1
|
Zhang X, Hai G, Yao Y, Zhang Z, Cao Q, Tan H, Ding L, Han J, Wei Y, Caro J, Wang H. Enhanced Propylene/Propane Separation via Aniline-Decorated ZIF-8 Membrane: Lattice Rigidity Adjustment and Adsorption Site Introduction. Angew Chem Int Ed Engl 2024; 63:e202411440. [PMID: 39261286 DOI: 10.1002/anie.202411440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 08/18/2024] [Accepted: 09/04/2024] [Indexed: 09/13/2024]
Abstract
Metal-organic framework (MOF)-based membranes excel in molecular separation, attracting significant research interest. The crystallographic microstructure and selective adsorption capacity of MOFs closely correlate with their gas separation performance. Here, aniline was added to the ZIF-8 synthesis in varying concentrations. Aniline, encapsulated within ZIF-8 cavities, interacts strongly with the 2-methylimidazole linker, resulting in both a shift in crystallographic phase from I_43 m to Cm in Rietveld refinement of X-ray diffraction (XRD) patterns and the selective adsorption behavior between propylene and propane. Consequently, an aniline decorative ZIF-8 (Anix-ZIF-8) membrane was prepared using a fast current-driven synthesis method, which exhibits good propylene/propane separation selectivity of up to 85. Calculation of the interaction energy between aniline and the various crystallographic phases of ZIF-8 using density functional theory (DFT) further verifies that aniline not only promotes the formation of crystallographic Cm phase, but also enhances the adsorption selectivity of propylene over propane. Aniline modification effectively tunes the crystallographic microstructure of ZIF-8, thereby, improving molecular sieving capabilities.
Collapse
Affiliation(s)
- Xin Zhang
- Beijing Key Laboratory for Membrane Materials and Engineering, Department of Chemical Engineering, Tsinghua University, 100084, Beijing, China
- PetroChina (Shanghai) Advanced Materials Research Institute Co., Ltd., 201306, Shanghai, China
| | - Guangtong Hai
- Beijing Key Laboratory for Membrane Materials and Engineering, Department of Chemical Engineering, Tsinghua University, 100084, Beijing, China
| | - Yujian Yao
- Beijing Key Laboratory for Membrane Materials and Engineering, Department of Chemical Engineering, Tsinghua University, 100084, Beijing, China
| | - Zheng Zhang
- Beijing Key Laboratory for Membrane Materials and Engineering, Department of Chemical Engineering, Tsinghua University, 100084, Beijing, China
| | - Qingbin Cao
- Beijing Key Laboratory for Membrane Materials and Engineering, Department of Chemical Engineering, Tsinghua University, 100084, Beijing, China
| | - Hongxin Tan
- Beijing Key Laboratory for Membrane Materials and Engineering, Department of Chemical Engineering, Tsinghua University, 100084, Beijing, China
| | - Li Ding
- Beijing Key Laboratory for Membrane Materials and Engineering, Department of Chemical Engineering, Tsinghua University, 100084, Beijing, China
| | - Jiuli Han
- Beijing Key Laboratory for Membrane Materials and Engineering, Department of Chemical Engineering, Tsinghua University, 100084, Beijing, China
| | - Yanying Wei
- School of Chemistry & Chemical Engineering, Guangdong Provincial Key Lab of Green Chemical Product Technology State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, 510640, Guangzhou, China
| | - Jürgen Caro
- Institute of Physical Chemistry and Electrochemistry, Leibniz University of Hannover, Callinstrasse 3A, 30167, Hannover, Germany
| | - Haihui Wang
- Beijing Key Laboratory for Membrane Materials and Engineering, Department of Chemical Engineering, Tsinghua University, 100084, Beijing, China
| |
Collapse
|
2
|
Cheng FY, Zhang X, Lin YF, Wu LK, Xu ZL, Taymazov D. Mutual-assisted structure of sodium alginate-polyamide membrane for high-efficient dehydration of ethanol. J Taiwan Inst Chem Eng 2022. [DOI: 10.1016/j.jtice.2022.104564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
3
|
An Evolving MOF Thin-Film Nanocomposite Tubular Ceramic Membrane for Desalination Pretreatment. J Inorg Organomet Polym Mater 2022. [DOI: 10.1007/s10904-022-02501-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
4
|
Gallardo MR, Ang MBMY, Millare JC, Huang SH, Tsai HA, Lee KR. Vacuum-Assisted Interfacial Polymerization Technique for Enhanced Pervaporation Separation Performance of Thin-Film Composite Membranes. MEMBRANES 2022; 12:508. [PMID: 35629835 PMCID: PMC9144448 DOI: 10.3390/membranes12050508] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 04/29/2022] [Accepted: 05/05/2022] [Indexed: 11/24/2022]
Abstract
In this work, thin-film composite polyamide membranes were fabricated using triethylenetetramine (TETA) and trimesoyl chloride (TMC) following the vacuum-assisted interfacial polymerization (VAIP) method for the pervaporation (PV) dehydration of aqueous isopropanol (IPA) solution. The physical and chemical properties as well as separation performance of the TFCVAIP membranes were compared with the membrane prepared using the traditional interfacial polymerization (TIP) technique (TFCTIP). Characterization results showed that the TFCVAIP membrane had a higher crosslinking degree, higher surface roughness, and denser structure than the TFCTIP membrane. As a result, the TFCVAIP membrane exhibited a higher separation performance in 70 wt.% aqueous IPA solution at 25 °C with permeation flux of 1504 ± 169 g∙m-2∙h-1, water concentration in permeate of 99.26 ± 0.53 wt%, and separation factor of 314 (five times higher than TFCTIP). Moreover, the optimization of IP parameters, such as variation of TETA and TMC concentrations as well as polymerization time for the TFCVAIP membrane, was carried out. The optimum condition in fabricating the TFCVAIP membrane was 0.05 wt.% TETA, 0.1 wt% TMC, and 60 s polymerization time.
Collapse
Affiliation(s)
- Marwin R. Gallardo
- R&D Center for Membrane Technology, Department of Chemical Engineering, Chung Yuan Christian University, Taoyuan 32023, Taiwan; (M.R.G.); (H.-A.T.)
| | - Micah Belle Marie Yap Ang
- R&D Center for Membrane Technology, Department of Chemical Engineering, Chung Yuan Christian University, Taoyuan 32023, Taiwan; (M.R.G.); (H.-A.T.)
| | - Jeremiah C. Millare
- School of Chemical, Biological and Materials Engineering and Sciences, Mapúa University, Manila 1002, Philippines;
| | - Shu-Hsien Huang
- R&D Center for Membrane Technology, Department of Chemical Engineering, Chung Yuan Christian University, Taoyuan 32023, Taiwan; (M.R.G.); (H.-A.T.)
- Department of Chemical and Materials Engineering, National Ilan University, Yilan 26047, Taiwan
| | - Hui-An Tsai
- R&D Center for Membrane Technology, Department of Chemical Engineering, Chung Yuan Christian University, Taoyuan 32023, Taiwan; (M.R.G.); (H.-A.T.)
| | - Kueir-Rarn Lee
- R&D Center for Membrane Technology, Department of Chemical Engineering, Chung Yuan Christian University, Taoyuan 32023, Taiwan; (M.R.G.); (H.-A.T.)
- Research Center for Circular Economy, Chung Yuan Christian University, Taoyuan 32023, Taiwan
| |
Collapse
|
5
|
Yogarathinam LT, Usman J, Othman MHD, Ismail AF, Goh PS, Gangasalam A, Adam MR. Low-cost silica based ceramic supported thin film composite hollow fiber membrane from guinea corn husk ash for efficient removal of microplastic from aqueous solution. JOURNAL OF HAZARDOUS MATERIALS 2022; 424:127298. [PMID: 34571470 DOI: 10.1016/j.jhazmat.2021.127298] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 09/01/2021] [Accepted: 09/17/2021] [Indexed: 05/26/2023]
Abstract
In this study, an economic silica based ceramic hollow fiber (HF) microporous membrane was fabricated from guinea cornhusk ash (GCHA). A silica interlayer was coated to form a defect free silica membrane which serves as a support for the formation of thin film composite (TFC) ceramic hollow fiber (HF) membrane for the removal of microplastics (MPs) from aqueous solutions. Polyacrylonitrile (PAN), polyvinyl-chloride (PVC), polyvinylpyrrolidone (PVP) and polymethyl methacrylate (PMMA) are the selected MPs The effects of amine monomer concentration (0.5 wt% and 1 wt%) on the formation of poly (piperazine-amide) layer via interfacial polymerization over the GCHA ceramic support were also investigated. The morphology analysis of TFC GCHA HF membranes revealed the formation of a poly (piperazine-amide) layer with narrow pore arrangement. The pore size of TFC GCHA membrane declined with the formation of poly (piperazine-amide) layer, as evidenced from porosimetry analysis. The increase of amine concentration reduced the porosity and water flux of TFC GCHA HF membranes. During MPs filtration, 1 wt% (piperazine) based TFC GCHA membrane showed a lower transmission percentage of PVP (2.7%) and other suspended MPs also displayed lower transmission. The impact of humic acid and sodium alginate on MPs filtration and seawater pretreatment were also analyzed.
Collapse
Affiliation(s)
- Lukka Thuyavan Yogarathinam
- Advanced Membrane Technology Research Centre (AMTEC), School of Chemical and Energy Engineering, Universiti Teknologi Malaysia, 81310, Skudai, Johor, Malaysia
| | - Jamilu Usman
- Advanced Membrane Technology Research Centre (AMTEC), School of Chemical and Energy Engineering, Universiti Teknologi Malaysia, 81310, Skudai, Johor, Malaysia; Department of Chemistry, Faculty of Science, Sokoto State University, P.M.B. 2134, Sokoto, Sokoto State, Nigeria
| | - Mohd Hafiz Dzarfan Othman
- Advanced Membrane Technology Research Centre (AMTEC), School of Chemical and Energy Engineering, Universiti Teknologi Malaysia, 81310, Skudai, Johor, Malaysia
| | - Ahmad Fauzi Ismail
- Advanced Membrane Technology Research Centre (AMTEC), School of Chemical and Energy Engineering, Universiti Teknologi Malaysia, 81310, Skudai, Johor, Malaysia.
| | - Pei Sean Goh
- Advanced Membrane Technology Research Centre (AMTEC), School of Chemical and Energy Engineering, Universiti Teknologi Malaysia, 81310, Skudai, Johor, Malaysia
| | - Arthanareeswaran Gangasalam
- Membrane Research Laboratory, Department of Chemical Engineering, National Institute of Technology Tiruchirappalli, 620015, India
| | - Mohd Ridhwan Adam
- Advanced Membrane Technology Research Centre (AMTEC), School of Chemical and Energy Engineering, Universiti Teknologi Malaysia, 81310, Skudai, Johor, Malaysia
| |
Collapse
|
6
|
Efficient separation of (C1–C2) alcohol solutions by graphyne membranes: A molecular simulation study. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2021.120139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
7
|
Triethanolamine modification produces ultra-permeable nanofiltration membrane with enhanced removal efficiency of heavy metal ions. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2021.120127] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
8
|
Robust and high selective chitosan asymmetric Membranes: Relation between microporous structure and pervaporative efficiency in ethanol dehydration. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2021.119897] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
9
|
Zhang X, Zhan ZM, Cheng FY, Xu ZL, Jin PR, Liu ZP, Ma XH, Xu XR, Van der Bruggen B. Thin-Film Composite Membrane Prepared by Interfacial Polymerization on the Integrated ZIF-L Nanosheets Interface for Pervaporation Dehydration. ACS APPLIED MATERIALS & INTERFACES 2021; 13:39819-39830. [PMID: 34375531 DOI: 10.1021/acsami.1c09221] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Thin-film composite (TFC) membranes are attracting wide attention because their ultrathin selective layer usually corresponds to the higher membrane flux for pervaporation. However, the direct preparation of the TFC membranes on ceramic substrates confronted with the great difficulties because the larger pores on ceramic substrate surfaces are detrimental to the formation of an intact polyamide (PA) selective layer produced by interfacial polymerization (IP) reaction. Here, the integrated ZIF-L nanosheets were proposed to be used as an assistance interlayer for the first time to eliminate the existence of the pores of the ceramic support, and provides a better basis for the formation of an intact PA selective layer by IP reaction between TMC and ethylenediamine (EDA). The experimental data obtained in pervaporation (PV) show that the increased flux from 1.1 to 2.9 kg/m2h corresponds to the decreased separation factor from 396 to 110 when the feed concentration of ethanol decreases from 95 wt % to 80 wt % at 50 °C. In addition, the membrane flux increases from 0.8 to 2.5 kg/m2h with a change of the separation factor from 683 to 111 when the operational temperature varies from 30 to 60 °C. These results demonstrate the great potential of the fabricated TFC membranes in practical application for PV dehydration of organic solutions.
Collapse
Affiliation(s)
- Xin Zhang
- State Key Laboratory of Chemical Engineering, Membrane Science and Engineering R&D Center, Chemical Engineering Research Center, School of Chemical Engineering, East China University of Science and Technology (ECUST), 130 Meilong Road, Shanghai 200237, P. R. China
- Department of Chemical Engineering, KU Leuven, Celestijnenlaan 200F, B-3001 Heverlee, Belgium
| | - Zi-Ming Zhan
- State Key Laboratory of Chemical Engineering, Membrane Science and Engineering R&D Center, Chemical Engineering Research Center, School of Chemical Engineering, East China University of Science and Technology (ECUST), 130 Meilong Road, Shanghai 200237, P. R. China
| | - Feng-Yi Cheng
- State Key Laboratory of Chemical Engineering, Membrane Science and Engineering R&D Center, Chemical Engineering Research Center, School of Chemical Engineering, East China University of Science and Technology (ECUST), 130 Meilong Road, Shanghai 200237, P. R. China
| | - Zhen-Liang Xu
- State Key Laboratory of Chemical Engineering, Membrane Science and Engineering R&D Center, Chemical Engineering Research Center, School of Chemical Engineering, East China University of Science and Technology (ECUST), 130 Meilong Road, Shanghai 200237, P. R. China
| | - Peng-Rui Jin
- Department of Chemical Engineering, KU Leuven, Celestijnenlaan 200F, B-3001 Heverlee, Belgium
| | - Ze-Peng Liu
- State Key Laboratory of Chemical Engineering, Membrane Science and Engineering R&D Center, Chemical Engineering Research Center, School of Chemical Engineering, East China University of Science and Technology (ECUST), 130 Meilong Road, Shanghai 200237, P. R. China
| | - Xiao-Hua Ma
- State Key Laboratory of Chemical Engineering, Membrane Science and Engineering R&D Center, Chemical Engineering Research Center, School of Chemical Engineering, East China University of Science and Technology (ECUST), 130 Meilong Road, Shanghai 200237, P. R. China
| | - Xin-Ru Xu
- State Key Laboratory of Chemical Engineering, Membrane Science and Engineering R&D Center, Chemical Engineering Research Center, School of Chemical Engineering, East China University of Science and Technology (ECUST), 130 Meilong Road, Shanghai 200237, P. R. China
| | - Bart Van der Bruggen
- Department of Chemical Engineering, KU Leuven, Celestijnenlaan 200F, B-3001 Heverlee, Belgium
| |
Collapse
|