1
|
Chen G, Zhu H, Liu G, Liu G, Jin W. Confinement Effects and Manipulation Strategies of Nanocomposite Membranes towards Molecular Separation. Angew Chem Int Ed Engl 2025; 64:e202418649. [PMID: 39506877 DOI: 10.1002/anie.202418649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 11/02/2024] [Accepted: 11/06/2024] [Indexed: 11/08/2024]
Abstract
Materials featuring well-defined nanoscale channels offer inherent advantages in the selective transport of gases, liquids, and ions, making them pivotal in applications such as molecular separation, catalysis and energy storage. A crucial challenge lies in assembling ordered nanochannel structures and translating these microscopic architectures into macroscopic regular distributions to enhance performance. Nanocomposites provide a promising solution by incorporating nanoscale material (e.g., filler) that significantly enhances macroscale properties of matrix (e.g., polymer). In this review, we spotlight nanocomposite membranes nanocomposite membranes that utilize confinement effects between filler and matrix to precisely control nanochannel apertures, surface properties, and channel distribution for efficient separation of target systems. We discussed the underlying design principles, channel architectures, and strategies for optimizing polymer-filler interfaces and nanochannel manipulation within functional membranes. Emphasis is placed on the fundamental mechanisms of mass transport, and the structure-property-performance relationships within the nanocomposite membranes towards molecular separation. This work aims to provide a comprehensive understanding of how these nanocomposite membranes can be further developed to meet the demands of industrial and environmental applications.
Collapse
Affiliation(s)
- Guining Chen
- State Key Laboratory of Materials-Oriented Chemical Engineering College of Chemical Engineering, Nanjing Tech University, 30 Puzhu Road (S), Nanjing, 211816, China
| | - Haipeng Zhu
- State Key Laboratory of Materials-Oriented Chemical Engineering College of Chemical Engineering, Nanjing Tech University, 30 Puzhu Road (S), Nanjing, 211816, China
| | - Guozhen Liu
- State Key Laboratory of Materials-Oriented Chemical Engineering College of Chemical Engineering, Nanjing Tech University, 30 Puzhu Road (S), Nanjing, 211816, China
| | - Gongping Liu
- State Key Laboratory of Materials-Oriented Chemical Engineering College of Chemical Engineering, Nanjing Tech University, 30 Puzhu Road (S), Nanjing, 211816, China
| | - Wanqin Jin
- State Key Laboratory of Materials-Oriented Chemical Engineering College of Chemical Engineering, Nanjing Tech University, 30 Puzhu Road (S), Nanjing, 211816, China
| |
Collapse
|
2
|
Hazazi K, Wang Y, Ghanem B, Hu X, Puspasari T, Chen C, Han Y, Pinnau I. Precise molecular sieving of ethylene from ethane using triptycene-derived submicroporous carbon membranes. NATURE MATERIALS 2023; 22:1218-1226. [PMID: 37620645 DOI: 10.1038/s41563-023-01629-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 07/07/2023] [Indexed: 08/26/2023]
Abstract
Replacement or debottlenecking of the extremely energy-intensive cryogenic distillation technology for the separation of ethylene from ethane has been a long-standing challenge. Membrane technology could be a desirable alternative with potentially lower energy consumption. However, the current key obstacle for industrial implementation of membrane technology is the low mixed-gas selectivity of polymeric, inorganic or hybrid membrane materials, arising from the similar sizes of ethylene (3.75 Å) and ethane (3.85 Å). Here we report precise molecular sieving and plasticization-resistant carbon membranes made by pyrolysing a shape-persistent three-dimensional triptycene-based ladder polymer of intrinsic microporosity with unparalleled mixed-gas performance for ethylene/ethane separation, with a selectivity of ~100 at 10 bar feed pressure, and with long-term continuous stability for 30 days demonstrated. These submicroporous carbon membranes offer opportunities for membrane technology in a wide range of notoriously difficult separation applications in the petrochemical and natural gas industry.
Collapse
Affiliation(s)
- Khalid Hazazi
- Chemical Engineering Program, Physical Science and Engineering Division, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
- Advanced Membranes and Porous Materials Center, Physical Science and Engineering Division, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
- EXPEC Advanced Research Center, Saudi Aramco, Thuwal, Saudi Arabia
| | - Yingge Wang
- Advanced Membranes and Porous Materials Center, Physical Science and Engineering Division, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Bader Ghanem
- Advanced Membranes and Porous Materials Center, Physical Science and Engineering Division, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Xiaofan Hu
- Advanced Membranes and Porous Materials Center, Physical Science and Engineering Division, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Tiara Puspasari
- Advanced Membranes and Porous Materials Center, Physical Science and Engineering Division, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Cailing Chen
- Advanced Membranes and Porous Materials Center, Physical Science and Engineering Division, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Yu Han
- Advanced Membranes and Porous Materials Center, Physical Science and Engineering Division, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Ingo Pinnau
- Chemical Engineering Program, Physical Science and Engineering Division, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia.
- Advanced Membranes and Porous Materials Center, Physical Science and Engineering Division, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia.
| |
Collapse
|
3
|
Choi E, Kwon O, Hoo Lee C, Woo Kim D. Metal-Organic Framework Membrane Hybridized with Graphitic Materials for Gas Separation. Chempluschem 2023; 88:e202300173. [PMID: 37525991 DOI: 10.1002/cplu.202300173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 07/17/2023] [Indexed: 08/02/2023]
Abstract
Metal-organic frameworks (MOFs) are an exceptional class of crystalline materials that have been extensively used to fabricate membranes for various applications such as gas separation, ion transport, and desalination due to their well-defined pore structure, chemical features, and simple synthesis process. The incorporation of graphitic carbon materials in MOFs has garnered significant attention as it can provide abundant nucleation sites and modulate gas transport by influencing the orientation or rigidity of MOF crystals without changing their porous structure. This review insights of previous studies utilizing graphene, graphene oxide, carbon nanotubes, and graphene nanoribbons for MOF-based gas separation membranes, particularly focusing on polycrystalline MOF membrane hybridization with graphitic materials. We also briefly discuss the use of carbon/MOF hybrid materials for preparing mixed matrix membranes.
Collapse
Affiliation(s)
- Eunji Choi
- Department of Chemical and Biomolecular Engineering, Yonsei University, Yonsei-ro 50 Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Ohchan Kwon
- Department of Chemical and Biomolecular Engineering, Yonsei University, Yonsei-ro 50 Seodaemun-gu, Seoul, 03722, Republic of Korea
- Department of Chemistry, University of California Berkeley, Berkeley, CA, 94720, California, USA
| | - Choong Hoo Lee
- Department of Chemical and Biomolecular Engineering, Yonsei University, Yonsei-ro 50 Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Dae Woo Kim
- Department of Chemical and Biomolecular Engineering, Yonsei University, Yonsei-ro 50 Seodaemun-gu, Seoul, 03722, Republic of Korea
| |
Collapse
|
4
|
Chen G, Liu G, Pan Y, Liu G, Gu X, Jin W, Xu N. Zeolites and metal-organic frameworks for gas separation: the possibility of translating adsorbents into membranes. Chem Soc Rev 2023. [PMID: 37377411 DOI: 10.1039/d3cs00370a] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/29/2023]
Abstract
Zeolites and metal-organic frameworks (MOFs) represent an attractive class of crystalline porous materials that possesses regular pore structures. The inherent porosity of these materials has led to an increasing focus on gas separation applications, encompassing adsorption and membrane separation techniques. Here, a brief overview of the critical properties and fabrication approaches for zeolites and MOFs as adsorbents and membranes is given. The separation mechanisms, based on pore sizes and the chemical properties of nanochannels, are explored in depth, considering the distinct characteristics of adsorption and membrane separation. Recommendations for judicious selection and design of zeolites and MOFs for gas separation purposes are emphasized. By examining the similarities and differences between the roles of nanoporous materials as adsorbents and membranes, the feasibility of zeolites and MOFs from adsorption separation to membrane separation is discussed. With the rapid development of zeolites and MOFs towards adsorption and membrane separation, challenges and perspectives of this cutting-edge area are also addressed.
Collapse
Affiliation(s)
- Guining Chen
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, 30 Puzhu Road (S), Nanjing, 211816, China.
| | - Guozhen Liu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, 30 Puzhu Road (S), Nanjing, 211816, China.
| | - Yang Pan
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, 30 Puzhu Road (S), Nanjing, 211816, China.
| | - Gongping Liu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, 30 Puzhu Road (S), Nanjing, 211816, China.
- Suzhou Laboratory, Suzhou 215125, China
| | - Xuehong Gu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, 30 Puzhu Road (S), Nanjing, 211816, China.
| | - Wanqin Jin
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, 30 Puzhu Road (S), Nanjing, 211816, China.
| | - Nanping Xu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, 30 Puzhu Road (S), Nanjing, 211816, China.
- Suzhou Laboratory, Suzhou 215125, China
| |
Collapse
|
5
|
Duan Y, Li L, Shen Z, Cheng J, He K. Engineering Metal-Organic-Framework (MOF)-Based Membranes for Gas and Liquid Separation. MEMBRANES 2023; 13:480. [PMID: 37233541 PMCID: PMC10221405 DOI: 10.3390/membranes13050480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 04/21/2023] [Accepted: 04/26/2023] [Indexed: 05/27/2023]
Abstract
Separation is one of the most energy-intensive processes in the chemical industry, and membrane-based separation technology contributes significantly to energy conservation and emission reduction. Additionally, metal-organic framework (MOF) materials have been widely investigated and have been found to have enormous potential in membrane separation due to their uniform pore size and high designability. Notably, pure MOF films and MOF mixed matrix membranes (MMMs) are the core of the "next generation" MOF materials. However, there are some tough issues with MOF-based membranes that affect separation performance. For pure MOF membranes, problems such as framework flexibility, defects, and grain orientation need to be addressed. Meanwhile, there still exist bottlenecks for MMMs such as MOF aggregation, plasticization and aging of the polymer matrix, poor interface compatibility, etc. Herein, corresponding methods are introduced to solve these problems, including inhibiting framework flexibility, regulating synthesis conditions, and enhancing the interaction between MOF and substrate. A series of high-quality MOF-based membranes have been obtained based on these techniques. Overall, these membranes revealed desired separation performance in both gas separation (e.g., CO2, H2, and olefin/paraffin) and liquid separation (e.g., water purification, organic solvent nanofiltration, and chiral separation).
Collapse
Affiliation(s)
- Yutian Duan
- College of Electrical Engineering, Zhejiang University, Hangzhou 310027, China;
| | - Lei Li
- SINOPEC Nanjing Research Institute of Chemical Industry Co., Ltd., Nanjing 210048, China
| | - Zhiqiang Shen
- Department of Orthopedics, The First Affiliated Hospital of University of Science and Technology of China (USTC), Division of Life Sciences and Medicine, University of Science and Technology, Hefei 230001, China
| | - Jian Cheng
- Department of Orthopedics, The First Affiliated Hospital of University of Science and Technology of China (USTC), Division of Life Sciences and Medicine, University of Science and Technology, Hefei 230001, China
| | - Kewu He
- Imaging Center, Third Affiliated Hospital of Anhui Medical University, Hefei 230031, China
| |
Collapse
|
6
|
Yan T, Yang J, Lu J, Zhou L, Zhang Y, He G. Facile Synthesis of Ultra-microporous Pillar-Layered Metal-Organic Framework Membranes for Highly H 2-Selective Separation. ACS APPLIED MATERIALS & INTERFACES 2023; 15:20571-20582. [PMID: 37053491 DOI: 10.1021/acsami.3c02414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Recently, pillar-layered MOF materials have attracted much attention and shown great potential in separation application due to their fine pore size/channel and pore surface chemistry tunability and designability. In this work, we reported an effective and universal synthesis strategy for preparing ultra-microporous Ni-based pillar-layered MOF [Ni2(L-asp)2(bpy)] (Ni-LAB) and [Ni2(L-asp)2(pz)] (Ni-LAP) (L-asp = L-aspartic acid, bpy = 4,4'-bipyridine, pz = pyrazine) membranes on a porous α-Al2O3 substrate with high performance and good stability by secondary growth. Through this strategy, the seed size reduction and screening engineering (SRSE) is proposed to obtain uniform sub-micron size MOF seeds by high-energy ball milling-combined solvent deposition. This strategy not only effectively addresses the issue of obtaining the uniform small seeds being significant for secondary growth but also provides an approach for the preparation of Ni-based pillar-layered MOF membranes where the freedom of synthesizing small crystals is lacking. Based on reticular chemistry, the pore size of Ni-LAB was narrowed by making use of shorter pillar ligands of pz instead of the longer pillar ligand of bpy. The prepared ultra-microporous Ni-LAP membranes exhibited a high H2/CO2 separation factor of 40.4 with H2 permeance of 9.69 × 10-8 mol m-2 s-1 Pa-1 under ambient conditions and good mechanical and thermal stability. The superiority of the tunable pore structure and the remarkable stability of these MOF materials showed great potential for industrial H2 purification. More importantly, our synthesis strategy demonstrated the generality for preparation of MOF membranes, enabling the regulation of membrane pore size and surface functional groups by reticular chemistry.
Collapse
Affiliation(s)
- Tao Yan
- State Key Laboratory of Fine Chemicals, Institute of Adsorption and Inorganic Membrane, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, P. R. China
| | - Jianhua Yang
- State Key Laboratory of Fine Chemicals, Institute of Adsorption and Inorganic Membrane, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, P. R. China
- Panjin Institute of Industrial Technology, Dalian University of Technology, Panjin 124221, P.R. China
| | - Jinming Lu
- State Key Laboratory of Fine Chemicals, Institute of Adsorption and Inorganic Membrane, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, P. R. China
| | - Liang Zhou
- Panjin Institute of Industrial Technology, Dalian University of Technology, Panjin 124221, P.R. China
| | - Yan Zhang
- State Key Laboratory of Fine Chemicals, Institute of Adsorption and Inorganic Membrane, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, P. R. China
| | - Gaohong He
- State Key Laboratory of Fine Chemicals, Institute of Adsorption and Inorganic Membrane, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, P. R. China
- Panjin Institute of Industrial Technology, Dalian University of Technology, Panjin 124221, P.R. China
| |
Collapse
|
7
|
Ismail M, Bustam MA, Kari NEF, Yeong YF. Ideal Adsorbed Solution Theory (IAST) of Carbon Dioxide and Methane Adsorption Using Magnesium Gallate Metal-Organic Framework (Mg-gallate). Molecules 2023; 28:molecules28073016. [PMID: 37049778 PMCID: PMC10096293 DOI: 10.3390/molecules28073016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 03/19/2023] [Accepted: 03/23/2023] [Indexed: 03/30/2023] Open
Abstract
Ideal Adsorbed Solution Theory (IAST) is a predictive model that does not require any mixture data. In gas purification and separation processes, IAST is used to predict multicomponent adsorption equilibrium and selectivity based solely on experimental single-component adsorption isotherms. In this work, the mixed gas adsorption isotherms were predicted using IAST calculations with the Python package (pyIAST). The experimental CO2 and CH4 single-component adsorption isotherms of Mg-gallate were first fitted to isotherm models in which the experimental data best fit the Langmuir model. The presence of CH4 in the gas mixture contributed to a lower predicted amount of adsorbed CO2 due to the competitive adsorption among the different components. Nevertheless, CO2 adsorption was more favorable and resulted in a higher predicted adsorbed amount than CH4. Mg-gallate showed a stronger affinity for CO2 molecules and hence contributed to a higher CO2 adsorption capacity even with the coexistence of a CO2/CH4 mixture. Very high IAST selectivity values for CO2/CH4 were obtained which increased as the gas phase mole fraction of CO2 approached unity. Therefore, IAST calculations suggest that Mg-gallate can act as a potential adsorbent for the separation of CO2/CH4 mixed gas.
Collapse
Affiliation(s)
- Marhaina Ismail
- Carbon Dioxide Research Centre (CO2RES), Universiti Teknologi PETRONAS, Bandar Seri Iskandar 32610, Perak, Malaysia
| | - Mohamad Azmi Bustam
- Centre of Research in Ionic Liquids (CORIL), Universiti Teknologi PETRONAS, Bandar Seri Iskandar 32610, Perak, Malaysia
- Correspondence:
| | - Nor Ernie Fatriyah Kari
- Carbon Dioxide Research Centre (CO2RES), Universiti Teknologi PETRONAS, Bandar Seri Iskandar 32610, Perak, Malaysia
| | - Yin Fong Yeong
- Carbon Dioxide Research Centre (CO2RES), Universiti Teknologi PETRONAS, Bandar Seri Iskandar 32610, Perak, Malaysia
| |
Collapse
|
8
|
Chen X, Wang N, Chen G, Wang Z, Liu G, Zhou R, Jin W. Zeolite/polyimide mixed-matrix membranes with enhanced natural gas purification performance: Importance of filler structural integrity. J Memb Sci 2023. [DOI: 10.1016/j.memsci.2023.121462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
9
|
Dou H, Xu M, Yang L, Wang B, Yu A, Zhang L, Chen Z, Jiang Z. Efficient ethylene/ethane separation by zwitterionic deep eutectic solvent membranes. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.121181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
10
|
Nam KJ, Yu HJ, Yu S, Seong J, Kim SJ, Kim KC, Lee JS. In Situ Synthesis of Multivariate Zeolitic Imidazolate Frameworks for C 2 H 4 /C 2 H 6 Kinetic Separation. SMALL METHODS 2022; 6:e2200772. [PMID: 36047652 DOI: 10.1002/smtd.202200772] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 07/31/2022] [Indexed: 06/15/2023]
Abstract
Herein, a new approach for the in situ synthesis of zeolitic imidazolate framework (ZIF) nanoparticles with triple ligands, referred to as Sogang ZIF-8 (SZIF-8), is reported for enhanced C2 H4 /C2 H6 kinetic separation. SZIF-8 consists of tetrahedral zinc metals coordinated with tri-butyl amine (TBA), 2,4-dimethylimidazole (DIm), and 2-methylimidazole (MIm). SZIF-8(x) with different DIm contents in x (up to 23.2 mol%) are synthesized in situ because TBA preferably deprotonates DIm ligands due to the much lower pKa of DIm over MIm, allowing for the Zn-DIm coordination. The Zn-DIm coordination reduces the window size of ZIF-8 with suppressed linker flipping motion due to bulky DIm ligands and simultaneously enhances the interfacial interaction between 6FDA-DAM polyimide (6FDA) and SZIF-8 via electron donor-acceptor interactions. Consequently, 6FDA/SZIF-8(13) mixed matrix membrane exhibits an excellent C2 H4 permeability of 60.3 Barrer and C2 H4 /C2 H6 selectivity of 4.5. The temperature-dependent transport characterization reveals that such excellent C2 H4 /C2 H6 kinetic separation is attained by the enhancement in size discrimination-based energetic selectivity. Our hybrid multi-ligand approach can offer a useful tool for the fine-tuning of molecular structures and textural properties of other metal organic frameworks.
Collapse
Affiliation(s)
- Ki Jin Nam
- Department of Chemical and Biomolecular Engineering, Sogang University, Seoul, 04107, Republic of Korea
| | - Hyun Jung Yu
- Department of Chemical and Biomolecular Engineering, Sogang University, Seoul, 04107, Republic of Korea
| | - Seungho Yu
- Department of Chemical Engineering, Konkuk University, Seoul, 05029, Republic of Korea
| | - Jeongho Seong
- Department of Chemical and Biomolecular Engineering, Sogang University, Seoul, 04107, Republic of Korea
| | - Seok-Jhin Kim
- School of Chemical Engineering, Oklahoma State University, Stillwater, OK, 74078, USA
| | - Ki Chul Kim
- Department of Chemical Engineering, Konkuk University, Seoul, 05029, Republic of Korea
| | - Jong Suk Lee
- Department of Chemical and Biomolecular Engineering, Sogang University, Seoul, 04107, Republic of Korea
- Institute of Emergent Materials, Sogang University, Seoul, 04107, Republic of Korea
| |
Collapse
|
11
|
Enhanced ethylene transport of mixed-matrix membranes by incorporating anion-pillared hybrid ultramicroporous materials via in situ growth. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
12
|
Goh SH, Lau HS, Yong WF. Metal-Organic Frameworks (MOFs)-Based Mixed Matrix Membranes (MMMs) for Gas Separation: A Review on Advanced Materials in Harsh Environmental Applications. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2107536. [PMID: 35224843 DOI: 10.1002/smll.202107536] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Revised: 01/27/2022] [Indexed: 06/14/2023]
Abstract
The booming of global environmental awareness has driven the scientific community to search for alternative sustainable approaches. This is accentuated in the 13th sustainable development goal (SDG13), climate action, where urgent efforts are salient in combating the drastic effects of climate change. Membrane separation is one of the indispensable gas purification technologies that effectively reduces the carbon footprint and is energy-efficient for large-scale integration. Metal-organic frameworks (MOFs) are recognized as promising fillers embedded in mixed matrix membranes (MMMs) to enhance gas separation performance. Tremendous research studies on MOFs-based MMMs have been conducted. Herein, this review offers a critical summary of the MOFs-based MMMs developed in the past 3 years. The basic models to estimate gas transport, preparation methods, and challenges in developing MMMs are discussed. Subsequently, the application and separation performance of a variety of MOFs-based MMMs including those of advanced MOFs materials are summarized. To accommodate industrial needs and resolve commercialization hurdles, the latest exploration of MOF materials for a harsh operating condition is emphasized. Along with the contemplation on the outlook, future perspective, and opportunities of MMMs, it is anticipated that this review will serve as a stepping stone for the coming MMMs research on sustainable and benign environmental application.
Collapse
Affiliation(s)
- Shu Hua Goh
- School of Energy and Chemical Engineering, Xiamen University Malaysia, Selangor Darul Ehsan, 43900, Malaysia
| | - Hui Shen Lau
- School of Energy and Chemical Engineering, Xiamen University Malaysia, Selangor Darul Ehsan, 43900, Malaysia
| | - Wai Fen Yong
- School of Energy and Chemical Engineering, Xiamen University Malaysia, Selangor Darul Ehsan, 43900, Malaysia
- College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian, 361005, China
| |
Collapse
|
13
|
Chen X, Chen G, Liu G, Liu G, Jin W. UTSA
‐280 metal–organic framework incorporated
6FDA
‐polyimide mixed‐matrix membranes for ethylene/ethane separation. AIChE J 2022. [DOI: 10.1002/aic.17688] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Xi Chen
- State Key Laboratory of Materials‐Oriented Chemical Engineering, College of Chemical Engineering Nanjing Tech University Nanjing China
| | - Guining Chen
- State Key Laboratory of Materials‐Oriented Chemical Engineering, College of Chemical Engineering Nanjing Tech University Nanjing China
| | - Guozhen Liu
- State Key Laboratory of Materials‐Oriented Chemical Engineering, College of Chemical Engineering Nanjing Tech University Nanjing China
| | - Gongping Liu
- State Key Laboratory of Materials‐Oriented Chemical Engineering, College of Chemical Engineering Nanjing Tech University Nanjing China
| | - Wanqin Jin
- State Key Laboratory of Materials‐Oriented Chemical Engineering, College of Chemical Engineering Nanjing Tech University Nanjing China
| |
Collapse
|
14
|
Chuah CY, Bae TH. Recent Advances in Mixed-Matrix Membranes for Light Hydrocarbon (C 1-C 3) Separation. MEMBRANES 2022; 12:201. [PMID: 35207123 PMCID: PMC8880125 DOI: 10.3390/membranes12020201] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 01/29/2022] [Accepted: 02/06/2022] [Indexed: 01/27/2023]
Abstract
Light hydrocarbons, obtained through the petroleum refining process, are used in numerous applications. The separation of the various light hydrocarbons is challenging and expensive due to their similar melting and boiling points. Alternative methods have been investigated to supplement cryogenic distillation, which is energy intensive. Membrane technology, on the other hand, can be an attractive alternative in light hydrocarbon separation as a phase change that is known to be energy-intensive is not required during the separation. In this regard, this study focuses on recent advances in mixed-matrix membranes (MMMs) for light hydrocarbon (C1-C3) separation based on gas permeability and selectivity. Moreover, the future research and development direction of MMMs in light hydrocarbon separation is discussed, considering the low intrinsic gas permeability of polymeric membranes.
Collapse
Affiliation(s)
- Chong Yang Chuah
- Department of Chemical Engineering, Universiti Teknologi Petronas, Bandar Seri Iskandar, Perak 32610, Malaysia
- CO2 Research Centre (CO2RES), Institute of Contaminant Management, Universiti Teknologi Petronas, Bandar Seri Iskandar, Perak 32610, Malaysia
| | - Tae-Hyun Bae
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology, Daejeon 34141, Korea
| |
Collapse
|
15
|
Li W, Peng L, Li Y, Chen Z, Duan C, Yan S, Yuan B. Hyper cross‐linked polymers containing amino group functionalized polyimide mixed matrix membranes for gas separation. J Appl Polym Sci 2022. [DOI: 10.1002/app.52171] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Weixin Li
- School of Chemical Engineering and Technology Hebei University of Technology Tianjin China
| | - Longfei Peng
- School of Chemical Engineering and Technology Hebei University of Technology Tianjin China
| | - Yinhui Li
- School of Chemical Engineering and Technology Hebei University of Technology Tianjin China
| | - Zan Chen
- Key Laboratory of Membrane and Membrane Process China National Offshore Oil Corporation Tianjin Chemical Research & Design Institute Tianjin China
| | - Cuijia Duan
- Key Laboratory of Membrane and Membrane Process China National Offshore Oil Corporation Tianjin Chemical Research & Design Institute Tianjin China
| | - Shuo Yan
- Key Laboratory of Membrane and Membrane Process China National Offshore Oil Corporation Tianjin Chemical Research & Design Institute Tianjin China
| | - Biao Yuan
- Key Laboratory of Membrane and Membrane Process China National Offshore Oil Corporation Tianjin Chemical Research & Design Institute Tianjin China
| |
Collapse
|
16
|
Feng Y, Yu L, Zhang K, Fan W, Fan L, Kang Z, Sun D. Fabrication of mixed matrix membranes with regulated MOF fillers via incorporating guest molecules for optimizing light hydrocarbon separation performance. CrystEngComm 2022. [DOI: 10.1039/d2ce01073a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Guest molecules were incorporated into MOF fillers to construct MMMs with PIM-1 for enhanced gas separation performance.
Collapse
Affiliation(s)
- Yang Feng
- College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao, Shandong, 266580, PR China
| | - LiTing Yu
- School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao, Shandong, 266580, PR China
| | - Kai Zhang
- College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao, Shandong, 266580, PR China
| | - Weidong Fan
- School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao, Shandong, 266580, PR China
| | - Lili Fan
- School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao, Shandong, 266580, PR China
| | - Zixi Kang
- School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao, Shandong, 266580, PR China
| | - Daofeng Sun
- School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao, Shandong, 266580, PR China
| |
Collapse
|
17
|
Prasetya N, Himma NF, Sutrisna PD, Wenten IG. Recent advances in dual-filler mixed matrix membranes. REV CHEM ENG 2021. [DOI: 10.1515/revce-2021-0014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
Mixed matrix membranes (MMMs) have been widely developed as an attractive solution to overcome the drawbacks found in most polymer membranes, such as permeability-selectivity trade-off and low physicochemical stability. Numerous fillers based on inorganic, organic, and hybrid materials with various structures including porous or nonporous, and two-dimensional or three-dimensional, have been used. Demanded to further improve the characteristics and performances of the MMMs, the use of dual-filler instead of a single filler has then been proposed, from which multiple effects could be obtained. This article aims to review the recent development of MMMs with dual filler and discuss their performances in diverse potential applications. Challenges in this emerging field and outlook for future research are finally provided.
Collapse
Affiliation(s)
- Nicholaus Prasetya
- Research Centre for Nanoscience and Nanotechnology, Institut Teknologi Bandung , Jalan Ganesha 10 , Bandung 40132 , Indonesia
- Department of Chemical Engineering , Barrer Centre, Imperial College London , Exhibition Road , London SW7 2AZ , UK
| | - Nurul Faiqotul Himma
- Department of Chemical Engineering , Universitas Brawijaya , Jalan Mayjen Haryono 167 , Malang 65145 , Indonesia
| | - Putu Doddy Sutrisna
- Department of Chemical Engineering , Universitas Surabaya , Jalan Raya Kalirungkut (Tenggilis) , Surabaya 60293 , Indonesia
| | - I Gede Wenten
- Research Centre for Nanoscience and Nanotechnology, Institut Teknologi Bandung , Jalan Ganesha 10 , Bandung 40132 , Indonesia
- Department of Chemical Engineering , Institut Teknologi Bandung , Jalan Ganesha 10 , Bandung 40132 , Indonesia
| |
Collapse
|
18
|
Mao H, Li SH, Xu LH, Wang S, Liu WM, Lv MY, Lv J, Zhao ZP. Zeolitic imidazolate frameworks in mixed matrix membranes for boosting phenol/water separation: Crystal evolution and preferential orientation. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2021.119611] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
19
|
Lee S, Wang G, Ji N, Zhang M, Wang D, Sun L, Meng W, Zheng Y, Li Y, Wu Y. Synthesis, characterizations and kinetics of MOF‐5 as herbicide vehicle and its controlled release in PVA/ST biodegradable composite membranes. Z Anorg Allg Chem 2021. [DOI: 10.1002/zaac.202100252] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Shaoxiang Lee
- College of Environment and Safety Engineering Qingdao University of Science and Technology No.53, Zhengzhou Road Qingdao 266042 People's Republic of China
- Shandong Engineering Research Center for Marine Environment Corrosion and Safety Protection Qingdao University of Science and Technology Qingdao 266042 People's Republic of China
- Shandong Engineering Technology Research Center for Advanced Coating Qingdao University of Science and Technology Qingdao 266042 People's Republic of China
| | - Guohui Wang
- College of Environment and Safety Engineering Qingdao University of Science and Technology No.53, Zhengzhou Road Qingdao 266042 People's Republic of China
- Shandong Engineering Research Center for Marine Environment Corrosion and Safety Protection Qingdao University of Science and Technology Qingdao 266042 People's Republic of China
- Shandong Engineering Technology Research Center for Advanced Coating Qingdao University of Science and Technology Qingdao 266042 People's Republic of China
| | - Nana Ji
- Shandong Engineering Research Center for Marine Environment Corrosion and Safety Protection Qingdao University of Science and Technology Qingdao 266042 People's Republic of China
| | - Meng Zhang
- College of Environment and Safety Engineering Qingdao University of Science and Technology No.53, Zhengzhou Road Qingdao 266042 People's Republic of China
- Shandong Engineering Research Center for Marine Environment Corrosion and Safety Protection Qingdao University of Science and Technology Qingdao 266042 People's Republic of China
- Shandong Engineering Technology Research Center for Advanced Coating Qingdao University of Science and Technology Qingdao 266042 People's Republic of China
| | - Dong Wang
- College of Environment and Safety Engineering Qingdao University of Science and Technology No.53, Zhengzhou Road Qingdao 266042 People's Republic of China
- Shandong Engineering Research Center for Marine Environment Corrosion and Safety Protection Qingdao University of Science and Technology Qingdao 266042 People's Republic of China
- Shandong Engineering Technology Research Center for Advanced Coating Qingdao University of Science and Technology Qingdao 266042 People's Republic of China
| | - Lishui Sun
- College of Environment and Safety Engineering Qingdao University of Science and Technology No.53, Zhengzhou Road Qingdao 266042 People's Republic of China
- Shandong Engineering Research Center for Marine Environment Corrosion and Safety Protection Qingdao University of Science and Technology Qingdao 266042 People's Republic of China
- Shandong Engineering Technology Research Center for Advanced Coating Qingdao University of Science and Technology Qingdao 266042 People's Republic of China
| | - Wenqiao Meng
- College of Environment and Safety Engineering Qingdao University of Science and Technology No.53, Zhengzhou Road Qingdao 266042 People's Republic of China
- Shandong Engineering Research Center for Marine Environment Corrosion and Safety Protection Qingdao University of Science and Technology Qingdao 266042 People's Republic of China
- Shandong Engineering Technology Research Center for Advanced Coating Qingdao University of Science and Technology Qingdao 266042 People's Republic of China
| | - Yuqi Zheng
- College of Environment and Safety Engineering Qingdao University of Science and Technology No.53, Zhengzhou Road Qingdao 266042 People's Republic of China
- Shandong Engineering Research Center for Marine Environment Corrosion and Safety Protection Qingdao University of Science and Technology Qingdao 266042 People's Republic of China
- Shandong Engineering Technology Research Center for Advanced Coating Qingdao University of Science and Technology Qingdao 266042 People's Republic of China
| | - Yanxin Li
- College of Environment and Safety Engineering Qingdao University of Science and Technology No.53, Zhengzhou Road Qingdao 266042 People's Republic of China
- Shandong Engineering Research Center for Marine Environment Corrosion and Safety Protection Qingdao University of Science and Technology Qingdao 266042 People's Republic of China
- Shandong Engineering Technology Research Center for Advanced Coating Qingdao University of Science and Technology Qingdao 266042 People's Republic of China
| | - Yuting Wu
- College of Chemistry and Molecular Engineering Qingdao University of Science and Technology Qingdao 266042 People's Republic of China
| |
Collapse
|