1
|
Hu Y, Wang F, Yang Z, Tang CY. Modeling nanovoid-enhanced water permeance of thin film composite membranes. J Memb Sci 2023. [DOI: 10.1016/j.memsci.2023.121555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2023]
|
2
|
Shao S, Zeng F, Long L, Zhu X, Peng LE, Wang F, Yang Z, Tang CY. Nanofiltration Membranes with Crumpled Polyamide Films: A Critical Review on Mechanisms, Performances, and Environmental Applications. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:12811-12827. [PMID: 36048162 DOI: 10.1021/acs.est.2c04736] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Nanofiltration (NF) membranes have been widely applied in many important environmental applications, including water softening, surface/groundwater purification, wastewater treatment, and water reuse. In recent years, a new class of piperazine (PIP)-based NF membranes featuring a crumpled polyamide layer has received considerable attention because of their great potential for achieving dramatic improvements in membrane separation performance. Since the report of novel crumpled Turing structures that exhibited an order of magnitude enhancement in water permeance ( Science 2018, 360 (6388), 518-521), the number of published research papers on this emerging topic has grown exponentially to approximately 200. In this critical review, we provide a systematic framework to classify the crumpled NF morphologies. The fundamental mechanisms and fabrication methods involved in the formation of these crumpled morphologies are summarized. We then discuss the transport of water and solutes in crumpled NF membranes and how these transport phenomena could simultaneously improve membrane water permeance, selectivity, and antifouling performance. The environmental applications of these emerging NF membranes are highlighted, and future research opportunities/needs are identified. The fundamental insights in this review provide critical guidance on the further development of high-performance NF membranes tailored for a wide range of environmental applications.
Collapse
Affiliation(s)
- Senlin Shao
- School of Civil Engineering, Wuhan University, Wuhan 430072, PR China
| | - Fanxi Zeng
- School of Civil Engineering, Wuhan University, Wuhan 430072, PR China
| | - Li Long
- Department of Civil Engineering, The University of Hong Kong, Pokfulam, Hong Kong, SAR, China
| | - Xuewu Zhu
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan 250101, PR China
| | - Lu Elfa Peng
- Department of Civil Engineering, The University of Hong Kong, Pokfulam, Hong Kong, SAR, China
| | - Fei Wang
- Department of Civil Engineering, The University of Hong Kong, Pokfulam, Hong Kong, SAR, China
| | - Zhe Yang
- Department of Civil Engineering, The University of Hong Kong, Pokfulam, Hong Kong, SAR, China
| | - Chuyang Y Tang
- Department of Civil Engineering, The University of Hong Kong, Pokfulam, Hong Kong, SAR, China
| |
Collapse
|
4
|
Hu D, Ren X, Fu H, Wang Y, Feng X, Li H. Constructing highly rough skin layer of thin film (nano)composite polyamide membranes to enhance separation performance: A review. J Appl Polym Sci 2022. [DOI: 10.1002/app.52692] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Dan Hu
- Key Laboratory of Cleaner Production and Integrated Resource Utilization of China National Light Industry and Key Laboratory of Brewing Molecular Engineering of China Light Industry School of Light Industry, Beijing Technology and Business University Beijing P. R. China
| | - Xiaomin Ren
- Key Laboratory of Cleaner Production and Integrated Resource Utilization of China National Light Industry and Key Laboratory of Brewing Molecular Engineering of China Light Industry School of Light Industry, Beijing Technology and Business University Beijing P. R. China
| | - Hongyan Fu
- Key Laboratory of Cleaner Production and Integrated Resource Utilization of China National Light Industry and Key Laboratory of Brewing Molecular Engineering of China Light Industry School of Light Industry, Beijing Technology and Business University Beijing P. R. China
| | - Yu Wang
- Key Laboratory of Cleaner Production and Integrated Resource Utilization of China National Light Industry and Key Laboratory of Brewing Molecular Engineering of China Light Industry School of Light Industry, Beijing Technology and Business University Beijing P. R. China
| | - Xudong Feng
- Key Laboratory of Cleaner Production and Integrated Resource Utilization of China National Light Industry and Key Laboratory of Brewing Molecular Engineering of China Light Industry School of Light Industry, Beijing Technology and Business University Beijing P. R. China
| | - Hehe Li
- Key Laboratory of Cleaner Production and Integrated Resource Utilization of China National Light Industry and Key Laboratory of Brewing Molecular Engineering of China Light Industry School of Light Industry, Beijing Technology and Business University Beijing P. R. China
| |
Collapse
|
5
|
Zhu QY, Wu LK, Li LQ, Zhuang LW, Xue SM, Xu ZL, Tang YJ. Novel Insight on the Effect of the Monomer Concentration on the Polypiperazine-Amide Nanofiltration Membrane. Ind Eng Chem Res 2022. [DOI: 10.1021/acs.iecr.2c00478] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Qiu-Yu Zhu
- State Key Laboratory of Chemical Engineering, Membrane Science and Engineering R&D Lab, Chemical Engineering Research Center, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Liu-Kun Wu
- State Key Laboratory of Chemical Engineering, Membrane Science and Engineering R&D Lab, Chemical Engineering Research Center, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Lan-Qian Li
- State Key Laboratory of Chemical Engineering, Membrane Science and Engineering R&D Lab, Chemical Engineering Research Center, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Li-Wei Zhuang
- State Key Laboratory of Chemical Engineering, Membrane Science and Engineering R&D Lab, Chemical Engineering Research Center, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Shuang-Mei Xue
- Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China
| | - Zhen-Liang Xu
- State Key Laboratory of Chemical Engineering, Membrane Science and Engineering R&D Lab, Chemical Engineering Research Center, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Yong-Jian Tang
- State Key Laboratory of Chemical Engineering, Membrane Science and Engineering R&D Lab, Chemical Engineering Research Center, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| |
Collapse
|
6
|
Shen L, Cheng R, Yi M, Hung WS, Japip S, Tian L, Zhang X, Jiang S, Li S, Wang Y. Polyamide-based membranes with structural homogeneity for ultrafast molecular sieving. Nat Commun 2022; 13:500. [PMID: 35079023 PMCID: PMC8789816 DOI: 10.1038/s41467-022-28183-1] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Accepted: 01/04/2022] [Indexed: 01/29/2023] Open
Abstract
Thin-film composite membranes formed by conventional interfacial polymerization generally suffer from the depth heterogeneity of the polyamide layer, i.e., nonuniformly distributed free volume pores, leading to the inefficient permselectivity. Here, we demonstrate a facile and versatile approach to tune the nanoscale homogeneity of polyamide-based thin-film composite membranes via inorganic salt-mediated interfacial polymerization process. Molecular dynamics simulations and various characterization techniques elucidate in detail the underlying molecular mechanism by which the salt addition confines and regulates the diffusion of amine monomers to the water-oil interface and thus tunes the nanoscale homogeneity of the polyamide layer. The resulting thin-film composite membranes with thin, smooth, dense, and structurally homogeneous polyamide layers demonstrate a permeance increment of ~20-435% and/or solute rejection enhancement of ~10-170% as well as improved antifouling property for efficient reverse/forward osmosis and nanofiltration separations. This work sheds light on the tunability of the polyamide layer homogeneity via salt-regulated interfacial polymerization process.
Collapse
Affiliation(s)
- Liang Shen
- Key Laboratory of Material Chemistry for Energy Conversion and Storage (Huazhong University of Science and Technology), Ministry of Education, Wuhan, 430074, China
- Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Ruihuan Cheng
- School of Energy and Power Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Ming Yi
- Key Laboratory of Material Chemistry for Energy Conversion and Storage (Huazhong University of Science and Technology), Ministry of Education, Wuhan, 430074, China
- Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Wei-Song Hung
- Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei, 10607, Taiwan
- R&D Centre for Membrane Technology, Chung Yuan Christian University, Taoyuan, 32023, Taiwan
| | - Susilo Japip
- Department of Chemical & Biomolecular Engineering, National University of Singapore, 10 Kent Ridge Crescent, Singapore, 119260, Singapore
| | - Lian Tian
- Key Laboratory of Material Chemistry for Energy Conversion and Storage (Huazhong University of Science and Technology), Ministry of Education, Wuhan, 430074, China
- Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Xuan Zhang
- Key Laboratory of Material Chemistry for Energy Conversion and Storage (Huazhong University of Science and Technology), Ministry of Education, Wuhan, 430074, China
- Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Shudong Jiang
- College of Chemistry and Chemical Engineering, Anhui University, 111 Jiulong Road, Hefei, Anhui, 230601, China
| | - Song Li
- School of Energy and Power Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China.
| | - Yan Wang
- Key Laboratory of Material Chemistry for Energy Conversion and Storage (Huazhong University of Science and Technology), Ministry of Education, Wuhan, 430074, China.
- Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China.
| |
Collapse
|