/acsomega.3c07911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 12/28/2023] [Accepted: 12/29/2023] [Indexed: 02/27/2024]
Abstract
The rising demand for fossil fuels and the resulting pollution have raised environmental concerns about energy production. Undoubtedly, hydrogen is the best candidate for producing clean and sustainable energy now and in the future. Water splitting is a promising and efficient process for hydrogen production, where catalysts play a key role in the hydrogen evolution reaction (HER). HER electrocatalysis can be well performed by Pt with a low overpotential close to zero and a Tafel slope of about 30 mV dec-1. However, the main challenge in expanding the hydrogen production process is using efficient and inexpensive catalysts. Due to electrocatalytic activity and electrochemical stability, transition metal compounds are the best options for HER electrocatalysts. This study will focus on analyzing the current situation and recent advances in the design and development of nanostructured electrocatalysts for noble and non-noble metals in HER electrocatalysis. In general, strategies including doping, crystallization control, structural engineering, carbon nanomaterials, and increasing active sites by changing morphology are helpful to improve HER performance. Finally, the challenges and future perspectives in designing functional and stable electrocatalysts for HER in efficient hydrogen production from water-splitting electrolysis will be described.
Collapse
Affiliation(s)
- Amir Kazemi
- Research
Laboratory of Inorganic Chemistry and Environment, Department of Chemistry, Iran University of Science and Technology, 16846-13114 Tehran, Iran
| | - Faranak Manteghi
- Research
Laboratory of Inorganic Chemistry and Environment, Department of Chemistry, Iran University of Science and Technology, 16846-13114 Tehran, Iran
| | - Zari Tehrani
- The
Future Manufacturing Research Institute, Faculty of Science and Engineering, Swansea University, SA1 8EN Swansea, United Kingdom
| |
Collapse
|
2
|
Zhao Y, Lv B, Song W, Hao J, Zhang J, Shao Z. Influence of the PBI structure on PBI/CsH5(PO4)2 membrane performance for HT-PEMFC application. J Memb Sci 2023. [DOI: 10.1016/j.memsci.2023.121531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2023]
|
3
|
Wan L, Liu J, Xu Z, Xu Q, Pang M, Wang P, Wang B. Construction of Integrated Electrodes with Transport Highways for Pure-Water-Fed Anion Exchange Membrane Water Electrolysis. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2200380. [PMID: 35491509 DOI: 10.1002/smll.202200380] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 03/28/2022] [Indexed: 06/14/2023]
Abstract
The design of high-performance and durable electrodes for the oxygen evolution reaction (OER) is crucial for pure-water-fed anion exchange membrane water electrolysis (AEMWE). In this study, an integrated electrode with vertically aligned ionomer-incorporated nickel-iron layered double hydroxide nanosheet arrays, used on one side of the liquid/gas diffusion layer, is fabricated for the OER. Transport highways in the fabricated integrated electrode, significantly improve the transport of liquid/gas, hydroxide ions, and electron in the anode, resulting in a high current density of 1900 mA cm-2 at 1.90 V in pure-water-fed AEMWE. Specifically, three-electrode and single-cell measurement results indicate that an anion-exchange ionomer can increase the local OH- concentration on the integrated electrodes surface and facilitate the OER for pure-water-fed AEMWE. This study highlights a new approach to fabricating and understanding electrode architecture with enhanced performance and durability for pure-water-fed AEMWE.
Collapse
Affiliation(s)
- Lei Wan
- The State Key Laboratory of Chemical Engineering, Department of Chemical Engineering, Tsinghua University, No.30 Shuang-Qing Road, Hai-Dian District, Beijing, 100084, P.R. China
| | - Jing Liu
- The State Key Laboratory of Chemical Engineering, Department of Chemical Engineering, Tsinghua University, No.30 Shuang-Qing Road, Hai-Dian District, Beijing, 100084, P.R. China
| | - Ziang Xu
- The State Key Laboratory of Chemical Engineering, Department of Chemical Engineering, Tsinghua University, No.30 Shuang-Qing Road, Hai-Dian District, Beijing, 100084, P.R. China
| | - Qin Xu
- The State Key Laboratory of Chemical Engineering, Department of Chemical Engineering, Tsinghua University, No.30 Shuang-Qing Road, Hai-Dian District, Beijing, 100084, P.R. China
| | - Maobin Pang
- The State Key Laboratory of Chemical Engineering, Department of Chemical Engineering, Tsinghua University, No.30 Shuang-Qing Road, Hai-Dian District, Beijing, 100084, P.R. China
| | - Peican Wang
- The State Key Laboratory of Chemical Engineering, Department of Chemical Engineering, Tsinghua University, No.30 Shuang-Qing Road, Hai-Dian District, Beijing, 100084, P.R. China
| | - Baoguo Wang
- The State Key Laboratory of Chemical Engineering, Department of Chemical Engineering, Tsinghua University, No.30 Shuang-Qing Road, Hai-Dian District, Beijing, 100084, P.R. China
| |
Collapse
|
4
|
Amorim FML, Crisafulli R, Linares JJ. An Alkaline-Acid Glycerol Electrochemical Reformer for Simultaneous Production of Hydrogen and Electricity. NANOMATERIALS 2022; 12:nano12081315. [PMID: 35458022 PMCID: PMC9024791 DOI: 10.3390/nano12081315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 04/06/2022] [Accepted: 04/08/2022] [Indexed: 11/28/2022]
Abstract
This study shows the results, for the first time, of an glycerol alkaline-acid electrolyzer. Such a configuration allows spontaneous operation, producing energy and hydrogen simultaneously as a result of the utilization of the neutralization and fuel chemical energy. The electroreformer—built with a 20 wt% Pd/C anode and cathode, and a Na+-pretreated Nafion® 117—can simultaneously produce hydrogen and electricity in the low current density region, whereas it operates in electrolysis mode at high current densities. In the spontaneous region, the maximum power densities range from 1.23 mW cm−2 at 30 °C to 11.9 mW cm−2 at 90 °C, with a concomitant H2 flux ranging from 0.0545 STP m−3 m−2 h−1 at 30 °C to 0.201 STP m−3 m−2 h−1 at 90 °C, due to the beneficial effect of the temperature on the performance. Furthermore, over a chronoamperometric test, the electroreformer shows a stable performance over 12 h. As a challenge, proton crossover from the cathode to the anode through the cation exchange Nafion® partially reduces the pH gradient, responsible for the extra electromotive force, thus requiring a less permeable membrane.
Collapse
Affiliation(s)
- Fernando M. L. Amorim
- Institute of Chemistry, Federal University of Goiás, Campus Samambaia, Avenida Esperança s/n, Goiania 74690-900, Brazil;
| | - Rudy Crisafulli
- Institute of Chemistry, University of Brasilia, Campus Universitário Darcy Ribeiro, Brasilia 70910-900, Brazil;
| | - José J. Linares
- Institute of Chemistry, University of Brasilia, Campus Universitário Darcy Ribeiro, Brasilia 70910-900, Brazil;
- Correspondence: ; Tel.: +55-6131-0739-01
| |
Collapse
|
5
|
Vacuum-assisted continuous flow electroless plating approach for high performance Pd membrane deposition on ceramic hollow fiber lumen. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2021.120207] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
6
|
Diaz-Abad S, Fernández-Mancebo S, Rodrigo MA, Lobato J. Characterization of PBI/Graphene Oxide Composite Membranes for the SO2 Depolarized Electrolysis at High Temperature. MEMBRANES 2022; 12:membranes12020116. [PMID: 35207038 PMCID: PMC8875161 DOI: 10.3390/membranes12020116] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 01/11/2022] [Accepted: 01/17/2022] [Indexed: 11/28/2022]
Abstract
In this work, polybenzimidazole (PBI) membranes with different graphene oxide (GO) contents (0.5, 1.0, 2.0, and 3.0 wt %) as organic filler have been prepared. The X-ray diffraction confirms the incorporation of the filler into the polymeric membrane. The composite GO-based PBI membranes show better proton conductivity at high temperature (110–170 °C) than the pristine one. Moreover, the hydrophobicity of the PBI membranes is also improved, enhancing water management. The chemical stability demonstrates the benefit of the incorporation of GO in the PBI matrix. What is more, the composite PBI-based membranes show better phosphoric acid retention capability. For the first time, the results of the SO2-depolarized electrolysis for hydrogen production at high temperature (130 °C) using phosphoric acid-doped polybenzimidazole (PBI) membranes with the different GO contents are shown. The benefit of the organic filler is demonstrated, as H2SO4 production is 1.5 times higher when the membrane with a content of 1 wt % of GO is used. Moreover, three times more hydrogen is produced with the membrane containing 2 wt % of GO compared with the non-modified membrane. The obtained results are very promising and provide open research for this kind of composite membranes for green hydrogen production by the Westinghouse cycle.
Collapse
|
7
|
Lv B, Geng K, Yin H, Yang C, Hao J, Luan Z, Huang Z, Qin X, Song W, Li N, Shao Z. Polybenzimidazole/cerium dioxide/graphitic carbon nitride nanosheets for high performance and durable high temperature proton exchange membranes. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2021.119760] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
8
|
Membrane-Based Electrolysis for Hydrogen Production: A Review. MEMBRANES 2021; 11:membranes11110810. [PMID: 34832039 PMCID: PMC8625528 DOI: 10.3390/membranes11110810] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Revised: 10/08/2021] [Accepted: 10/11/2021] [Indexed: 11/29/2022]
Abstract
Hydrogen is a zero-carbon footprint energy source with high energy density that could be the basis of future energy systems. Membrane-based water electrolysis is one means by which to produce high-purity and sustainable hydrogen. It is important that the scientific community focus on developing electrolytic hydrogen systems which match available energy sources. In this review, various types of water splitting technologies, and membrane selection for electrolyzers, are discussed. We highlight the basic principles, recent studies, and achievements in membrane-based electrolysis for hydrogen production. Previously, the Nafion™ membrane was the gold standard for PEM electrolyzers, but today, cheaper and more effective membranes are favored. In this paper, CuCl–HCl electrolysis and its operating parameters are summarized. Additionally, a summary is presented of hydrogen production by water splitting, including a discussion of the advantages, disadvantages, and efficiencies of the relevant technologies. Nonetheless, the development of cost-effective and efficient hydrogen production technologies requires a significant amount of study, especially in terms of optimizing the operation parameters affecting the hydrogen output. Therefore, herein we address the challenges, prospects, and future trends in this field of research, and make critical suggestions regarding the implementation of comprehensive membrane-based electrolytic systems.
Collapse
|
9
|
Gohil JM, Dutta K. Structures and properties of polymers in ion exchange membranes for hydrogen generation by water electrolysis. POLYM ADVAN TECHNOL 2021. [DOI: 10.1002/pat.5482] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Jaydevsinh M. Gohil
- Advanced Polymer Design and Development Research Laboratory (APDDRL) School for Advanced Research in Petrochemicals (SARP), Central Institute of Petrochemicals Engineering and Technology (CIPET) Bengaluru Karnataka India
| | - Kingshuk Dutta
- Advanced Polymer Design and Development Research Laboratory (APDDRL) School for Advanced Research in Petrochemicals (SARP), Central Institute of Petrochemicals Engineering and Technology (CIPET) Bengaluru Karnataka India
| |
Collapse
|
10
|
Ozaytekin I. Improving proton conductivity of poly(oxyphenylene benzimidazole) membranes with sulfonation and magnetite addition. IRANIAN POLYMER JOURNAL 2021. [DOI: 10.1007/s13726-021-00960-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|