1
|
Kuzminova A, Dmitrenko M, Stepanova A, Karyakina A, Selyutin A, Su R, Penkova A. Novel Mixed-Matrix Pervaporation Membrane Based on Polyether Block Amide Modified with Ho-Based Metal-Organic Framework. Polymers (Basel) 2024; 16:3245. [PMID: 39683990 DOI: 10.3390/polym16233245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 11/18/2024] [Accepted: 11/20/2024] [Indexed: 12/18/2024] Open
Abstract
Segmented polymers, such as polyether block amide (PEBA), exhibit unique properties due to the combination of different segments. PEBA consists of soft polyester and rigid polyamide blocks, enabling its use in various industrial applications, including membrane technologies. In this study, PEBA membranes modified with a holmium-based metal-organic framework (Ho-1,3,5-H3btc) were developed for enhanced pervaporation separation of water/isopropanol and water/phenol mixtures. The effect of 1-7 wt.% Ho-1,3,5-H3btc content variation and the selection of a porous substrate (commercial from fluoroplast F42L (MFFC) and developed membranes from polyvinylidene fluoride without (PVDF) and with a non-woven polyester support (PVDF-s)) on dense and/or supported membrane properties, respectively, was investigated. The dense and supported PEBA/Ho-1,3,5-H3btc membranes were studied by use of Fourier transform infrared spectroscopy, scanning electron and atomic force microscopies, swelling measurements, and pervaporation experiments. The supported membrane from PEBA with 5 wt.% Ho-1,3,5-H3btc applied onto the PVDF-s substrate exhibited optimal pervaporation performance: a 1040 g/(m2h) permeation flux and a 5.2 separation factor in water/phenol (1 wt.%) mixture separation at 50 °C due to optimal values of roughness, swelling degree, and selective layer thickness. This finding highlights the potential of incorporating Ho-1,3,5-H3btc into PEBA for developing high-performance pervaporation membranes.
Collapse
Affiliation(s)
- Anna Kuzminova
- St. Petersburg State University, 7/9 Universitetskaya Nab., St. Petersburg 199034, Russia
| | - Mariia Dmitrenko
- St. Petersburg State University, 7/9 Universitetskaya Nab., St. Petersburg 199034, Russia
| | - Anastasia Stepanova
- St. Petersburg State University, 7/9 Universitetskaya Nab., St. Petersburg 199034, Russia
| | - Anna Karyakina
- St. Petersburg State University, 7/9 Universitetskaya Nab., St. Petersburg 199034, Russia
| | - Artem Selyutin
- St. Petersburg State University, 7/9 Universitetskaya Nab., St. Petersburg 199034, Russia
| | - Rongxin Su
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Anastasia Penkova
- St. Petersburg State University, 7/9 Universitetskaya Nab., St. Petersburg 199034, Russia
| |
Collapse
|
2
|
Pang S, Ma L, Yang Y, Chen H, Lu L, Yang S, Baeyens J, Si Z, Qin P. A High-Quality Mixed Matrix Membrane with Nanosheets Assembled and Uniformly Dispersed Fillers for Ethanol Recovery. Macromol Rapid Commun 2024; 45:e2400384. [PMID: 39096156 DOI: 10.1002/marc.202400384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 07/12/2024] [Indexed: 08/05/2024]
Abstract
A high-quality filler within mixed matrix membranes, coupled with uniform dispersity, endows a high-efficiency transfer pathway for the significant improvement on separation performance. In this work, a zeolite-typed MCM-22 filler is reported that is doped into polydimethylsiloxane (PDMS) matrix by ultrafast photo-curing technique. The unique structure of nanosheets assembly layer by layer endows the continuous transfer channels towards penetrate molecules because of the inter-connective nanosheets within PDMS matrix. Furthermore, an ultrafast freezing effect produced by fast photo-curing is used to overcome the key issue, namely filler aggregation, and further eliminates defects. When pervaporative separating a 5 wt% ethanol aqueous solution, the resulting MCM-22/PDMS membrane exhibits an excellent membrane flux of 1486 g m-2 h-1 with an ethanol separation factor of 10.2. Considering a biobased route for ethanol production, the gas stripping and vapor permeation through this membrane also shows a great enrichment performance, and the concentrated ethanol is up to 65.6 wt%. Overall, this MCM-22/PDMS membrane shows a high separation ability for ethanol benefited from a unique structure deign of fillers and ultrafast curing speed of PDMS, and has a great potential for bioethanol separation from cellulosic ethanol fermentation.
Collapse
Affiliation(s)
- Siyu Pang
- National Energy R&D Center for Biorefinery, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Liang Ma
- State Key Laboratory of Green Chemical Engineering and Industrial Catalysis, SINOPEC Shanghai Research Institute of Petrochemical Technology Co., Ltd., Shanghai, 201208, P. R. China
| | - Yongfu Yang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, and School of Life Sciences, Hubei University, Wuhan, 430062, P. R. China
| | - Huidong Chen
- High-Tech Reacher Institute, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Lu Lu
- Paris Curie Engineer School, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Shihui Yang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, and School of Life Sciences, Hubei University, Wuhan, 430062, P. R. China
| | - Jan Baeyens
- Department of Chemical Engineering, Sint-Katelijne-Waver, Ku Leuven, 2860, Belgium
| | - Zhihao Si
- National Energy R&D Center for Biorefinery, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Peiyong Qin
- National Energy R&D Center for Biorefinery, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| |
Collapse
|
3
|
Kuzminova A, Dmitrenko M, Salomatin K, Vezo O, Kirichenko S, Egorov S, Bezrukova M, Karyakina A, Eremin A, Popova E, Penkova A, Selyutin A. Holmium-Containing Metal-Organic Frameworks as Modifiers for PEBA-Based Membranes. Polymers (Basel) 2023; 15:3834. [PMID: 37765688 PMCID: PMC10534401 DOI: 10.3390/polym15183834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 09/04/2023] [Accepted: 09/15/2023] [Indexed: 09/29/2023] Open
Abstract
Recently, there has been an active search for new modifiers to create hybrid polymeric materials for various applications, in particular, membrane technology. One of the topical modifiers is metal-organic frameworks (MOFs), which can significantly alter the characteristics of obtained mixed matrix membranes (MMMs). In this work, new holmium-based MOFs (Ho-MOFs) were synthesized for polyether block amide (PEBA) modification to develop novel MMMs with improved properties. The study of Ho-MOFs, polymers and membranes was carried out by methods of X-ray phase analysis, scanning electron and atomic force microscopies, Fourier transform infrared spectroscopy, low-temperature nitrogen adsorption, dynamic and kinematic viscosity, static and dynamic light scattering, gel permeation chromatography, thermogravimetric analysis and contact angle measurements. Synthesized Ho-MOFs had different X-ray structures, particle forms and sizes depending on the ligand used. To study the effect of Ho-MOF modifier on membrane transport properties, PEBA/Ho-MOFs membrane retention capacity was evaluated in vacuum fourth-stage filtration for dye removal (Congo Red, Fuchsin, Glycine thymol blue, Methylene blue, Eriochrome Black T). Modified membranes demonstrated improved flux and rejection coefficients for dyes containing amino groups: Congo Red, Fuchsin (PEBA/Ho-1,3,5-H3btc membrane possessed optimal properties: 81% and 68% rejection coefficients for Congo Red and Fuchsin filtration, respectively, and 0.7 L/(m2s) flux).
Collapse
Affiliation(s)
- Anna Kuzminova
- Saint-Petersburg State University, 7/9 Universitetskaya Emb., St. Petersburg 199034, Russia; (A.K.); (M.D.); (K.S.); (O.V.); (S.K.); (S.E.); (A.K.); (A.P.)
| | - Mariia Dmitrenko
- Saint-Petersburg State University, 7/9 Universitetskaya Emb., St. Petersburg 199034, Russia; (A.K.); (M.D.); (K.S.); (O.V.); (S.K.); (S.E.); (A.K.); (A.P.)
| | - Kirill Salomatin
- Saint-Petersburg State University, 7/9 Universitetskaya Emb., St. Petersburg 199034, Russia; (A.K.); (M.D.); (K.S.); (O.V.); (S.K.); (S.E.); (A.K.); (A.P.)
| | - Olga Vezo
- Saint-Petersburg State University, 7/9 Universitetskaya Emb., St. Petersburg 199034, Russia; (A.K.); (M.D.); (K.S.); (O.V.); (S.K.); (S.E.); (A.K.); (A.P.)
| | - Sergey Kirichenko
- Saint-Petersburg State University, 7/9 Universitetskaya Emb., St. Petersburg 199034, Russia; (A.K.); (M.D.); (K.S.); (O.V.); (S.K.); (S.E.); (A.K.); (A.P.)
| | - Semyon Egorov
- Saint-Petersburg State University, 7/9 Universitetskaya Emb., St. Petersburg 199034, Russia; (A.K.); (M.D.); (K.S.); (O.V.); (S.K.); (S.E.); (A.K.); (A.P.)
| | - Marina Bezrukova
- Institute of Macromolecular Compounds, Russian Academy of Sciences, 31 Bolshoy pr., St. Petersburg 199004, Russia; (M.B.); (A.E.); (E.P.)
| | - Anna Karyakina
- Saint-Petersburg State University, 7/9 Universitetskaya Emb., St. Petersburg 199034, Russia; (A.K.); (M.D.); (K.S.); (O.V.); (S.K.); (S.E.); (A.K.); (A.P.)
| | - Alexey Eremin
- Institute of Macromolecular Compounds, Russian Academy of Sciences, 31 Bolshoy pr., St. Petersburg 199004, Russia; (M.B.); (A.E.); (E.P.)
| | - Ekaterina Popova
- Institute of Macromolecular Compounds, Russian Academy of Sciences, 31 Bolshoy pr., St. Petersburg 199004, Russia; (M.B.); (A.E.); (E.P.)
- Faculty of Chemical and Biotechnology, Organic Chemistry Department, Saint-Petersburg State Institute of Technology (Technical University), 24-26/49 Letter A Moskovski Ave., St. Petersburg 190013, Russia
- Faculty of Industrial Drug Technologies, Department of Chemical Technology of Medicinal Substances, Saint-Petersburg State Chemical and Pharmaceutical University, 14 Prof. Popova Str., St. Petersburg 197022, Russia
| | - Anastasia Penkova
- Saint-Petersburg State University, 7/9 Universitetskaya Emb., St. Petersburg 199034, Russia; (A.K.); (M.D.); (K.S.); (O.V.); (S.K.); (S.E.); (A.K.); (A.P.)
| | - Artem Selyutin
- Saint-Petersburg State University, 7/9 Universitetskaya Emb., St. Petersburg 199034, Russia; (A.K.); (M.D.); (K.S.); (O.V.); (S.K.); (S.E.); (A.K.); (A.P.)
| |
Collapse
|
4
|
Abstract
Metal-organic frameworks (MOFs) and ionic liquids (ILs) represent promising materials for adsorption separation. ILs incorporated into MOF materials (denoted as IL/MOF composites) have been developed, and IL/MOF composites combine the advantages of MOFs and ILs to achieve enhanced performance in the adsorption-based separation of fluid mixtures. The designed different ILs are introduced into the various MOFs to tailor their functional properties, which affect the optimal adsorptive separation performance. In this Perspective, the rational fabrication of IL/MOF composites is presented, and their functional properties are demonstrated. This paper provides a critical overview of an emergent class of materials termed IL/MOF composites as well as the recent advances in the applications of IL/MOF composites as adsorbents or membranes in fluid separation. Furthermore, the applications of IL/MOF in adsorptive gas separations (CO2 capture from flue gas, natural gas purification, separation of acetylene and ethylene, indoor pollutants removal) and liquid separations (separation of bioactive components, organic-contaminant removal, adsorptive desulfurization, radionuclide removal) are discussed. Finally, the existing challenges of IL/MOF are highlighted, and an appropriate design strategy direction for the effective exploration of new IL/MOF adsorptive materials is proposed.
Collapse
Affiliation(s)
- Xueqin Li
- School of Chemistry and Chemical Engineering/Key Laboratory for Green Process of Chemical Engineering of Xinjiang Bingtuan, Shihezi University, Shihezi, Xinjiang 832003, China
| | - Kai Chen
- School of Chemistry and Chemical Engineering/Key Laboratory for Green Process of Chemical Engineering of Xinjiang Bingtuan, Shihezi University, Shihezi, Xinjiang 832003, China
| | - Ruili Guo
- School of Chemistry and Chemical Engineering/Key Laboratory for Green Process of Chemical Engineering of Xinjiang Bingtuan, Shihezi University, Shihezi, Xinjiang 832003, China
| | - Zhong Wei
- School of Chemistry and Chemical Engineering/Key Laboratory for Green Process of Chemical Engineering of Xinjiang Bingtuan, Shihezi University, Shihezi, Xinjiang 832003, China
| |
Collapse
|
5
|
Kachhadiya DD, Murthy Z. Microfluidic synthesized ZIF-67 decorated PVDF mixed matrix membranes for the pervaporation of toluene/water mixtures. J Memb Sci 2023. [DOI: 10.1016/j.memsci.2023.121607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/30/2023]
|
6
|
Bai J, Gong L, Xiao L, Lai W, Zhang Y, Fan H, Shan L, Luo S. Interface-Confined Channels Facilitating Water Transport through an IL-Enriched Nanocomposite Membrane. ACS APPLIED MATERIALS & INTERFACES 2022; 14:53390-53397. [PMID: 36394911 DOI: 10.1021/acsami.2c14629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Improving the permeance of the polyamide (PA) membrane while maintaining the rejection is crucial for promoting the development of membrane separation technology in the practical water-treatment industry. Herein, a novel metal-ionic liquid (Zn-IL) coordination compound was synthesized by in situ growth to improve the water permeance of PA nanofiltration membranes, using an amine-functionalized IL (1-aminopropyl-3-methylimidazolium chloride, [AEMIm][Cl]) as a ligand to react with Zn(NO3)2·6H2O. Piperazine (PIP) and trimesoyl chloride (TMC) were adopted to prepare the PA layer covering the Zn-IL complex. Due to the unique property of the Zn-IL complex, the Zn-IL/PIP-TMC absorbing force to water was increased, enabling the fast transport of water molecules through the membrane pore channels in the form of free water. The resulting Zn-IL/PIP-TMC nanocomposite membrane exhibited a high permeance of up to 26.5 L m-2 h-1 bar-1, which is 3 times that of the PIP-TMC membrane (8.8 L m-2 h-1 bar-1), combined with rejection above 99% for dyes such as methyl blue.
Collapse
Affiliation(s)
- Ju Bai
- CAS Key Laboratory of Green Process and Engineering, State Key Laboratory of Multiphase Complex Systems, Beijing Key Laboratory of Ionic Liquids Clean Process, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, PR China
- Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences, Chengdu 610041, PR China
| | - Lili Gong
- CAS Key Laboratory of Green Process and Engineering, State Key Laboratory of Multiphase Complex Systems, Beijing Key Laboratory of Ionic Liquids Clean Process, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, PR China
| | - Luqi Xiao
- CAS Key Laboratory of Green Process and Engineering, State Key Laboratory of Multiphase Complex Systems, Beijing Key Laboratory of Ionic Liquids Clean Process, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, PR China
| | - Wei Lai
- CAS Key Laboratory of Green Process and Engineering, State Key Laboratory of Multiphase Complex Systems, Beijing Key Laboratory of Ionic Liquids Clean Process, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, PR China
| | - Yazhuo Zhang
- CAS Key Laboratory of Green Process and Engineering, State Key Laboratory of Multiphase Complex Systems, Beijing Key Laboratory of Ionic Liquids Clean Process, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, PR China
| | - Hongwei Fan
- College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, PR China
| | - Linglong Shan
- CAS Key Laboratory of Green Process and Engineering, State Key Laboratory of Multiphase Complex Systems, Beijing Key Laboratory of Ionic Liquids Clean Process, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, PR China
- Langfang Green Industrial Technology Center, Langfang 065008, Hebei, PR China
| | - Shuangjiang Luo
- CAS Key Laboratory of Green Process and Engineering, State Key Laboratory of Multiphase Complex Systems, Beijing Key Laboratory of Ionic Liquids Clean Process, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, PR China
- Langfang Green Industrial Technology Center, Langfang 065008, Hebei, PR China
| |
Collapse
|
7
|
Clarizia G, Bernardo P. Polyether Block Amide as Host Matrix for Nanocomposite Membranes Applied to Different Sensitive Fields. MEMBRANES 2022; 12:1096. [PMID: 36363651 PMCID: PMC9693152 DOI: 10.3390/membranes12111096] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 10/26/2022] [Accepted: 10/27/2022] [Indexed: 05/31/2023]
Abstract
The cornerstones of sustainable development require the treatment of wastes or contaminated streams allowing the separation and recycling of useful substances by a more rational use of energy sources. Separation technologies play a prominent role, especially when conducted by inherently environmentally friendly systems such as membrane operations. However, high-performance materials are more and more needed to improve the separative performance of polymeric materials nanocomposites are ideally suited to develop advanced membranes by combining organic polymers with suitable fillers having superior properties. In this area, polyether block amide copolymers (Pebax) are increasingly adopted as host matrices due to their distinctive properties in terms of being lightweight and easy to process, having good resistance to most chemicals, flexibility and high strength. In this light, the present review seeks to provide a comprehensive examination of the progress in the development of Pebax-based nanocomposite films for their application in several sensitive fields, that are challenging and at the same time attractive, including olefin/paraffin separation, pervaporation, water treatment, flexible films for electronics, electromagnetic shielding, antimicrobial surfaces, wound dressing and self-venting packaging. It covers a wide range of materials used as fillers and analyzes the properties of the derived nanocomposites and their performance. The general principles from the choice of the material to the approaches for the heterogeneous phase compatibilization as well as for the performance improvement were also surveyed. From a detailed analysis of the current studies, the most effective strategies to overcome some intrinsic limitations of these nanocomposites are highlighted, providing guidelines for the correlated research.
Collapse
Affiliation(s)
| | - Paola Bernardo
- Institute on Membrane Technology (ITM-CNR), via P. Bucci 17/C, 87036 Rende, CS, Italy
| |
Collapse
|
8
|
Rohani R, Pakizeh M, Chenar MP. Toluene/water separation using MCM-41/ PEBA mixed matrix membrane via pervaporation process. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.120988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
9
|
Li Y, Li SH, Xu LH, Mao H, Zhang AS, Zhao ZP. Highly selective PDMS membranes embedded with ILs-decorated halloysite nanotubes for ethyl acetate pervaporation separation. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
10
|
CO2 separation performance for PIM based mixed matrix membranes embedded by superbase ionic liquids. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.119375] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
11
|
Xu LH, Li Y, Li SH, Lv MY, Zhao ZP. Space-confined growth of 2D MOF sheets between GO layers at room temperature for superior PDMS membrane-based ester/water separation. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.120605] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
12
|
Xu Q, Wang H, Zhang M, Wang J, An X, Hao X, Du X, Zhang Z, Li Y. Pervaporation Removal of Pyridine from Saline Pyridine/Water Effluents Using PEBA-2533 Membranes: Experiment and Simulation. Ind Eng Chem Res 2022. [DOI: 10.1021/acs.iecr.2c00629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Qian Xu
- Department of Chemical Engineering, Taiyuan University of Technology, Taiyuan 030024, P. R. China
| | - Hongyun Wang
- Department of Chemical Engineering, Taiyuan University of Technology, Taiyuan 030024, P. R. China
| | - Meng Zhang
- Department of Chemical Engineering, Taiyuan University of Technology, Taiyuan 030024, P. R. China
| | - Jie Wang
- Department of Chemical Engineering, Taiyuan University of Technology, Taiyuan 030024, P. R. China
| | - Xiaowei An
- College of Environmental Science and Engineering, Taiyuan University of Technology, Taiyuan 030024, P. R. China
| | - Xiaogang Hao
- Department of Chemical Engineering, Taiyuan University of Technology, Taiyuan 030024, P. R. China
| | - Xiao Du
- Department of Chemical Engineering, Taiyuan University of Technology, Taiyuan 030024, P. R. China
| | - Zhonglin Zhang
- Department of Chemical Engineering, Taiyuan University of Technology, Taiyuan 030024, P. R. China
| | - Yongguo Li
- China Institute for Radiation Protection, Taiyuan 030006, P. R. China
| |
Collapse
|
13
|
Zhang AS, Li SH, Xu LH, Mao H, Zhao ZP. 1D continuous ZIF-8 tubes incorporated PDMS mixed matrix membrane for superior ethyl acetate pervaporation separation. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2021.120127] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
14
|
Mao H, Li SH, Xu LH, Wang S, Liu WM, Lv MY, Lv J, Zhao ZP. Zeolitic imidazolate frameworks in mixed matrix membranes for boosting phenol/water separation: Crystal evolution and preferential orientation. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2021.119611] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
15
|
Mao H, Li SH, Zhang AS, Xu LH, Lu HX, Lv J, Zhao ZP. Furfural separation from aqueous solution by pervaporation membrane mixed with metal organic framework MIL-53(Al) synthesized via high efficiency solvent-controlled microwave. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2021.118813] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
16
|
Li SW, Zhang HY, Han TH, Wu WQ, Wang W, Zhao JS. A spinosus Fe3O4@MOF-PMoW catalyst for the highly effective oxidative desulfurization under oxygen as oxidant. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2021.118460] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|